首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Agouti (A(vy)/a) mice fed an AIN-93G diet containing the soy isoflavone genistein (GEN) prior to and during pregnancy were reported to shift coat color and body composition phenotypes from obese-yellow towards lean pseudoagouti, suggesting epigenetic programming. Human consumption of purified GEN is rare and soy protein is the primary source of GEN. Virgin a/a female and A(vy)/a male mice were fed AIN-93G diets made with casein (CAS) or soy protein isolate (SPI) (the same approximate GEN levels as in the above mentioned study) for 2 wks prior to mating. A(vy)/a offspring were weaned to the same diets and studied at age 75 d. Coat color distribution did not differ among diets, but SPI-fed, obese A(vy)/a offspring had lower hepatosteatosis (P < 0.05) and increased (P < 0.05) expression of CYP4a 14, a PPARalpha-regulated gene compared to CAS controls. Similarly, weanling male Sprague-Dawley (SD) rats fed SPI had elevated hepatic Acyl Co-A Oxidase (ACO) mRNA levels and increased in vitro binding of PPARalpha to the PPRE promoter response element. In another hepatosteatosis model, adult SD rats fed a high fat/cholesterol diet, SPI reduced (P < 0.05) steatosis. Thus, 1) consumption of diets made with SPI partially protected against hepatosteatosis in yellow mice and in SD rats, and this may involve induction of PPARalpha-regulated genes; and 2) the lifetime (in utero, neonatal and adult) exposure to dietary soy protein did not result in a shift in coat color phenotype of A(vy)/a mice. These findings, when compared with those of previously published studies of A(vy)/a mice, lead us to conclude that: 1) the effects of purified GEN differ from those of SPI when GEN equivalents are closely matched; 2) SPI does not epigenetically regulate the agouti locus to shift the coat color phenotype in the same fashion as GEN alone; and 3) SPI may be beneficial in management of non-alcoholic fatty liver disease.  相似文献   

3.
In utero environment is known to affect fetal development. Especially, the distinct fetal programming of carcinogenesis was reported in offspring exposed to maternal diets containing soy protein isolate (SPI) or genistein. Therefore, we investigated whether maternal consumption of low-isoflavone SPI or genistein alters hepatic gene expression and liver development in rat offspring. Female Sprague–Dawley rats were fed a casein diet, a low-isoflavone SPI diet or a casein diet supplemented with genistein (250 mg/kg diet) for 2 weeks before mating and throughout pregnancy and lactation. Male offspring were studied on postnatal day 21 (CAS, SPI and GEN groups). Among 965 differentially expressed hepatic genes related to maternal diet (P<.05), the expression of 590 was significantly different between CAS and SPI groups. Conversely, the expression of 88 genes was significantly different between CAS and GEN groups. Especially, genes involved in drug metabolism were significantly affected by the maternal diet. SPI group showed increased cell proliferation, reduced apoptosis and activation of the mTOR pathway, which may contribute to a higher relative liver weight compared to other groups. We observed higher serum homocysteine levels and lower global and CpG site-specific DNA methylation of Gadd45b, a gene involved in cell proliferation and apoptosis, in SPI group compared to CAS group. Maternal SPI diet also reduced histone H3-Lysine 9 (H3K9) trimethylation and increased H3K9 acetylation in offspring. These results demonstrate that maternal consumption of a low-isoflavone SPI diet alters the hepatic gene expression profile and liver development in offspring possibly by epigenetic processes.  相似文献   

4.
Beneficial effects of soy protein consumption on bone quality have been reported. The effects of other dietary protein sources such as whey protein hydrolysate (WPH) and rice protein isolate (RPI) on bone growth have been less well examined. The current study compared effects of feeding soy protein isolate (SPI), WPH and RPI for 14 d on tibial bone mineral density (BMD) and bone mineral content (BMC) in intact and ovariectomized (OVX) rapidly growing female rats relative to animals fed casein (CAS). The effects of estrogenic status on responses to SPI were also explored. Tibial peripheral quantitative computerized tomography (pQCT) showed all three protein sources had positive effects on either BMD or BMC relative to CAS (P < 0.05), but SPI had greater effects in both intact and OVX female rats. SPI and E2 had positive effects on BMD and BMC in OVX rats (P < 0.05). However, trabecular BMD was lower in a SPI + E2 group compared to a CAS + E2 group. In OVX rats, SPI increased serum bone formation markers, and serum from SPI-fed rats stimulated osteoblastogenesis in ex vivo. SPI also suppressed the bone resorption marker RatLaps (P < 0.05). Both SPI and E2 increased alkaline phosphatase gene expression in bone, but only SPI decreased receptor activator of nuclear factor-kappaB ligand (RANKL) and estrogen receptor gene expression (P < 0.05). These data suggest beneficial bone effects of a soy diet in rapidly growing animals and the potential for early soy consumption to increase peak bone mass.  相似文献   

5.
In utero and lactational exposure to estrogenic agents has been shown to influence morphological and functional development of reproductive tissues. Thus, consumption of dietary phytoestrogens, such as isoflavones, during pregnancy and lactation could influence important periods of development, when the fetus and neonate are more sensitive to estrogen exposure. In this study, reproductive outcomes after developmental exposure to isoflavones were examined in Long-Evans rats maternally exposed to isoflavones via a commercial soy beverage or as the isolated isoflavone, genistein. Most reproductive endpoints examined at birth, weaning, and 2 months of age were not significantly modified in pups of either sex after lactational exposure to soy milk (provided to the dams in place of drinking water) from birth until weaning. However, soy milk exposure induced a significant increase in progesterone receptor (PR) in the uterine glandular epithelium of the 2-month-old pups. In pregnant dams treated with genistein (GEN; 15 mg/kg body weight) by gavage, from Gestational Day 14 through weaning, PR expression in the uterine glandular epithelium from 2-month-old GEN-treated females (postexposure) was also significantly increased. Diethylstilbesterol (DES) also stimulated uterine PR expression only in the glandular but not luminal epithelial cells. However, unlike DES, in utero/lactational exposure to GEN did not increase expression of the proliferation marker, proliferating cell nuclear antigen (PCNA), in the luminal epithelial cells of the 2-month-old rat uteri. These experiments demonstrate that developmental exposure to dietary isoflavones, at levels comparable to the ranges of human exposure, modify expression of the estrogen-regulated PR in the uterus of sexually mature rats weeks after exposure ended. Since the PR is essential for regulating key female reproductive processes, such as uterine proliferation, implantation, and maintenance of pregnancy, its increased expression suggests that soy phytoestrogen exposure during reproductive development may have long-term reproductive health consequences.  相似文献   

6.
The effect of a dietary soy protein isolate (SPI), soy peptide (PEP) and the amino acids in soy protein on paraquat (PQ)-induced oxidative stress was investigated in rats. In the first experiment, male Wistar rats were fed on experimental diets containing casein (CAS), SPI and PEP as nitrogen sources with or without 0.025% PQ. The reduced food intake and body weight gain of the rats fed with PQ was mitigated by either the SPI or PEP intake. Both SPI and PEP prevented the elevation of the serum TBARS concentration and tended to prevent the elevation of lung weight induced by PQ. In the second experiment, the rats were fed on diets containing an amino acid mixture resembling casein (CASAA) or soy protein (SPIAA) with or without PQ. The SPIAA intake did not affect the reduction of food intake and body weight gain, nor the elevation of lung weight and TBARS in the serum and liver induced by PQ. These results demonstrate that the intake of either dietary SPI or PEP, but not an amino acid mixture resembling soy protein, had the effect of reducing PQ-induced oxidative stress in rats.  相似文献   

7.
Progestins diminish the estrogen-induced angiogenic potential related to basic fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) in uterine endometrial cancer cells. This led us to study the effect of various steroids on the expression of platelet-derived endothelial cell growth factor (PD-ECGF) as the other pertinent angiogenic factor in well-differentiated uterine endometrial cancer cell line Ishikawa.In Ishikawa cells, estradiol induced the expression of PD-ECGF and its mRNA. The estrogen-induced expression was increased approximately two-fold by progesterone and by its metabolite, 17alpha-hydroxyprogesterone, but not by medroxyprogesterone acetate (MPA). Therefore, progesterone and 17alpha-hydroxyprogesterone as endogenous steroids might induce PD-ECGF-related angiogenic potential in uterine endometrial cancer cells, but not MPA as a synthetic steroid. In conclusion, the failure of PD-ECGF induction by MPA might be the great merit of anti-angiogenic treatment with MPA for uterine endometrial cancers.  相似文献   

8.

Background

Previous reports suggest that beneficial effects of soy on bone quality are due to the estrogenic actions of isoflavone phytochemicals associated with the protein. However, mechanistic studies comparing the effects of soy diet and estrogens on bone, particularly in rapidly growing animals are lacking.

Methodology and Principal Findings

We studied the effects of short term feeding of soy protein isolate (SPI) on bone in comparison to the effects of 17β-estradiol (E2) in pre-pubertal rats. Female rats were weaned to one of 4 treatments: 1) a control casein-based diet (CAS); 2) CAS with subcutaneous E2 (10 µg/kg/d) (CAS+E2); 3) a SPI-containing diet (SPI); or 4) SPI with subcutaneous E2 (SPI) or SPI with 10 µg/kg/d E2 (SPI+E2) for 14 days beginning on postnatal day 20. SPI increased while E2 decreased bone turnover compared to CAS. In contrast, both treatments decreased serum sclerostin levels. Microarray analysis of RNA isolated from bone revealed 652 genes regulated by SPI, 491 genes regulated by E2, and 266 genes regulated by both SPI diet and E2 compared to CAS. The expression of caveolin-1, a protein localized in the cell membrane, was down-regulated (p<0.05) in rats fed SPI, but not by E2 compared to rats fed casein. Down-regulation of caveolin-1 by SPI was associated with increased BMP2, Smad and Runx2 expression in bone and osteoblasts (p<0.05).

Conclusions/Significance

These results suggest SPI and E2 have different effects on bone turnover prior to puberty. Approximately half of the genes are regulated in the same direction by E2 or SPI, but in combination, SPI blocks the estrogen effects and returns the profile towards control levels. In addition, there are E2 specific and SPI-specific gene changes related to regulation of bone formation.  相似文献   

9.
This study examined the effects of soybean beta-conglycinin, from which phytate was mostly removed, on the plasma lipids in young and adult rats. Male Wistar young (6 week-old) and adult (21 week-old) rats were fed high cholesterol diets containing 20% casein, soy protein isolate (SPI), or soybean beta-conglycinin for 10 days. In young rats, although the food intake of the beta-conglycinin group was higher than those of the casein and SPI groups, the weight gain was significantly lower than those of the other groups. However, in adult rats, the weight gain was not different among the groups. In young and adult rats, relative liver weights of SPI and beta-conglycinin groups were significantly lower than that of the casein group, and the degree of the reduction was more marked in the beta-conglycinin group than in the SPI group. In young rats, the plasma triglyceride level was significantly lower in the SPI and beta-conglycinin groups than that in the casein group. In addition, the plasma triglyceride level of the beta-conglycinin group was significantly lower than that of the SPI group. Plasma total cholesterol levels of the SPI and beta-conglycinin groups were significantly lower than that of the casein group. However, there was little difference in the lowering effect between SPI and beta-conglycinin. These results indicate that soybean beta-conglycinin may have lowering functions not only on plasma total cholesterol level, but also on plasma triglyceride level.  相似文献   

10.
Regulated expression of osteopontin in the peri-implantation rabbit uterus   总被引:5,自引:0,他引:5  
Blastocyst attachment to the lining of the mammalian uterus during early implantation involves the initial apposition of the trophoblast to the uterine epithelial surface. Osteopontin (OPN) is a glycoprotein component of the extracellular matrix that is secreted by the glandular epithelium of mammalian uteri at the time of implantation. This protein is recognized by several members of the integrin family and promotes cell-cell attachment and adhesion. In the present study, rabbit uteri were examined using Northern and in situ hybridization to evaluate the temporal and spatial distribution of OPN mRNA during early pregnancy. Northern blot analysis demonstrated a dramatic increase in OPN expression on Days 4-7 of pregnancy, corresponding to the rise in circulating progesterone and the time of initial embryo attachment in this species. In situ hybridization analysis revealed OPN mRNA expression on Day 6.75 of pregnancy, which was most prominent on endometrial epithelium. Using immunofluorescence, OPN protein was present on the glandular epithelium on Day 6.75 of pregnancy, but was absent on blastocysts. Further, no expression of OPN mRNA or protein was found in the nonpregnant endometrium. Induction of endometrial OPN expression was observed in unmated rabbits treated with progesterone alone and was prevented by cotreatment with the antiprogestin ZK137.316. Estradiol-17beta had no effect on OPN expression by itself, and estrogen priming was not necessary to demonstrate the stimulatory effect of progesterone. In The rabbit uterus, as in other mammalian species studied, OPN is expressed in a stage-specific manner by the endometrial glands during the peri-implantation period and is regulated by progesterone.  相似文献   

11.
The knowledge about safety of phytoestrogens on proliferative endpoints in the endometrium is rather limited, particularly when low amounts of estrogens are present like in postmenopausal women. Therefore, we now studied how genistein (GEN) exposure affects proliferative endpoints in the endometrium in estrogenized animals. We investigated the effects of GEN (10 mg/(kg day) BW) on uterine proliferation and on general uterine response markers in intact female rats and ovariectomized (OVX) female rats co-treated with different doses of estradiol (E2; 1 or 4 μg/(kg day) BW). In parallel we investigated generalized hepatic effects of GEN in this co-stimulatory protocol. In agreement to our previous results, GEN treatment of OVX animals for 3 days results in a faint stimulation of the uterine wet weight. In intact animals and in OVX animals co-treated with E2 no effects of GEN on uterine wet weight were detectable. GEN treatment did not affect the uterine epithelial height in intact animals but resulted in a decrease of the protein and mRNA expression of the proliferation marker PCNA. In OVX animals co-treated with E2, GEN antagonized the E2 stimulated increase of the uterine epithelial height and epithelial PCNA expression. Besides PCNA, GEN effects on the uterine mRNA expression of IGF-1, IGF-1R, Complement C3, estrogen receptor- (ER) and -β (ERβ), as well as progesterone receptor were investigated in intact and OVX co-treated animals. Overall there was a tendency in all combinatorial groups that GEN counteracts E2 function in uterine tissue. Surprisingly, while investigating estrogenic response markers in liver, we observed very strong effects of GEN on hepatic marker gene expression. GEN significantly down-regulated CaBP9K and IGFBP1 mRNA levels in intact animals. In OVX animals hepatic CABP9K and IGFBP1 mRNA levels were not affected by E2 treatment. GEN treatment, even in combination with E2, decreased the hepatic CaBP9K expression below the levels observed in untreated animals. Interestingly co-treatment of OVX rats with low dose E2 and GEN resulted in a significant increase of IGFBP1 mRNA expression. Summarising our results we conclude that (1) GEN treatment in the presence of E2 is safe regarding proliferative responses in the endometrium of adult animals; (2) the observation of differences of the GEN activity in intact and OVX/E2 substituted animals can be taken as a hint that GEN may interact mechanistically with progestins which has to be proven in detail in future investigations and (3) the detection of strong effects of the phytoestrogen GEN on hepatic gene expression may point to the need of future investigations to rule out the possibility of adverse responses in this organ.  相似文献   

12.
A single administration of progesterone (P) to primed immature rabbits induces the appearance of glycogen in uterine glandular cells. This phenomenon, which is rapid and transitory, precedes a mitotic surge in the glandular epithelium. Ultrastructural studies allowed us to observe the beginning of glycogenesis as early as 1 h after the injection of P. Quantitative image analysis in the course of a kinetic study showed that glycogen levels reached a maximum at the sixth h and after 24 h had fallen dramatically. Promegestone, a potent progestomimetic compound, gave similar results, but estradiol, testosterone and dexamethasone failed to induce the appearance of glycogen in the uterine glands. Mifepristone (RU 486) had an antagonistic effect on the action of P. These results suggest that early P-dependent glycogenesis in the endometrial glandular cells of the rabbit may play an important role in the increased rate of mitosis and cellular proliferation that are necessary events in preparing the endometrium for implantation.  相似文献   

13.
In males, androgens are essential in maintaining the integrity of the prostate. Androgen-ablation induces apoptosis of the prostatic epithelium. In females, ovariectomy induces apoptosis in uterine epithelium while progesterone inhibits this process. The objective of this study was to determine whether androgen and progesterone inhibit apoptosis, respectively, in mouse prostatic and uterine epithelia via steroid receptors in the epithelium or in the stroma. To address this question, prostatic tissue recombinants were prepared with rat urogenital sinus mesenchyme plus bladder epithelium from wild-type or testicular feminization mutant (Tfm) mice. Thus, prostatic tissue was generated having androgen receptor (AR) in both epithelium and stroma or in the stroma only. Castration of hosts induced apoptosis in the AR-negative Tfm prostatic epithelium with an epithelial apoptotic index virtually identical to prostatic tissue recombinants containing wild-type epithelium. Moreover, this castration-induced prostatic epithelial apoptosis was blocked by testosterone and dihydrotestosterone in both wild-type and Tfm prostatic tissue recombinants. Likewise, uterine tissue recombinants were prepared in which epithelium and/or stroma was devoid of progesterone receptor (PR) by using uterine epithelium and stroma of wild-type and PR knockout mice. Progesterone inhibited uterine epithelial apoptosis only in tissue recombinants prepared with PR-positive stroma. The PR status of the epithelium did not affect epithelial apoptotic index. Therefore, the apoptosis in prostatic and uterine epithelia is regulated by androgen and progesterone via stromal AR and PR, respectively. In both cases, epithelial AR or PR is not required for hormonal regulation of epithelial apoptosis in prostatic and uterine epithelium.  相似文献   

14.
Phase-dependent apoptotic changes in the human endometrium during an ovarian cycle imply a potential role of steroids in the regulation of apoptosis. The present study was undertaken to determine the direct role of hormones in endometrial apoptosis in marmosets (Callithrix jacchus), a primate species which shows similarity to humans in terms of the cycle length and pattern. Endometrial apoptosis was detected by 3'-end labeling (TUNEL) in various phases of ovarian cycle in naturally cycling healthy marmosets (n=14) and also in ovariectomized marmosets (n=13) treated with either estradiol alone (E) or progesterone alone (P) or estradiol followed by progesterone (E+P). Expressions of apoptosis associated genes such as Bcl-2 family members (Bax and Bcl-2), proliferating cell nuclear antigen (PCNA)--a proliferation marker and steroid receptors, ERalpha and PR A were analysed by immunohistochemical methods. Apoptosis was intense in the glandular epithelial cells of endometrium during the mid-luteal phase as compared to other phases in naturally cycling animals; in the E+P group as compared to other groups of ovariectomized animals (P<0.05). Pronounced apoptosis in the mid-luteal phase was accompanied by the increased expression of Bax in glandular epithelial cells; while Bcl-2 immunoreactivity remained unchanged. PCNA expression was higher in the naturally cycling animals in the follicular phase and in the E group of the ovariectomized animals as compared those in the other groups. Immunoreactive ERalpha and PR A in glandular epithelial cells were most abundant during early follicular phase in naturally cycling animals and in both E and E+P groups among the ovariectomized animals. The present study highlights the importance of apoptosis in endometrial remodeling during the ovarian cycle and secondly, the role of both estradiol and progesterone in the regulation of apoptosis.  相似文献   

15.
Progesterone modulation of osteopontin gene expression in the ovine uterus   总被引:12,自引:0,他引:12  
Osteopontin (OPN) is an acidic phosphorylated glycoprotein component of the extracellular matrix that binds to integrins at the cell surface to promote cell-cell attachment and cell spreading. This matrix constituent is a ligand that could potentially bind integrins on trophectoderm and endometrium to facilitate superficial implantation and placentation. OPN mRNA increases in the endometrial glandular epithelium (GE) of early-pregnant ewes, and OPN protein is secreted into the uterine lumen. Therefore, progesterone and/or interferon-tau (IFNtau) may regulate OPN expression in the uterine GE. Cyclic ewes were ovariectomized and fitted with intrauterine (i. u.) catheters on Day 5 and treated daily with steroids (i.m.) and protein (i.u.) as follows: 1) progesterone (P, Days 5-24) and control serum proteins (CX, Days 11-24); 2) P and ZK 136.317 (ZK; progesterone receptor [PR] antagonist, Days 11-24) and CX proteins; 3) P and recombinant ovine IFNtau (roIFNtau, Days 11-24); or 4) P and ZK and roIFNtau. All ewes were hysterectomized on Day 25. Progesterone induced the expression of endometrial OPN mRNA in the GE and increased secretion of a 45-kDa OPN protein from endometrial explants maintained in culture for 24 h. Administration of ZK ablated progesterone effects. Intrauterine infusion of roIFNtau did not affect OPN gene expression or secretion in any of the steroid treatments. Interestingly, OPN mRNA-positive GE cells lacked detectable PR expression, although PR were detected in the stroma. Results indicate that progesterone regulates OPN expression in GE through a complex mechanism that includes PR down-regulation, and we suggest the possible involvement of a progesterone-induced stromal cell-derived growth factor(s) that acts as a progestamedin.  相似文献   

16.
17.
In ewes, the uterine gland knockout (UGKO) phenotype is caused by neonatal exposure to norgestomet to arrest uterine gland development and produce an adult which has a uterus characterized by the lack of endometrial glands. Since endometrial glands in the sheep produce the lymphocyte-inhibitory protein, ovine uterine serpin (OvUS), an experiment was conducted with ewes of the UGKO phenotype to evaluate whether the inhibitory actions of progesterone on tissue rejection responses in utero are dependent upon the presence of endometrial glands. Control and UGKO ewes were ovariectomized and subsequently treated with either 100 mg/day progesterone or corn oil vehicle for 30 days. An autograft and allograft of skin were then placed in each uterine lumen and treatments were continued for an additional 30 days before grafts were examined for survival. All autografts survived and had a healthy appearance after histological analysis. Allografts were generally rejected in ewes treated with vehicle but were present for hormone-treated ewes, regardless of uterine phenotype. Analysis of the histoarchitecture and protein synthetic capacity of the uterus revealed that progesterone induced differentiation of endometrial glands and synthesis and secretion of OvUS in UGKO ewes. The UGKO ewes had reduced density of CD45R+ lymphocytes in the endometrial epithelium and there was a tendency for progesterone to reduce this effect in luminal epithelium. Taken together, results confirm the actions of progesterone to inhibit graft rejection response in utero. Responses of UGKO ewes to progesterone indicate that the hormone can induce de novo development and differentiation of endometrial glands, at least when skin grafts are in the uterus.  相似文献   

18.
Ovine endometrial gland development is a postnatal event that can be inhibited epigenetically by chronic exposure of ewe lambs to a synthetic progestin from birth to puberty. As adults, these neonatally progestin-treated ewes lack endometrial glands and display a uterine gland knockout (UGKO) phenotype that is useful as a model for study of endometrial function. Here, objectives were to determine: 1) length of progestin exposure necessary from birth to produce the UGKO phenotype in ewes; 2) if UGKO ewes display normal estrous cycles; and 3) if UGKO ewes could establish and/or maintain pregnancy. Ewe lambs (n = 22) received a Norgestomet (Nor) implant at birth and every two weeks thereafter for 8 (Group I), 16 (Group II), or 32 (Groups III and IV) weeks. Control ewe lambs (n = 13) received no Nor treatment (Groups V and VI). Ewes in Groups I, II, III, and VI were hemihysterectomized (Hhx) at 16 weeks of age. After puberty, the remaining uterine horn in Hhx ewes was removed on either Day 9 or 15 of the estrous cycle (Day 0 = estrus). Histological analyses of uteri indicated that progestin exposure for 8, 16, or 32 weeks prevented endometrial adenogenesis and produced the UGKO phenotype in adult ewes. Three endometrial phenotypes were consistently observed in Nor-treated ewes: 1) no glands, 2) slight glandular invaginations into the stroma, and 3) limited numbers of cyst- or gland-like structures in the stroma. Overall patterns of uterine progesterone, estrogen, and oxytocin receptor expression were not different in uteri from adult cyclic control and UGKO ewes. However, receptor expression was variegated in the ruffled luminal epithelium of uteri from UGKO ewes. Intact UGKO ewes displayed altered estrous cycles with interestrous intervals of 17 to 43 days, and they responded to exogenous prostaglandin F(2 approximately ) (PGF) with luteolysis and behavioral estrus. During the estrous cycle, plasma concentrations of progesterone in intact control and UGKO ewes were not different during metestrus and diestrus, but levels did not decline in many UGKO ewes during late diestrus. Peak peripheral plasma concentrations of PGF metabolite, in response to an oxytocin challenge on Day 15, were threefold lower in UGKO compared to control ewes. Intact UGKO ewes bred repeatedly to intact rams did not display evidence of pregnancy based on results of ultrasound. Collectively, results indicate that 1) transient, progestin-induced disruption of ovine uterine development from birth alters both structural and functional integrity of the adult endometrium; 2) normal adult endometrial integrity, including uterine glands, is required to insure a luteolytic pattern of PGF production; and 3) the UGKO phenotype, characterized by the absence of endometrial glands and a compact, disorganized endometrial stroma, limits or inhibits the capacity of uterine tissues to support the establishment and/or maintenance of pregnancy.  相似文献   

19.
It has recently been demonstrated that genistein (GEN), a phytoestrogen in soy products, is an epigenetic modulator in various types of cells; but its effect on endometrium has not yet been determined. We investigated the effects of GEN on mouse uterine cells, in vivo and in vitro. Oral administration of GEN for 1 week induced mild proliferation of the endometrium in ovariectomized (OVX) mice, which was accompanied by the induction of steroidogenic factor 1 (SF-1) gene expression. GEN administration induced demethylation of multiple CpG sites in the SF-1 promoter; these sites are extensively methylated and thus silenced in normal endometrium. The GEN-mediated promoter demethylation occurred predominantly on the luminal side, as opposed to myometrium side, indicating that the epigenetic change was mainly shown in regenerated cells. Primary cultures of endometrial stromal cell colonies were screened for GEN-mediated alterations of DNA methylation by a high-resolution melting (HRM) method. One out of 20 colony-forming cell clones showed GEN-induced demethylation of SF-1. This clone exhibited a high proliferation capacity with continuous colony formation activity through multiple serial clonings. We propose that only a portion of endometrial cells are capable of receiving epigenetic modulation by GEN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号