首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Product Environmental Life-Cycle Assessment Using Input-Output Techniques   总被引:1,自引:0,他引:1  
Life-cycle assessment (LCA) facilitates a systems view in environmental evaluation of products, materials, and processes. Life-cycle assessment attempts to quantify environmental burdens over the entire life-cycle of a product from raw material extraction, manufacturing, and use to ultimate disposal. However, current methods for LCA suffer from problems of subjective boundary definition, inflexibility, high cost, data confidentiality, and aggregation.
This paper proposes alternative models to conduct quick, cost effective, and yet comprehensive life-cycle assessments. The core of the analytical model consists of the 498 sector economic input-output tables for the U.S. economy augmented with various sector-level environmental impact vectors. The environmental impacts covered include global warming, acidification, energy use, non-renewable ores consumption, eutrophication, conventional pollutant emissions and toxic releases to the environment. Alternative models are proposed for environmental assessment of individual products, processes, and life-cycle stages by selective disaggregation of aggregate input-output data or by creation of hypothetical new commodity sectors. To demonstrate the method, a case study comparing the life-cycle environmental performance of steel and plastic automobile fuel tank systems is presented.  相似文献   

2.
This article investigates how environmental trade-offs are handled in life-cycle assessment (LCA) studies in some Nordic companies. Through interviews, the use and understanding of weighting methods in decision making was studied. The analysis shows that the decision makers require methods with which to aggregate and help interpret the complex information from life-cycle inventories. They agreed that it was not their own values that should be reflected in such methods, but they were found to have different opinions concerning the value basis that should be used. The analysis also investigates the difficulties arising from using such methods. The decision makers seemed to give a broader meaning to the term weighting, and were more concerned with the comparison between environmental and other aspects than the weighting of different environmental impacts. A conclusion is that decision makers need to be more involved in modeling and interpretation. The role of the analyst should be to interpret the information needs of the decision maker, and help him or her make methodological choices that are consistent with these needs and relevant from his or her point of view. To achieve this, it is important that decision makers do not view LCA as a highly standardized calculation tool, but as a flexible process of collecting, organizing, and interpreting environmental information. Such an approach to LCA increases the chances that the results will be regarded as relevant and useful.  相似文献   

3.
This paper examines how different Life-Cycle Assessment (LCA) approaches, from full LCA’s to more qualitative LCA’s, are being used internationally in the development of government policies. Examples from 14 countries are provided for recent initiatives in various forms of policy which were developed to move national environmental policies toward the more life-cycle based programs. They indicate that a broader frame of reference is beginning to be used by those who write such policies. Discussion is also provided on the barriers that slow the adoption of life-cycle approaches in the development of government policies.  相似文献   

4.
The goal of life-cycle assessment (LCA) is to conduct an inventory of the flows of materials and energy attributable to an industrial product and then to calculate the impacts of those flows on the environment, over the entire product life cycle from premanufacture to end of 1ife. A related technique, streamlined life-cycle assessment (SLCA), attempts to preserve the breadth of perspective in that approach while performing assessments more efficiently. A common failing of both techniques is that recommendations for actions to improve the environmental responsibility of products have rarely been related in an intellectually rigorous fashion to the environmental concerns they purport to ameliorate. In this article l propose that a framework for the way in which these relationships can be established is by a decision-making process that begins with the "grand objectives," the common consensus of the vital goals for the maintenance and improvement of life on Earth. The grand objectives lead to the identification of crucial environmental concerns, and those, in turn, to determining societal activities that need to be examined. Actions related to those activities can then be designed to contribute to the achievement of the grand objectives. If and when such a consensus is established, LCAs and SLCAs can be undertaken with confidence that the actions they recommend will serve broad societal goals.  相似文献   

5.
Traditional life-cycle assessment begins with a product and examines its environmental impacts throughout its life cycle. An alternative approach is to proceed in reverse: to examine the need that the product is designed to fulfill, to determine the minimal environmental impacts that could be engendered by filling that need, and thereby to design the “ideal green product” for the purpose. This approach, termed reverse life-cycle assessment (RLCA), is demonstrated by examining the environmental impacts attributable to a generic washing machine of current design, and then by reviewing other ways in which the provisioning of clean clothing may be accomplished. RLCA, as used here, is shown to encourage systems thinking and to identify opportunities for innovation in design and in marketing of environmentally-responsible products in ways that would be unlikely to arise from a traditional LCA.  相似文献   

6.
Integrated Environmental and Economic Assessment of Products and Processes   总被引:1,自引:0,他引:1  
The eco-efficiency analysis method developed and used by the Öko-Institut analyzes different alternatives that fulfill a defined consumer need, from an environmental as well as an economic perspective.
Like life-cycle assessment (LCA), eco-efficiency analysis makes possible the setting of priorities in purchasing decisions or can be used to show optimization potentials in product development processes.
Eco-efficiency analysis builds upon two methods: LCA, according to ISO 14040 ff. (to assess the environmental aspects of products and processes), and life-cycle costing. Life-cycle costing results in a single figure—the total costs of ownership to one or several actors. The environmental impacts can be evaluated and aggregated as a single score or the impact category indicator results can be kept separate. In either case two single scores can be compared: the total environmental burden or the impact category indicator results, and the total costs of ownership of the alternatives under consideration.
The results can then be plotted in two-dimensional graphs that show the effectiveness of certain measures in environmental and economic terms. The efficiency is expressed as a numerical ratio of environmental savings to difference in costs.
Together with furnishing more detailed results and a discussion of additional benefits or potential barriers, eco-efficiency analysis broadens the basis for decision-making processes.  相似文献   

7.
Eco-efficiency at the product level is defined as product value per unit of environmental impact. In this paper we present a method for quantifying the eco-efficiency using quality function deployment (QFD) and life-cycle impact assessment (LCIA). These well-known tools are widely used in the manufacturing industry.
QFD, which is one of the methods used in product development based on consumer preferences, is introduced to calculate the product value. An index of the product value is calculated as the weighted average of improvement rates of quality characteristics. The importance of customer requirements, derived from the QFD matrix, is applied.
Environmental impacts throughout a product life cycle are calculated based on an LCIA method widely used in Japan. By applying the LCIA method of endpoint type, the endpoint damage caused by various life-cycle inventories is calculated. Willingness to pay is applied to integrate it into a single index.
Eco-design support tools, namely, the life-cycle planning (LCP) tool and the life-cycle assessment (LCA) tool, have already been developed. Using these tools, data required for calculation of the eco-efficiency of products can be collected. The product value is calculated based on QFD data stored in the LCP tool and the environmental impact is calculated using the LCA tool.
Case studies of eco-efficiency are adopted and the adequacy of this method is clarified. Several advantages of this method are characterized.  相似文献   

8.
Energy Consumption in the Danish Fishery: Identification of Key Factors   总被引:1,自引:0,他引:1  
Previous studies based on life-cycle assessment (LCA) in Denmark and Sweden have shown that the fishery is the environmental "hot spot" in the life cycle of certain fish products. Within the fishery, fuel consumption is one of the most important factors addressed by LCA. The present study reveals that there are great differences in fuel consumption between fisheries targeting groundfish or shellfish and those targeting pelagic fish or industrial fish. Here, I show that fuel consumption per kilogram of caught fish varies considerably as a function of fishing gear and vessel size, even considering the same target species. I argue that these differences need to be addressed in the search for a fuel-efficient fishery. Improvements in fuel efficiency may be consistent with other objectives, such as reduced impacts on seafloor habitats and reduced discard.  相似文献   

9.
When one models impact pathways due to stressors that are caused by the provision of product systems, it results in indicators for environmental damages. These indicators are incommensurable and cannot be compared per se. For example, the statistical life years lost for a human population cannot necessarily be compared with the potentially affected fraction of species within an ecosystem. However, some decision makers who use life-cycle assessment (LCA) prefer a single index, because it facilitates interpretation better than a multi-indicator system. This requires a method for aggregating environmental damages of differing types, thereby confronting LCA with a valuation problem.
The article describes a nonmonetary approach to valuation in LCA that incorporates the findings of a survey among LCA practitioners and users. The survey focuses on the weighting of three safeguard subjects for Eco-indicator 99, a damage-oriented impact-assessment method: human health, ecosystem quality, and resources. Of particular interest here is what influence the context provided in the survey (framing) and an individual's characteristics have on his or her weighting of environmental damages. The results indicate that damages on the European level are easier to compare than damages on a micro level. Additionally, although only half of the survey participants could be classified unequivocally into one of three cultural perspectives, each perspective rated the damage categories presented to them significantly differently from the others. Our conclusions were that framing effects need to be more carefully considered in weighting procedures and that weighting preferences vary significantly according to a group's archetypical attitudes.  相似文献   

10.
Sustainable management of materials and products requires continuous evaluation of numerous complex social, ecological, and economic factors. A number of tools and methods are emerging to support this. One of the most rigorous is life-cycle assessment (LCA). But LCAs often lack a sustainability perspective and bring about difficult trade-offs between specificity and depth, on the one hand, and comprehension and applicability, on the other. This article applies a framework for strategic sustainable development (often referred to as The Natural Step (TNS) framework) based on backcasting from basic principles for sustainability. The aim is to foster a new general approach to the management of materials and products, here termed "strategic life-cycle management". This includes informing the overall analysis with aspects that are relevant to a basic perspective on (1) sustainability, and (2) strategy to arrive at sustainability. The resulting overview is expected to help avoid costly assessments of flows and practices that are not critical from a sustainability and/or strategic perspective and to help identify strategic gaps in knowledge or potential problems that need further assessment. Early experience indicates that the approach can complement some existing tools and concepts by informing them from a sustainability perspective-for example, current product development and LCA tools.  相似文献   

11.
For developing product policy, insight into the environmental effects of products is required. But available life-cycle assessment studies (LCAs) are hardly comparable between different products and do not cover total consumption. Input-output analysis with environmental extensions (EEIOA) of full consumption is not available for the European Union. Available country studies have a low sector resolution and a limited number of environmental extensions. This study fills the gap between detailed LCA and low-resolution EEIOA, specifying the environmental effects of household consumption in the European Union, discerning nearly 500 sectors, while specifying a large number of environmental extensions. Added to the production sectors are a number of consumption activities with direct emissions, such as automobile driving, cooking and heating, and a number of postconsumer waste management sectors. The data for Europe have been constructed by using the sparse available and coarse economic and environmental data on European countries and adding technological detail mainly based on data from the United States.
A small number of products score high on environmental impact per Euro and also have a substantial share of overall consumer expenditure. Several meat and dairy products, household heating, and car driving thus have a large share of the total environmental impact. Due to their sales volume, however, products with a medium or low environmental score per Euro may also have a substantial impact. This is the case with bars and restaurants, clothing, residential construction, and even a service such as telecommunications. The limitations in real European data made heroic assumptions necessary to operationalize the model. One conclusion, therefore, is that provision of data in Europe urgently needs to be improved, at least to the level of sector detail currently available for the United States and Japan.  相似文献   

12.
Abstract: Simple models are often used to assess the potential impact of acidifying and eutrophying substances released during the life cycle of products. As fate, background depositions, and ecosystem sensitivity are not included in these models, environmental life-cycle assessment of products (LCA) may produce incorrect results for these impact categories. This paper outlines the spatially explicit regional air pollution information and simulation model (RAINSLCA), which was developed for the calculation of acidification and terrestrial eutrophication potentials of ammonia (NH3) and nitrogen oxide (NOx) air emissions and acidification potentials for sulfur dioxide (SO2) air emissions for Europe and a number of European regions, taking fate,  相似文献   

13.
E-commerce is often cited as offering the potential to reduce wholesale and retail burdens within product life cycles; however its potential impacts upon transport may be positive or negative. But the relative environmental importance of wholesale and retail trade and their intervening transportation links within product life cycles has not been generally characterized. The objective of this research was to assess the upstream (preusage) life-cycle energy burden shares associated with retail trade and wholesale trade using input-output life-cycle assessment (IO LCA) with a special focus on the electronic computers sector.
According to our results, the physical transfers of products within the distribution phase play a minor role in terms of energy consumption compared with wholesaling and retailing. On the other hand, the supply chains of the wholesale and retail trade sectors can lead to energy consumption that is a significant share of the total preconsumer energy consumption for many products. Thus, where e-commerce circumvents wholesale and/or retail trade, it can have a major impact on total preconsumer energy consumption.
As an example, for the electronic computers sector, retailing and wholesaling as a portion of distribution are responsible for 38% of the total energy consumption from production until purchase (cradle to gate), whereas transportation within the distribution phase corresponds to only 9%. Our analysis of more than 400 commodities in the United States showed that for the large majority of them, retailing and wholesaling account for appreciable shares of the total preconsumer energy burdens. Wholesaling and retailing should be included in LCA, and IO LCA is an effective tool for doing so.  相似文献   

14.
Motorola is a large electronics company that uses design for environment (DfE) t o address our customers' environmental needs. In working to integrate environmental considerations into product design, Motorola has encountered new challenges in product design, and as a result has had to develop new frameworks and employ new analytical tools. This article describes those challenges and Motorola's efforts to date. The examination of how products are designed in Motorola led to the realization that there are distinct phases in design: concept development, detail design, and prototype manufacture. In the earlier phases where the greatest flexibility for product reconfiguration exists, there is the least amount of detailed information available for use in making environmental assessments. In an effort to match the data availability to the environmental assessment needs, Motorola developed a tiered approach to DE using a matrix-based abridged life-cycle assessment (LCA) in the concept development stage, a scoring system based in part on multiattribute value theory in the detail design stage, and potentially full-scale life-cycle assessment in the prototype manufacturing stage.  相似文献   

15.
Product design-for-environment (DfE) has traditionally relied on life-cycle assessment (LCA) as a primary means of assessing environmental performance. To date, LCA has focused on static inventory and impacts of material streams during the stages of resource extraction, component manufacture, product use, and end of life at a high level of aggregation. Improvement analysis, though theoretically an important stage of LCA, is practically very challenging to implement using LCA alone. One reason for this is that the focus on detailed characterization of material streams does not facilitate a development of an understanding of the mechanistic relationship between design intent and material, manufacturing, and use-phase potential impacts. As the product development community transitions from sequential design to more streamlined concurrent design, interactive design tools are needed as a supplement to assessment tools in order to facilitate tradeoffs among environmental and other factors. This article presents an environmental analysis approach based on detailed process modeling which evaluates components from a functional design point of view. From a manufacturer's perspective, local potential effects in aggregate are often as important as global potential impacts. Furthermore, impacts often relate to explicit trade-offs between different life-cycle stages, such as production and use. In this article, the influence of functional design and manufacturing specifications (surface tolerance and finish) on localized potential impacts is illustrated through two different mechanical component (steel roller bearing and rotating shaft) case studies. Detailed analytical tools are key in enabling optimization and trade-offs by designers and process planners. The functional modeling approach is an important complement to LCA in providing a well-defined view of environmental performance.  相似文献   

16.

Background, aim, and scope  

Life-cycle thinking and life-cycle approaches are concepts that are getting increased attention worldwide and in particular in EU Policies related to sustainability. The European Commission is launching a number of activities to strengthen life-cycle thinking in policy and business. EU policies aim to decrease waste generation through new waste prevention initiatives, better use of resources and shift to more sustainable consumption patterns. The approach to waste management is based on three principles: waste prevention, recycling and reuse and improving the final disposal and monitoring. In particular, concerning the prevention and recycling of waste, the definition of a waste hierarchy should be the basis for the prioritisation of waste management options. The benefit of using Life Cycle Assessment (LCA) in analysing waste management systems is the provision of a comprehensive view of the processes and impacts involved. However, it is also clear that the studies will always be open for criticism as they are simplifications of reality. Moreover, in order to become the LCA, a leading tool within businesses and government to understand and manage risks or opportunities related to waste management and treatment technologies, there are methodological choices required and a number of aspects that still need to be worked out. It is therefore important to review open and grey literatures, EU guidelines, relevant environmental indicators and databases for the waste sector and data easily usable in waste policy decision-making, with an agreed approach and methodology based on life-cycle thinking. The following survey gathers and describes the existing guidelines and methodologies based on life-cycle thinking and applicable in waste policy decision-making.  相似文献   

17.
A Decision Support Framework for Sustainable Waste Management   总被引:1,自引:0,他引:1  
This article describes a decision support framework for the evaluation of scenarios for the integrated management of municipal solid waste within a local government area (LGA).
The work is initially focused on local government (i.e., municipal councils) in the state of Queensland, Australia; however, it is broadly applicable to LGAs anywhere. The goal is to achieve sustainable waste management practices by balancing global and regional environmental impacts, social impacts at the local community level, and economic impacts. The framework integrates life-cycle assessment (LCA) with other environmental, social, and economic tools. For this study, social and economic impacts are assumed to be similar across developed countries of the world. LCA was streamlined at both the life-cycle inventory and life-cycle impact assessment stages.
For this process, spatial resolution is introduced into the LCA process to account for impacts occurring at the local and regional levels. This has been done by considering social impacts on the local community and by use of a regional procedure for LCA data for emissions to the environment that may have impacts at the regional level.
The integration follows the structured approach of the pressure-state-response (PSR) model suggested by the Organisation for Economic Cooperation and Development (OECD). This PSR model has been extended to encompass nonenvironmental issues and to guide the process of applying multiple tools.
The framework primarily focuses on decision analysis and interpretation processes. Multiattribute utility theory (MAUT) is used to assist with the integration of qualitative and quantitative information. MAUT provides a well-structured approach to information assessment and facilitates objective, transparent decisions. A commercially available decision analysis software package based on MAUT has been used as the platform for the framework developed in this study.  相似文献   

18.
In February 2003, European Union (EU) policy makers implemented a Directive that will make producers responsible for waste electrical and electronic equipment at end-of-life (known as the "WEEE" Directive). Under this new legislation, producers are required to organize and finance the take-back, treatment, and recycling of WEEE and achieve mass-based recycling and recovery targets. This legislation is part of a growing trend of extended producer responsibility for waste, which has the potential to shift the world's economies toward more circular patterns of resource use and recycling. This study uses life-cycle assessment and costing to investigate the possible environmental effects of the WEEE Directive, based on an example of printer recycling in the United Kingdom.
For a total of four waste management scenarios and nine environmental impact categories investigated in this study, results varied, with no scenario emerging as best or worst overall compared to landfilling. The level of environmental impact depended on the type of material and waste management processes involved. Additionally, under the broad mass-based targets of the WEEE Directive, the pattern of relationships between recycling rates, environmental impacts, and treatment and recycling costs may lead to unplanned and unwanted results. Contrary to original EU assumptions, the use of mass-based targets may not ensure that producers adapt the design of their products as intended under producer responsibility.
It is concluded that the EU should revise the scope of consideration of the WEEE Directive to ensure its life-cycle impacts are addressed. In particular, specific environmental objectives and operating standards for treatment and recycling processes should be investigated as an alternative to mass-based recycling and recovery targets.  相似文献   

19.
The purpose of this paper is to describe how one pollution prevention tool, life-cycle assessment, can be used to identify and manage environmental issues associated with product systems. Specifically, this paper will describe what life-cycle assessment is, determine the key players in its development and application, and present ideas on how life-cycle assessment can be used today. LCA provides a systematic means to broaden the perspective of a company's decisionmaking process to incorporate the consideration of energy and material use, transportation, post-customer use, and disposal, and the environmental releases associated with the product system. LCA provides a framework to achieve a better understanding of the trade-offs associated with specific change in a product, package, or process. This understanding lays the foundation for subsequent risk assessments and risk management efforts by decision-makers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号