首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
报道了以对β-硫酸酯己砜基苯胺(SESA)为活化剂制备疏水作用层析剂方法及其柱层析纯化脂肪酶的工艺条件。实验结果表明:活化剂对-β-硫酸酯己砜基苯胺(SESA)最适用量为1.0g/g湿纸纤维素。笨胺:丙酮比为1:4.以0.2mol/L磷酸缓冲液(pH8.0)=1mol/LNaCl为淋洗剂,以0.2mol/L磷酸缓冲液(pH8.0)+8%吐温80为洗脱刘纯化脂肪酶具有较好的分辨率,酶活回收率64.0%,比活提高6.70倍。  相似文献   

2.
脂肪酶二步法催化鱼油下脚料富集DHA   总被引:1,自引:1,他引:0  
采用Pseudomonas sp.脂肪酶水解,Geotrichum sp.脂肪酶选择性酯化的两步法显著提高游离脂肪酸(FFA)中二十二碳六烯酸(DHA)的含量。通过筛选合适的底物醇,优化水解和选择性酯化反应条件达到富集DHA的目的。结果表明月桂醇为选择性酯化的最适底物醇。确定的最佳水解条件:4g反应底物,m(水)/m(粗鱼油)=1,1000 U Pseudomonas sp.脂肪酶,40℃,搅拌速度200r/min,反应24h;最佳酯化条件:3g反应底物,n(FFA)/n(醇)=1/2,1000 U固定化Geotrichum sp.脂肪酶,1g正己烷,30℃,200r/min搅拌,反应20h。经过水解和一次选择性酯化反应后,DHA含量从原料粗鱼油中的18.9%提纯到72.8%;经二次选择性酯化后,DHA含量上升到92%。脂肪酶水解-选择性酯化的两步法是富集DHA的有效方法。  相似文献   

3.
Burkholderia sp.脂肪酶具有较高的有机溶剂耐受性和转酯活性,广泛应用于手性化合物的拆分。本研究利用统计学方法对一株具有有机溶剂极端耐受性的脂肪酶高产茵株Burkholderia sp.ZYB002在摇瓶培养条件下产脂肪酶条件进行了优化。通过单因素实验,首先确定了最适碳源、氮源、诱导荆等。以Plackett—Burrman设计筛选影响Burkholderia sp.ZYB002产酶的主要因素,通过最陡爬坡实验和响应面分析法确定产酶最适条件。K2HP04、大豆油乳化液和起始RH确定为影响菌株产酶的3个主效因素。最佳产酶条件为:糊精0.3%(W/V),牛肉膏2.0%(W/V),MgSO4.7H2O.075%(W/V),K2HPO4 0.14%(W/V),大豆油乳化液4.89%(V/V),pH8.11,玻璃珠10颗/瓶,接种量2.0%(V/V),30℃,250r/min,发酵时间22h。在此条件下,发酵液脂肪酶酶活最高达45.6U/mL,较发酵基本培养基发酵液的脂肪酶酶活提高了3.44倍。  相似文献   

4.
目的:观察氧化应激在高原重体力劳动过程中急性高原反应(AHAR)发生中的作用。方法:由低海拔(1500m)快速进入高原(3700m)并从事重体力劳动的男性官兵96名,年龄18~35岁。根据AHAR症状评分,分为重度AHAR组(A组,n=24)、轻中度AHAR组(B组,n=47)和无AHAR组(C组,n=25),在该高度逗留50d后下撤前及返回低海拔(1500m)后12h、15d分别测定血清8.异前列腺素F2a(8-iso-PGF2a)、超氧化物歧化酶(SOD)、丙二醛(MDA),并与低海拔(1500m)50名健康官兵(D组)比较。结果:A组血清8-iso-PGF2a、MDA[分别为(9.53±0.47)μg/L、(8.91±0.39)μmol/L]水平显著高于B组[分别为(8.34±O.42)μg/L、(7.31±0.32)μmol/L]、C组[分别为(7.02±0.48)μg/L、(6.41±0.23)μmol/L和D组[分别为(5.13±0.56)μg/L、(5.48±0.33)μmol/L](均P〈0.01),SOD(52.08±3.44)μ/mL水平显著低于B组(62.27±2.54)μ/mL、C组(71.99±3.35)μ/mL和D组(80.78±3.44)μ/mL,(均P〈0.01),B组与c组之间和C组与D组之间亦有显著性差异(均P〈0.01)。海拔3700mAHAR总计分与血清8-iso-PGF2α、ⅣⅡ)A呈显著正相关(均P〈0.01),与血清SOD显著负相关(P〈0.01);8-iso-PGF2α、MDA与SOD显著负相关(均P〈0.01)。海拔3700m50d,血清8-iso-PGF2α、MDA水平显著高于,SOD水平显著低于海拔1500m12h、15d和D组(均P〈0.01),海拔1500m12h与15d之间有显著性差异(均P〈0.01),海拔1500m 15d与D组之间无显著性差异。结论:人体在高原低氧并重体力时氧化应激和氧化.抗氧化失衡与AHAR的发病和程度有密切关系,氧化应激和氧化.抗氧化失衡越严重,AHAR越重。返回低海拔后12h有显著改善,15d恢复到正常水平。  相似文献   

5.
利用Design-Expert软件优化丝氨酸羟甲基转移酶产酶培养基   总被引:6,自引:1,他引:5  
利用Design-Expert软件中水平设计和响应面分析法对产酶基本培养基主要成分进行了优化,经过逐步回归分析建立了丝氨酸羟叫基转移酶(SHMT)活力对培养基主要成分的二次回归模型,其回归方程的决定系数达到了0.9984。得到的最佳培养琏主要组成为:葡萄糖29.5g/L、硫酸铵18.1g/L、玉米浆3.79g/L。SHMT活力最高达到113.7U/ml,比优化前(77U/mL)提高了47.7%。优化后的酶液经酶促反应50h,能催化产生10g/L的L-丝氨酸,比优化前(6g/L)提高66.7%。  相似文献   

6.
低温条件下外源生理活性物质对棉铃发育的影响   总被引:7,自引:1,他引:6  
和4月20日(正常播期)、6月15日(晚播)两个播期条件下.对棉花1~4果枝1、2果节棉铃及其对位果枝叶于花后15d和30d涂抹外源生理活性物质:6%蔗糖和0.6%符氨酰胺混合溶液(C+N)、2%蔗糖和0.2%谷氨酰胺混合溶液(1/3C+1/3N)及12%蔗精和1.2%谷氨酰胺混合溶液(2C+2N).各浓度处理的C/N比值相同。统计正常播期铃龄50d和纤维加厚发育期(铃龄25~50d)日均温分别为28.5℃、28.1℃.晚播铃龄50d和纤维加厚发育期日均温分刖为22.9℃、21.4℃(超过了相应的临界温度21℃和18℃)。试验结果表明.晚播条件下,花后15dC+N处理以及花后30d 2C+2N处理促进了氮和可溶性糖的运转.均使铃重增加最大,分别达0.40g和0.58g。3种浓度外源生理活性物质均增加了纤维素的累积量.且于花后30d促进了螺旋角(φ)和取向分布角(ψ)的优化.提高了纤维比强度.其中以2C+2N处理提高纤维比强度幅度最大.达1.45cN/tex。花后15d以1/3C+1/3N处理对提高纤维比强度最有利.达2.10cN/tex。  相似文献   

7.
研究了辐照协同氢氧化钠预处理油菜秸秆对酶解产还原糖的影响。利用响应面法对氢氧化钠反应条件进行了优化,得出最优条件为氢氧化钠浓度为2.38%,反应温度为100℃,反应时间为0.5h。这一条件预期还原糖产量为524.93mg/g,通过实验验证,实际还原糖含量(528.51mg/g)能够很好地与预期相吻合。扫描电镜观察表明,辐照协同氢氧化钠预处理后秸秆表面积明显增大,出现很多蜂窝状孔洞结构,能够有效增大酶解可及表面积,从而提高酶解效率。  相似文献   

8.
研究了溶氧对Brewibacterium lactofermentation分批发酵生产L-异亮氨酸(Ile)的影响,提出了前10h恒700d/min以维持溶氧在35%以上,10h后调至600r/min以维持溶氧在15%~20%的两阶段供氧控制模式。与对照相比,获得了较高的产率(0.094g/g)和糖耗速度(4.76/L·h),在较短时间内(52h)获得较高的Ile产量(23.3g/L),比结果最好的单一搅拌转速(600r/min)提高11.6%。生产强度(0.448d/L·h)比恒定搅拌转速(500、600、700、800r/min)控制下的过程分别提高了83.6%、28.7%、44.9%、35.7%。最后采用代谢通量分析对该结果产生的原因进行了定量解释。  相似文献   

9.
采用模板法结合辛基(C8)表面修饰制备疏水有序介孔SiO2载体(OMS-C8),在此基础上制得固定化脂肪酶(CSL@OMS-C8),成功应用于乙酸肉桂酯的无溶剂酶法制备。利用扫描电镜(SEM)、透射电镜(TEM)、N2-吸附脱附、傅里叶红外(FTIR)对载体材料和固定化酶进行表征。结果显示,OMS具有整齐有序的介孔结构,比表面积达149.9 m2/g,平均孔径为15 nm。经过疏水改性后,接触角从20°提高到120°。优化获得了乙酸肉桂酯的最佳反应条件为温度50℃,肉桂醇与乙酸乙烯酯的摩尔比1∶5,固定化酶添加量2 g/L,反应时间2 h,转化率达到96.6%。催化剂经过5次重复使用肉桂醇的转化率仍能达到80%。  相似文献   

10.
脂肪酶的固定化及其性质研究   总被引:4,自引:0,他引:4  
曹国民  盛梅 《生物技术》1997,7(3):14-17
采用吸附与交联相结合的方法国定化脂肪酶,研究了脂肪酶固定化的工艺条件,并考察了固定化脂肪酶的催化性能和稳定性。试验结果表明,WA20树脂固定化脂肪酶的最适条件是:酶液pH7.0、给酶量300IU/g树脂、固定时间8h,所得固定化脂肪酶的活力约为165IU/g树脂;固定化酶稳定性较高,在冰箱内贮存6个月活力没有下降,操作半衰期约为750h,而未用戌二醛文联的固定化脂肪酶操作半衰期仅约290h;固定化脂肪酶催化橄榄油水解的最适条件是:PH8.0、温度55℃、底物浓度60%(V/V)、搅拌转速500r/m。  相似文献   

11.
An organic–inorganic nanocomposite which combined mesoporous silica SBA-15 and chitosan using a carboxyl functionalized ionic liquid as the bridging agent (SBA@CS) was successfully fabricated, and was used to immobilize porcine pancreas lipase (PPL) by physical adsorption, cross-linking and metal–organic coordination, respectively. The as-prepared carriers were characterized by scanning electron microscopy, Fourier transform infrared and energy-dispersive X-ray spectroscopy. Compared with immobilization onto the pure mesoporous silicon material SBA-15, all the batches of PPL immobilized onto organic–inorganic nanocomposites showed higher activity, improved stability and reusability as well as better resistance to pH and temperature changes. Among the immobilized PPLs, immobilization based on Co2+ coordination (SBA@CS-Co-PPL) produced the best enzymatic properties. The maximum immobilization efficiency and specific activity of 79.6% and 1975.8 U g−1 were obtained with SBA@CS-Co, separately. More importantly, the activity of immobilized enzyme can still maintain 84.0% after 10 times of reuse. These results demonstrated that thus prepared organic–inorganic nanocomposite could be an ideal carrier for enzyme immobilization by metal–organic coordination.  相似文献   

12.
《Process Biochemistry》2014,49(2):244-249
The novel enzyme carrier, polyamidoamine (PAMAM) dendrimers modified macroporous polystyrene, has been synthesized by Michael addition and firstly used in the immobilization of porcine pancreas lipase (PPL) effectively by covalent attachment. The resulting carrier was characterized with the Fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), elemental analysis and thermogravimetric (TG) analysis. Meanwhile, the amount of immobilized lipase was up to 100 mg g−1 support and the factors related with the enzyme activity were investigated. The immobilization of the PPL improved their performance in wider ranges of pH and temperature. Thermal stability of the immobilized lipase also increased dramatically in comparison with the free ones and the immobilized lipase exhibited a favorable denaturant tolerance. As a biocatalyst, the immobilized lipase for batch hydrolysis of olive oil emulsion retained 85% activity after 10 times of recycling. This well-reusability of immobilized lipase was very valuable and meaningful in enzyme technology.  相似文献   

13.
Amino acid modified chitosan beads (CBs) for immobilization of lipases from Candida rugosa were prepared by activation of a chitosan backbone with epichlorohydrin followed by amino acid coupling. The beads were analyzed by elemental analysis and solid state NMR with coupling yields of the amino acids ranging from 15 to 60%. The immobilized lipase on unmodified chitosan beads showed the highest immobilization yield (92.7%), but its activity was relatively low (10.4%). However, in spite of low immobilization yields (15–50%), the immobilized lipases on the amino acid modified chitosan beads showed activities higher than that of the unmodified chitosan beads, especially on Ala or Leu modified chitosan beads (Ala-CB or Leu-CB) with 49% activity for Ala-CB and 51% for Leu-CB. The immobilized lipases on Ala-CB improved thermal stability at 55 °C, compared to free and immobilized lipases on unmodified chitosan beads and the immobilized lipase on Ala-CB retained 93% of the initial activity when stored at 4 °C for 4 weeks. In addition, the activity of the immobilized lipase on Ala-CB retained 77% of its high initial activity after 10 times of reuse. The kinetic data (kcat/Km) supports that the immobilized lipase on Ala-CB can give better substrate specificity than the unmodified chitosan beads.  相似文献   

14.
The mesoporous silica SBA-15 was modified by carboxyl-functionalized ionic liquid (COOH-IL-SBA). The prepared support was used to immobilize porcine pancreatic lipase (PPL) by physical adsorption (PPL-COOH-IL-SBA) and covalent attachment (PPL-CON-IL-SBA). Enzymatic properties of the immobilized PPL were investigated in the triacetin hydrolysis reaction. It was found that carboxyl functionalized ionic liquid modification of the support surface was an effective method to improve the properties of immobilized PPL. Incorporating into the functionalized SBA-15 made PPL more resistant to temperature and pH changes, compared with PPL immobilized on parent SBA-15 (PPL-SBA). Especially, after the covalent attachment to a functionalized support, the stability of PPL was improved obviously, which retained 81.25% and 52.50% of the original activity after incubation for 20 days and four times recycling, respectively, whereas PPL-SBA exhibited only 58.80% and 27.78% of the original activity under the same conditions. In addition, physical and chemical properties of the supports and immobilized PPL were characterized by small-angle X-ray powder diffraction (SAXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), nitrogen adsorption, nuclear magnetic resonance (NMR) and thermogravimetry (TG). The images and data confirmed chemical modification in SBA-15 and PPL immobilization on the tested support.  相似文献   

15.
Highly active lipase and protease complexes were prepared by non-covalent modification with stearic acid. The protein content and yield of the modified enzyme complexes depended on the enzymes' source. The increase in the transesterification activity of the modified enzymes was 15 fold for Candida rugosa lipase and porcine pancreatic lipase, with preservation of the enantioselectivity. Pseudomonas sp. lipase which showed no activity in its crude form, exhibited an activity of 38 mol/h·mg protein in the modified form. © Rapid Science Ltd. 1998  相似文献   

16.
Porous silica particles (PSP) modified with different surface active groups were prepared for covalent immobilization of porcine pancreas lipase (PPL). Organosilanes combined with reactive end amino-group or epoxy-group were employed for the modification through silanization process. Polyethylenimine and long chain alkyl silane coupling agent were also used in the modification process. Several modification-immobilization strategies were performed, while good coupling yield could be achieved within the range of 86.2–158.2 mg of native PPL per gram of the carrier. Furthermore, at higher temperature, the resulting immobilized PPL (IPPL) could successfully perform the syntheses of polycaprolactone (PCL) and poly(5,5-dimethyl-1,3-dioxan-2-one) (PDTC) in ionic liquid medium. No polymers could be obtained catalyzed by native PPL, suggesting that IPPL showed much higher catalytic activity than native PPL. Effect of different treatments on the activity of IPPL also showed the long time high temperature stability in ionic liquid medium, contributing to a good combination of immobilization and ionic liquids effect. The catalytic activity of IPPL for polymerization was closely related to both the properties of immobilized enzyme and cyclic monomer. This work would be expected to highlight further careful design of immobilized enzyme for a wide range of application, especially in biodegradable polymers syntheses.  相似文献   

17.
Mesoporous SBA-15 was synthesized under acidic condition at 40 °C with a non-ionic triblock copolymer (P123) as the template. The synthesis gel composition used was 1 SiO2:0.017 P123:2.9 HCl:202.6 H2O. Functionalization of SBA-15 with 3-aminopropyltriethoxysilane (APTES) by post-synthesis method was performed under reflux for 2 h. The mesoporous samples were characterized using Fourier transform infrared (FT-IR), nitrogen adsorption, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). They were then utilized as supports for the immobilization of lipase to be subsequently used for the esterification of citronellol and lauric acid. Leaching and reusability tests were also conducted on the immobilized enzymes. Functionalization resulted in about 10% improvement in enzyme loading, leading to higher activity. The immobilized enzyme was also more stable to low pH and high temperature while showing better retention (up to 95%) of enzyme molecules. Immobilized lipase maintained 90% of its esterification activity in non-aqueous system even after 4 cycles of use. The improvements were associated with enhanced surface hydrophobicity, changes in pore shapes and stronger enzyme–support interactions with minimal effects to the enzymatic activity.  相似文献   

18.
Immobilization of lipase on hydrophobic nano-sized magnetite particles   总被引:2,自引:0,他引:2  
As a tool for the stable enzyme reuse, enzyme immobilization has been studied for several decades. Surface-modified nano-sized magnetite (S-NSM) particles have been suggested as a support for the immobilization of enzyme in this study. Based on the finding that a lipase is strongly adsorbed onto a hydrophobic surface, NSM particles (8–12 nm) were made hydrophobic by binding of sodium dodecyl sulfate via a sulfate ester bond. Various types of measurements, such as transmission electron microscopy, X-ray diffraction, infrared spectroscopy, vibration sample magnetometer, and thermo gravimetric analysis, were conducted in characterizing S-NSM nanoparticles. S-NSM particles were used for the adsorption of porcine pancreas lipase (PPL). A dodecyl carbon chain is expected to form a spacer between the surface of the NSM and the lipase adsorbed. The immobilized PPL showed the higher specific activity of oil hydrolysis than that of free one. Immobilized PPL could be recovered by magnetic separation, and showed the constant activity during the recycles.  相似文献   

19.
合成了功能化的甲基咪唑类离子液体,并将功能化离子液体修饰介孔材料SBA-16。以三乙酸甘油酯的水解为探针反应,考察离子液体修饰的SBA-16固定化猪胰脂肪酶(PPL)的酶活、最适反应条件及重复稳定性等酶学性质。结果表明:固定化酶对温度的敏感度降低,酶活力及稳定性均显著提高,比酶活是原粉SBA-16固定化酶的1.75倍,重复使用6次后仍然保持最初活性的57%;与原粉SBA-16固定化酶保留的38%相比,有明显的提高。同时通过N2吸附-脱附、红外光谱和热重等方法分析了离子液体修饰对SBA-16结构的影响,结果发现,离子液体修饰后材料保持了原有的介孔结构,修饰后载体表面性质和结构性质导致了PPL酶学性质的变化。  相似文献   

20.
Curdlan, a high molecular weight extracellular β(1→3) glucan produced by pure culture fermentation by Agrobacterium radiobacter NCIM 2443 contains large number of free hydroxyl groups. The reaction of hydroxyl containing supports with epichlorohydrin results in activated epoxy groups that can covalently link with available amino, hydroxyl, or sulfhydryl groups of enzymes, thereby immobilizing it. The present work reports on preparation of epoxy-activated matrix for immobilization of a model enzyme, porcine pancreatic lipase. The binding capacity of the matrix prepared by extraction of epoxy-activated curdlan by isopropyl alcohol was found to be 58.7% with about 0.6% loss of the enzyme activity during immobilization. Further, the specific activity of the enzyme increased marginally from 9.37 to 10.2. The corresponding value was 10.15 for a commercial sample of curdlan, epoxy-activated as for laboratory-isolated curdlan. Sepharose, the most widely used support matrix for the immobilization of enzymes was used for comparison in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号