首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Respiratory syncytial virus (RSV) is an important viral pathogen that causes severe lower respiratory tract infection in infants, the elderly, and immunocompromised individuals. There are no licensed RSV vaccines to date. To prevent RSV infection, immune responses in both the upper and lower respiratory tracts are required. Previously, immunization with Venezuelan equine encephalitis virus replicon particles (VRPs) demonstrated effectiveness in inducing mucosal protection against various pathogens. In this study, we developed VRPs encoding RSV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and efficacy of these vaccine candidates in mice and cotton rats. VRPs, when administered intranasally, induced surface glycoprotein-specific virus neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. In addition, fusion protein-encoding VRPs induced gamma interferon (IFN-γ)-secreting T cells in the lungs and spleen, as measured by reaction with an H-2Kd-restricted CD8+ T-cell epitope. In animals vaccinated with F protein VRPs, challenge virus replication was reduced below the level of detection in both the upper and lower respiratory tracts following intranasal RSV challenge, while in those vaccinated with G protein VRPs, challenge virus was detected in the upper but not the lower respiratory tract. Close examination of histopathology of the lungs of vaccinated animals following RSV challenge revealed no enhanced inflammation. Immunization with VRPs induced balanced Th1/Th2 immune responses, as measured by the cytokine profile in the lungs and antibody isotype of the humoral immune response. These results represent an important first step toward the use of VRPs encoding RSV proteins as a prophylactic vaccine for RSV.  相似文献   

2.
Human metapneumovirus (hMPV) is a paramyxovirus that is a common cause of bronchiolitis and pneumonia in children less than five years of age. The hMPV fusion (F) glycoprotein is the primary target of neutralizing antibodies and is thus a critical vaccine antigen. To facilitate structure-based vaccine design, we stabilized the ectodomain of the hMPV F protein in the postfusion conformation and determined its structure to a resolution of 3.3 Å by X-ray crystallography. The structure resembles an elongated cone and is very similar to the postfusion F protein from the related human respiratory syncytial virus (hRSV). In contrast, significant differences were apparent with the postfusion F proteins from other paramyxoviruses, such as human parainfluenza type 3 (hPIV3) and Newcastle disease virus (NDV). The high similarity of hMPV and hRSV postfusion F in two antigenic sites targeted by neutralizing antibodies prompted us to test for antibody cross-reactivity. The widely used monoclonal antibody 101F, which binds to antigenic site IV of hRSV F, was found to cross-react with hMPV postfusion F and neutralize both hRSV and hMPV. Despite the cross-reactivity of 101F and the reported cross-reactivity of two other antibodies, 54G10 and MPE8, we found no detectable cross-reactivity in the polyclonal antibody responses raised in mice against the postfusion forms of either hMPV or hRSV F. The postfusion-stabilized hMPV F protein did, however, elicit high titers of hMPV-neutralizing activity, suggesting that it could serve as an effective subunit vaccine. Structural insights from these studies should be useful for designing novel immunogens able to induce wider cross-reactive antibody responses.  相似文献   

3.
Human metapneumovirus (hMPV) is a recently described paramyxovirus that is a major cause of upper and lower respiratory infection in children and adults worldwide. A safe and effective vaccine could decrease the burden of disease associated with this novel pathogen. We previously reported the development of the cotton rat model of hMPV infection and pathogenesis (J. V. Williams et al., J. Virol. 79:10944-10951, 2005). We report here the immunogenicity of an hMPV fusion (F) protein in this model. We constructed DNA plasmids that exhibited high levels of expression of hMPV F in mammalian cells (DNA-F). These constructs were used to develop a novel strategy to produce highly pure, soluble hMPV F protein lacking the transmembrane domain (FDeltaTM). We then immunized cotton rats at 0 and 14 days with either control vector, DNA-F alone, DNA-F followed by FDeltaTM protein, or FDeltaTM alone. All groups were challenged intranasally at 28 days with live hMPV. All three groups that received some form of hMPV F immunization mounted neutralizing antibody responses and exhibited partial protection against virus shedding in the lungs compared to controls. The FDeltaTM-immunized animals showed the greatest degree of protection (>1,500-fold reduction in lung virus titer). All three immunized groups showed a modest reduction of nasal virus shedding. Neither evidence of a Th2-type response nor increased lung pathology were present in the immunized animals. We conclude that sequence-optimized hMPV F protein protects against hMPV infection when delivered as either a DNA or a protein vaccine in cotton rats.  相似文献   

4.
A lyophilized subunit vaccine prepared from purified respiratory syncytial virus, which contained the envelope glycoproteins F and G and the nonglycosylated matrix protein VPM, was tested in SJL mice for its ability to protect the lungs of mice from intranasal viral challenge. Initially, the mice were injected subcutaneously with one, two, or three doses of 5 or 25 micrograms of vaccine in 50% complete Freund's adjuvant or with complete Freund's adjuvant or phosphate-buffered saline only. Although none of the mice produced neutralizing serum antibody, three doses of 25 micrograms elicited antibodies to F, G, and VPM. Despite the absence of detectable neutralizing antibodies, the lungs of 93% of the vaccinated mice were protected from intranasal viral challenge. Because the initial protocol did not elicit neutralizing antibodies and a few single-dose animals were not protected, a second vaccine trial was carried out. For these studies the priming dose was increased to 50 micrograms, which was followed, in half the vaccine recipients, by a second dose of 25 micrograms. Mice given the priming dose of vaccine produced antibody to G and showed no neutralizing activity, whereas the mice given two doses of vaccine produced antibodies to G, F, and VPM and also displayed neutralizing activity for respiratory syncytial virus. The lungs of 100% of the vaccine recipients in this trial were protected from intranasal challenge. Although the vaccine elicited antibody to VPM, this response did not correlate with protection. In addition, examination of the sera from unimmunized mice recovering from respiratory syncytial virus infection revealed a serum antibody profile similar to that noted for humans, lacking antibody to VPM. Thus, the data show that a combined glycoprotein subunit vaccine affords complete protection to viral challenge and offers an approach to develop a multivalent subunit vaccine.  相似文献   

5.
Human metapneumovirus (hMPV) is a recently described member of the Paramyxoviridae family/Pneumovirinae subfamily and shares many common features with respiratory syncytial virus (RSV), another member of the same subfamily. hMPV causes respiratory tract illnesses that, similar to human RSV, occur predominantly during the winter months and have symptoms that range from mild to severe cough, bronchiolitis, and pneumonia. Like RSV, the hMPV virus can be subdivided into two genetic subgroups, A and B. With RSV, a single monoclonal antibody directed at the fusion (F) protein can prevent severe lower respiratory tract RSV infection. Because of the high level of sequence conservation of the F protein across all the hMPV subgroups, this protein is likely to be the preferred antigenic target for the generation of cross-subgroup neutralizing antibodies. Here we describe the generation of a panel of neutralizing monoclonal antibodies that bind to the hMPV F protein. A subset of these antibodies has the ability to neutralize prototypic strains of both the A and B hMPV subgroups in vitro. Two of these antibodies exhibited high-affinity binding to the F protein and were shown to protect hamsters against infection with hMPV. The data suggest that a monoclonal antibody could be used prophylactically to prevent lower respiratory tract disease caused by hMPV.  相似文献   

6.
Foreign glycoproteins expressed in recombinant vesicular stomatitis virus (VSV) can elicit specific and protective immunity in the mouse model. We have previously demonstrated the expression of respiratory syncytial virus (RSV) G (attachment) and F (fusion) glycoprotein genes in recombinant VSV. In this study, we demonstrate the expression of RSV F and G glycoproteins in attenuated, nonpropagating VSVs which lack the VSV G gene (VSVDeltaG) and the incorporation of these RSV proteins into recombinant virions. We also show that intranasal vaccination of mice with nondefective VSV recombinants expressing RSV G (VSV-RSV G) or RSV F (VSV-RSV F) elicited RSV-specific antibodies in serum (by enzyme-linked immunosorbent assay [ELISA]) as well as neutralizing antibodies to RSV and afford complete protection against RSV challenge. In contrast, VSVDeltaG-RSV F induced detectable serum antibodies to RSV by ELISA, but no detectable neutralizing antibodies, yet it still protected from RSV challenge. VSVDeltaG-RSV G failed to induce any detectable serum (by ELISA) or neutralizing antibodies and failed to protect from RSV challenge. The attenuated, nonpropagating VSVDeltaG-RSV F is a particularly attractive candidate for a live attenuated recombinant RSV vaccine.  相似文献   

7.
Kikuta H 《Uirusu》2006,56(2):173-181
Human metapneumovirus (hMPV), first isolated in the Netherlands in 2001, is a member of the genus Metapneumovirus of the sub-family Pneumovirinae of the family Paramyxoviridae. The genomic organization of hMPV is 3'-N-P-M-F-M2-SH-G-L-5'. hMPV resembles the sole member of this genus, avian pneumovirus. hMPV is the most closely related human pathogen to respiratory syncytial virus. Phylogenetic analysis of the nucleotide sequences indicated that there were two genetic groups. Furthermore, each group could be subdivided into two subgroups. hMPV encodes three surface proteins, F, G and SH proteins. The majority of antibodies to hMPV in serum were antibody against F protein, which mediates cross-group neutralization and protection. The incidences of hMPV-associated respiratory infection estimate 5 to 10% in children and 2 to 4% in adults. hMPV generally causes upper respiratory tract infection and flu-like illness, the virus can be associated with lower tract infections, such as wheezy bronchitis, bronchitis, bronchiolitis and pneumonia, in very young children, elderly persons, and immunocompromised patients. hMPV has a seasonal peak during the spring in Japan. Reinfection with hMPV frequently occurs in children, implying that the host immune response induced by natural infection provides incomplete protection. The RT-PCR test is the most sensitive test for detection of hMPV.  相似文献   

8.
Replicon particles based on Venezuelan equine encephalitis virus (VEE) contain a self-replicating RNA encoding the VEE replicase proteins and expressing a gene of interest in place of the viral structural protein genes. Structural proteins for packaging of replicon RNA into VEE replicon particles (VRPs) are expressed from separate helper RNAs. Aspects of the biology of VEE that are exploited in VRP vaccines include 1) expression of very high levels of immunogen, 2) expression of immunizing proteins in cells in the draining lymph node, and 3) the ability to induce mucosal immunity from a parental inoculation. Results of experiments with VRPs expressing green fluorescent protein or influenza virus hemagglutinin (HA) demonstrated that specific mutations in the VRP envelope glycoproteins affect both targeting in the draining lymph node and efficiency of the immune response in mice. VRPs expressing either the matrix-capsid portion of Gag, the full-length envelope gp160, or the secreted gp140 of cloned SIVsm H-4i were mixed in a cocktail and used to immunize macaques at 0, 1, and 4 months. Neutralizing antibodies against SIVsm H-4 were induced in 6 of 6 vaccinates and CTL in 4 of 6. An intrarectal challenge with the highly pathogenic SIVsm E660 was given at 5 months. A vaccine effect was seen in reduced peak virus loads, reduced virus loads both at set point and at 41 weeks postchallenge, and preserved or increased CD4 counts compared to controls. A candidate VRP HIV vaccine expressing Clade C Gag contains a sequence that is very close to the South African Clade C consensus and was selected from a recent seroconverter in the Durban cohort to represent currently circulating genotypes in South Africa. A GMP lot of this vaccine has been manufactured and tested for a phase I trial in the first months of 2002.  相似文献   

9.
The ability of recombinant vaccinia viruses that separately encoded 9 of the 10 known respiratory syncytial virus (RSV) proteins to induce resistance to RSV challenge was studied in BALB/c mice. Resistance was examined at two intervals following vaccination to examine early (day 9) as well as late (day 28) immunity. BALB/c mice were inoculated simultaneously by the intranasal and intraperitoneal routes with a recombinant vaccinia virus encoding one of the following RSV proteins: F, G, N, P, SH, M, 1B, 1C, or M2 (22K). A parainfluenza virus type 3 HN protein recombinant (Vac-HN) served as a negative control. One half of the mice were challenged with RSV intranasally on day 9, and the remaining animals were challenged on day 28 postvaccination. Mice previously immunized by infection with RSV, Vac-F, or Vac-G were completely or almost completely resistant to RSV challenge on both days. In contrast, immunization with Vac-HN, -P, -SH, -M, -1B, or -1C did not induce detectable resistance to RSV challenge. Mice previously infected with Vac-M2 or Vac-N exhibited significant but not complete resistance on day 9. However, in both cases resistance had largely waned by day 28 and was detectable only in mice immunized with Vac-M2. These results demonstrate that F and G proteins expressed by recombinant vaccinia viruses are the most effective RSV protective antigens. This study also suggests that RSV vaccines need only contain the F and G glycoproteins, because the immunity conferred by the other proteins is less effective and appears to wane rapidly with time.  相似文献   

10.
Human metapneumovirus (hMPV), a recently described paramyxovirus, is a major etiological agent for lower respiratory tract disease in young children that can manifest with severe cough, bronchiolitis, and pneumonia. The hMPV fusion glycoprotein (F) shares conserved functional domains with other paramyxovirus F proteins that are important for virus entry and spread. For other paramyxovirus F proteins, cleavage of a precursor protein (F0) into F1 and F2 exposes a fusion peptide at the N terminus of the F1 fragment, a likely prerequisite for fusion activity. Many hMPV strains have been reported to require trypsin for growth in tissue culture. The majority of these strains contain RQSR at the putative cleavage site. However, strains hMPV/NL/1/00 and hMPV/NL/1/99 expanded in our laboratory contain the sequence RQPR and do not require trypsin for growth in Vero cells. The contribution of this single amino acid change was verified directly by generating recombinant virus (rhMPV/NL/1/00) with either proline or serine at position 101 in F. These results suggested that cleavage of F protein in Vero cells could be achieved by trypsin or S101P amino acid substitution in the putative cleavage site motif. Moreover, trypsin-independent cleavage of hMPV F containing 101P was enhanced by the amino acid substitution E93K. In hamsters, rhMPV/93K/101S and rhMPV/93K/101P grew to equivalent titers in the respiratory tract and replication was restricted to respiratory tissues. The ability of these hMPV strains to replicate efficiently in the absence of trypsin should greatly facilitate the generation, preclinical testing, and manufacturing of attenuated hMPV vaccine candidates.  相似文献   

11.
Human metapneumovirus (hMPV) is a newly described paramyxovirus that is an important cause of acute respiratory tract disease. We undertook to develop a small animal model of hMPV infection, pathogenesis, and protection. Hamsters, guinea pigs, cotton rats, and nine inbred strains of mice were inoculated intranasally with hMPV. The animals were sacrificed, and nasal and lung tissue virus yields were determined by plaque titration. None of the animals exhibited respiratory symptoms. The quantity of virus present in the nasal tissue ranged from 4.6 x 10(2) PFU/gram tissue (C3H mice) to greater than 10(5) PFU/gram (hamster). The amount of virus in the lungs was considerably less than in nasal tissue in each species tested, ranging from undetectable (<5 PFU/g; guinea pigs) to 1.8 x 10(5) PFU/gram (cotton rat). The peak virus titer in cotton rat lungs occurred on day 4 postinfection. hMPV-infected cotton rat lungs examined on day 4 postinfection exhibited histopathological changes consisting of peribronchial inflammatory infiltrates. Immunohistochemical staining detected virus only at the luminal surfaces of respiratory epithelial cells throughout the respiratory tract. hMPV-infected cotton rats mounted virus-neutralizing antibody responses and were partially protected against virus shedding and lung pathology on subsequent rechallenge with hMPV. Viral antigen was undetectable in the lungs on challenge of previously infected animals. This study demonstrates that the cotton rat is a permissive small animal model of hMPV infection that exhibits lung histopathology associated with infection and that primary infection protected animals against subsequent infection. This model will allow further in vivo studies of hMPV pathogenesis and evaluation of vaccine candidates.  相似文献   

12.
Baculovirus and vaccinia virus vectors were used to express the small (S) and medium (M) genome segments of Hantaan virus. Expression of the complete S or M segments yielded proteins electrophoretically indistinguishable from Hantaan virus nucleocapsid protein or envelope glycoproteins (G1 and G2), and expression of portions of the M segment, encoding either G1 or G2 alone, similarly yielded proteins which closely resembled authentic Hantaan virus proteins. The expressed envelope proteins retained all antigenic sites defined by a panel of monoclonal antibodies to Hantaan virus G1 and G2 and elicited antibodies in animals which reacted with authentic viral proteins. A Hantaan virus infectivity challenge model in hamsters was used to assay induction of protective immunity by the recombinant-expressed proteins. Recombinants expressing both G1 and G2 induced higher titer antibody responses than those expressing only G1 or G2 and protected most animals from infection with Hantaan virus. Baculovirus recombinants expressing only nucleocapsid protein also appeared to protect some animals from challenge. Passively transferred neutralizing monoclonal antibodies similarly prevented infection, suggesting that an antibody response alone is sufficient for immunity to Hantaan virus.  相似文献   

13.
The feasibility of using the highly purified native attachment (G) protein in a subunit vaccine against respiratory syncytial virus (RSV) was examined in a murine model with or without the fusion (F) protein of RSV and the adjuvant QS-21. The studies established that QS-21 was more potent than AIOH as an adjuvant for both F and G glycoproteins. Augmented antigen-dependent killer cell activity and complement-assisted serum neutralizing and anti-F and G protein immunoglobulin G2a antibody titers were observed. Immunization with G/QS-21 generated immune responses that were characterized by low levels of antigen-dependent killer cell activity, elevated levels of interleukin-5 (IL-5) and percentages of eosinophils in the bronchoalveolar lavage fluids after challenge, and splenic immunocytes that secreted IL-5 but not gamma interferon (IFN-gamma) after in vitro stimulation with purified whole virus antigens. The pulmonary eosinophilia was similar to that induced by a facsimile of a formalin-inactivated vaccine used in previous clinical trials and was prevented by prior in vivo treatment with anti-IL-5 but not with control immunoglobulin G or anti-IFN-gamma neutralizing monoclonal antibodies. Thus the data implied that vaccination with G/QS-21 generated helper T-cell immune responses that were type 2 in nature. Alternatively, the data suggested that the helper T-cell immune responses elicited by F/QS-21 were more type 1 in character. Neither eosinophilia nor elevated levels of IL-5 were observed in the lungs of mice after challenge. Noteworthy levels of antigen-dependent killer cell activity was observed, and splenic immunocytes secreted copious quantities of IFN-gamma. Immunization with a combination vaccine composed of highly purified native F and G proteins plus QS-21 (F+G/QS-21) resulted in augmented complement-assisted serum neutralizing antibody titers compared with vaccination with either F/QS-21 or G/QS-21 alone. However, following vaccination with F+G/QS-21, the bronchoalveolar lavage fluids contained significant increases in IL-5 and percentages of eosinophils after challenge, the spleen cells appeared to secrete less IFN-gamma after in vitro stimulation, and there was no evidence of increased numbers of antigen-dependent killer cell precursors. Taken together, the data imply that native G protein influences the nature of the immune responses elicited by F/QS-21. The results therefore suggest that G, not F, protein has more potential to bias the host for atypical pulmonary inflammatory responses.  相似文献   

14.
Immunization of mice with DNA encoding the influenza virus hemagglutinin (HA) affords complete protection against lethal influenza virus infection and the means to investigate the mechanisms of B-cell responsiveness to virus challenge. Using a single-cell enzyme-linked immunospot assay, we sought to determine the localization of HA-specific antibody-forming cells (AFCs) during the development of humoral immunity in mice given HA DNA vaccine by gene gun. At 33 days postvaccination, populations of AFCs were maintained in the spleen and bone marrow. In response to lethal challenge with influenza virus, the AFCs became localized at the site of antigenic challenge, i.e., within the draining lymph nodes of the lung compartment. Immunoglobulin G (IgG)- and IgA-producing AFCs were detected in lymph nodes of the upper and lower respiratory tracts, underscoring their importance in clearing virus from the lungs. Response to challenge required competent CD4+ T cells, without which no AFCs were generated, even those producing IgM. By contrast, in mice vaccinated with an HA-containing subunit vaccine, fewer AFCs were generated in response to challenge, and these animals were less capable of resisting infection. Our findings demonstrate the comparable localization of AFCs in response to challenge in mice vaccinated with either HA DNA or live virus. Moreover, the former strategy generates both IgG- and IgA-producing plasma cells.  相似文献   

15.
Respiratory syncytial virus (RSV) is an important cause of respiratory tract disease in infants and the elderly. Currently, no licensed vaccine against RSV is available. Here we describe the development of a safe and effective intranasal subunit vaccine that is based on recombinant fusion (F) protein bound to the surface of immunostimulatory bacterium-like particles (BLPs) derived from the food-grade bacterium Lactococcus lactis. Different variants of F were analyzed with respect to their conformation and reactivity with neutralizing antibodies, assuming that F proteins mimicking the metastable prefusion form of RSV F expose a more extensive and relevant epitope repertoire than F proteins corresponding to the postfusion structure. Our results indicate that the recombinant soluble ectodomain of RSV F readily adopts a postfusion conformation, generation of which cannot be prevented by C-terminal addition of a trimerization motif, but whose formation is prevented by mutation of the two furin cleavage sites in F. While the putative postfusion form of F is recognized well by the monoclonal antibody Palivizumab, this is much less so for the more potently neutralizing, prefusion-specific antibodies D25 and AM22. Both addition of the trimerization motif and mutation of the furin cleavage sites increased the reactivity of F with D25 and AM22, with the highest reactivity being observed for F proteins in which both these features were combined. Intranasal vaccination of mice or cotton rats with BLPs loaded with this latter prefusion-like F protein (BLP-F), resulted in the potent induction of F-specific immunoglobulins and in significantly decreased virus titers in the lungs upon RSV challenge. Moreover, and in contrast to animals vaccinated with formalin-inactivated RSV, animals that received BLP-F exhibited high levels of F-specific secretory IgA in the nose and RSV-neutralizing antibodies in sera, but did not show symptoms of enhanced disease after challenge with RSV.  相似文献   

16.
Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans.  相似文献   

17.
Human metapneumovirus (hMPV) is an important cause of lower respiratory tract disease, particularly in infants and young children. hMPV has two major glycoproteins, G and F, which are responsible for virus attachment and membrane fusion, respectively. We investigated the role of cellular glycosaminoglycans (GAGs) and G protein in hMPV infection. The pretreatment of hMPV with soluble heparin markedly inhibited the infection of HEp-2 cells. Recombinant G protein, comprising the extracellular domain of G, bound to heparin-agarose columns and also to HEp-2 cells. hMPV infection and G protein binding to HEp-2 cells was inhibited by other soluble GAGs, including chondroitin sulfates, by the enzymatic removal of cell surface GAGs with GAG lyases or by the pretreatment of cells with basic fibroblast growth factor. The role of cellular GAGs was confirmed by the binding of G protein to wild-type CHO cells but not to GAG-deficient CHO-pgsA745 cells. An analysis of the G protein sequence revealed two adjacent clusters of positively charged amino acids (149EKKKTRA155 and 159QRRGKGKE166). Truncated G fragments were expressed, and only the fragment containing these putative heparin binding domains retained heparin binding. The alanine mutagenesis of charged residues in either of these regions resulted in the loss of binding to heparin and to HEp-2 cells, suggesting that both sites are likely to be required for hMPV attachment. These results, taken together with the inhibition of hMPV infection by soluble G protein, indicate an important role for G protein and cellular GAGs in hMPV infection.  相似文献   

18.
Human metapneumovirus (HMPV) has recently been identified as a significant cause of serious respiratory tract disease in humans. In particular, the emerging information on the contribution of HMPV to pediatric respiratory tract disease suggests that it will be important to develop a vaccine against this virus for use in conjunction with those being developed for human respiratory syncytial virus and the human parainfluenza viruses. A recently described reverse genetic system (S. Biacchesi, M. H. Skiadopoulos, K. C. Tran, B. R. Murphy, P. L. Collins, and U. J. Buchholz, Virology 321:247-259, 2004) was used to generate recombinant HMPVs (rHMPVs) that lack the G gene, the SH gene, or both. The DeltaSH, DeltaG, and DeltaSH/G deletion mutants were readily recovered and were found to replicate efficiently during multicycle growth in cell culture. Thus, the SH and G proteins are not essential for growth in cell culture. Apart from the absence of the deleted protein(s), the virions produced by the gene deletion mutants were similar by protein yield and gel electrophoresis protein profile to wild-type HMPV. When administered intranasally to hamsters, the DeltaG and DeltaSH/G mutants replicated in both the upper and lower respiratory tracts, showing that HMPV containing F as the sole viral surface protein is competent for replication in vivo. However, both viruses were at least 40-fold and 600-fold restricted in replication in the lower and upper respiratory tract, respectively, compared to wild-type rHMPV. They also induced high titers of HMPV-neutralizing serum antibodies and conferred complete protection against replication of wild-type HMPV challenge virus in the lungs. Surprisingly, G is dispensable for protection, and the DeltaG and DeltaSH/G viruses represent promising vaccine candidates. In contrast, DeltaSH replicated somewhat more efficiently in hamster lungs compared to wild-type rHMPV (20-fold increase on day 5 postinfection). This indicates that SH is completely dispensable in vivo and that its deletion does not confer an attenuating effect, at least in this rodent model.  相似文献   

19.
A salmonid alphavirus (SAV)-based replicon encoding the infectious salmon anemia virus (ISAV) hemagglutinin-esterase (HE), pSAV/HE, is an efficacious vaccine against infectious salmon anemia (ISA). Delivered intramuscularly (i.m.), the replicon vaccine provides high protection against subsequent ISAV challenge in Atlantic salmon (Salmo salar), and induces a strong innate response locally at the injection site. This may be beneficial and could warrant reduced doses and improved efficacy compared to conventional DNA vaccines. In the present study, we found that intraperitoneal (i.p.) administration of the pSAV/HE replicon vaccine did not induce protection, neither alone or in combination with a sub-potent, inactivated low-dose ISAV vaccine given i.p. No significant differences between the two immunization routes regarding systemic immune responses could be observed. I.m. injection of the replicon vector encoding a non-viral gene or the protective glycoprotein (G protein) from the heterologous viral hemorrhagic septicemia virus (VHSV) induced no protection against ISA. Although the replicons without the ISAV HE did induce IFN-signaling pathways at the muscle injection site similar to the pSAV/HE replicon they did not improve the efficacy of a sub-potent inactivated low-dose ISAV vaccine delivered i.p. Moreover, there was a tendency for reduced efficacy of the pSAV/HE replicon vaccine injected i.m. when co-injected with the replicon encoding the VHSV G protein, which previously, after DNA vaccination, have been reported to induce cross-protection against heterologous virus challenge in fish.  相似文献   

20.
Cotton rats previously inoculated with Formalin-inactivated respiratory syncytial virus (RSV) were challenged intranasally with live RSV to induce an enhancement of RSV disease similar to that observed after the administration of Formalin-inactivated RSV vaccine to human infants 20 years ago. Within 24 h after infection with RSV, cotton rats developed pulmonary lesions that reached a maximum by day 4. Histologically, the lesions resembled an experimental pulmonary Arthus reaction. An action of Formalin on RSV appears to be responsible for this effect, because live virus or virus heated in the absence of Formalin did not induce enhanced immunopathology. Selected epitopes on the fusion (F) or attachment (G) or both RSV surface glycoproteins that are involved in inducing neutralizing antibodies were modified to reduce or ablate their antigenicity. However, other epitopes on the F or G or both glycoproteins were not ablated by Formalin, because cotton rats inoculated parenterally with a Formalin-inactivated virus developed a high level of F and G antibodies measurable by an enzyme-linked immunosorbent assay. At this time, the effect of Formalin on RSV cannot be localized to either the F or G glycoprotein of RSV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号