首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that different agonists increase tyrosine phosphorylation of the focal adhesion related proteins p125(FAK), p130(Cas), and paxillin in different cell types and that tyrosine phosphorylation depends on the integrity of the actin cytoskeleton. Because phosphoinositides are important for the maintenance of the cytoskeleton, the role of phosphoinositides in the tyrosine phosphorylation of these proteins in response to occupancy of m3 muscarinic and CCK(A) receptors has been investigated in pancreatic acini. Addition of carbachol or CCK-8 to pancreatic acini resulted in rapid increases in the tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin. Pretreatment of pancreatic acini with LY294002 or wortmannin resulted in a concentration-dependent inhibition of tyrosine phosphorylation of p125(FAK), p130(Cas), and paxillin stimulated by carbachol or CCK-8. Carbachol- or CCK-8-stimulated tyrosine phosphorylation of these proteins was not inhibited by rapamycin, PD 98059 or SB 203580, and thus it was dissociated from the activation of p70 S6 or MAP kinases. These results indicate that m3 muscarinic and CCK(A) receptor-mediated increase in p125(FAK), p130(Cas), and paxillin tyrosine phosphorylation in pancreatic acini depends on the ability of these cells to synthesise phosphoinositides.  相似文献   

2.
Ohmori T  Yatomi Y  Inoue K  Satoh K  Ozaki Y 《Biochemistry》2000,39(19):5797-5807
The newly described adapter molecule p130 Crk-associated substrate (Cas) has been reported to contribute to cytoskeletal organization through assembly of actin filaments and to be pivotal in embryonic development and in oncogene-mediated transformation. We characterized the regulation of Cas tyrosine phosphorylation in highly differentiated, anucleate platelets. Phospholipase C-activating receptor agonists, including collagen, thrombin receptor-activating peptide (TRAP), and U46619 (a thromboxane A2 analogue), and A23187 (a Ca2+ ionophore) induced rapid Cas tyrosine phosphorylation in platelets. 12-O-Tetradecanoylphorbol 13-acetate and 1-oleoyl-2-acetyl-sn-glycerol, protein kinase C (PKC) activators, also induced Cas tyrosine phosphorylation, albeit sluggishly. Cas tyrosine phosphorylation induced by collagen or TRAP was transient in aggregating platelets; Cas became dephosphorylated in a manner dependent on integrin alpha IIb beta 3-mediated aggregation. While BAPTA-AM (an intracellular Ca2+ chelator) inhibited Cas phosphorylation induced by collagen or TRAP, Ro31-8220 (a PKC inhibitor) rather prolonged it. Under the conditions, this PKC inhibitor suppressed platelet aggregation but not intracellular Ca2+ mobilization. In contrast to Cas involvement in focal adhesions in other cells, platelet Cas phosphorylation preceded the activation of focal adhesion kinase (FAK), and blockage of alpha IIb beta 3-mediated platelet aggregation with a GRGDS peptide resulted in prolongation of stimulation-dependent Cas tyrosine phosphorylation but in suppression of FAK tyrosine phosphorylation. Furthermore, TRAP-induced Cas phosphorylation was insensitive to cytochalasin D, an actin polymerization inhibitor. The failure of FAK to associate with Cas in immunoprecipitation studies also suggests that Cas tyrosine phosphorylation is independent of FAK activation. Of the signaling molecules investigated in this study, Src seemed to associate with Cas. Finally, Cas existed mainly in cytosol and membrane cytoskeleton fractions in the resting state, and remained unchanged during platelet aggregation, when FAK translocated to the cytoskeletal fraction. Our findings on platelet Cas suggest that (i) rapid Cas tyrosine phosphorylation occurs following phosphoinositide turnover by receptor-mediated agonists and may be mediated by intracellular Ca2+ mobilization; (ii) PKC activation, by itself, may elicit sluggish Cas phosphorylation; (iii) Cas tyrosine dephosphorylation, but not phosphorylation, is dependent on integrin alpha IIb beta 3-mediated aggregation; and (iv) Cas is not involved in cytoskeletal reorganization. Anucleate platelets seem to provide a unique model system to fully elucidate the functional role(s) of Cas.  相似文献   

3.
Treatment of cultured human hepatoma HepG2 cells with the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), results in an increase in tyrosine phosphorylation of several proteins, including the focal adhesion kinase (FAK) and paxillin using anti-phosphotyrosine Western blotting and immunoprecipitation. However, when cells are in suspension or in the presence of cytochalasin D which disrupts the intracellular network of actin microfilaments, TPA loses its ability to stimulate tyrosine phosphorylation of FAK and paxillin but it still activates mitogen-activated protein kinase (MAPK) and induces PKC translocation from cytosol to the membrane in HepG2 cells. On the other hand, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, blocks TPA-induced MAPK activation but has no effect on TPA-induced tyrosine phosphorylation. Our findings suggest that TPA-induced tyrosine phosphorylation of FAK and paxillin in human hepatoma cells is PKC dependent and requires the integrity of the cell cytoskeleton but is uncoupled to the signal transduction pathway of PKC leading to the translocation of PKC and MAPK activation.  相似文献   

4.
Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase implicated in controlling cellular responses to the engagement of cell-surface integrins, including cell spreading and migration, survival and proliferation. Aberrant FAK signaling may contribute to the process of cell transformation by certain oncoproteins, including v-Src. Progress toward elucidating the events leading to FAK activation following integrin-mediated cell adhesion, as well as events downstream of FAK, has come through the identification of FAK phosphorylation sites and interacting proteins. A signaling partnership is formed between FAK and Src-family kinases, leading to tyrosine phosphorylation of FAK and associated ‘docking’ proteins Cas and paxillin. Subsequent recruitment of proteins containing Src homology 2 domains, including Grb2 and c-Crk, to the complex is likely to trigger adhesion-induced cellular responses, including changes to the actin cytoskeleton and activation of the Ras-MAP kinase pathway.  相似文献   

5.
CD146 (S-Endo 1 Ag or MUC18) is a transmembrane glycoprotein expressed on endothelial cells on the whole vascular tree. CD146 is located at the intercellular junction where it plays a role in the cohesion of the endothelial monolayer. CD146 engagement initiates an outside-in signaling pathway involving the protein tyrosine kinases FYN and FAK as well as paxillin. Here we report that CD146 engagement by its specific monoclonal antibody in human umbilical vein endothelial cells induces a Ca(2+) influx that is sensitive to thapsigargin and EGTA treatment, indicating that CD146 engagement initiates a store-operated calcium mobilization. In addition, biochemical and pharmacological analysis revealed that CD146 engagement initiates the tyrosine phosphorylation of phospholipase C-gamma, Pyk2, and p130(Cas). Pharmacological inhibition of Ca(2+) flux with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acetoxymethyl ester and EGTA indicated that an increase in Ca(2+) is required for Pyk2 and p130(Cas) tyrosine phosphorylation. Moreover, a complex association was observed between Pyk2, p130(Cas), and paxillin. These results indicate that CD146 is coupled to a FYN-dependent pathway that triggers Ca(2+) flux via phospholipase C-gamma activation leading subsequently to the tyrosine phosphorylation of downstream targets such as Pyk2, p130(Cas), FAK, and paxillin. In addition to its role in cell-cell adhesion, CD146 is a signaling molecule involved in the dynamics of actin cytoskeleton rearrangement.  相似文献   

6.
Tyrosine phosphorylation plays a key role in transmembrane and cytoplasmic signal transduction mechanisms stimulated by oncogenes, integrins, growth factors, neuropeptides, and bioactive lipids. Moreover, recent studies show that stimulation of odd-numbered muscarinic receptors increases the tyrosine phosphorylation of several proteins in different cellular types. The present study was aimed at examining whether activation of m3 muscarinic receptors in rat pancreatic acini evokes tyrosine phosphorylation of p125(FAK), and its substrates, p130(cas) and paxillin. Results show that stimulation of pancreatic acini with carbachol resulted in a rapid and transient increase in tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin. Tyrosine phosphorylation of these proteins occurred in a time- and concentration-dependent manner. Simultaneous blockage of both PKC activation and increases in [Ca(2+)](i) partially decreased p125(FAK), p130(cas), and paxillin tyrosine phosphorylation stimulated by carbachol. Pretreatment of pancreatic acini with Clostridium botulinum C3 transferase, which specifically inactivates p21(rho), partially inhibited carbachol-induced p125(FAK), p130(cas), and paxillin tyrosine phosphorylation. In contrast, this treatment had no effect on amylase release stimulated by carbachol. Cytochalasin D, which disrupts actin microfilaments network, completely inhibited carbachol stimulated tyrosine phosphorylation of these proteins without having significant effects in carbachol-stimulated amylase secretion. These results dissociate tyrosine phosphorylation of p125(FAK), p130(cas), and paxillin from amylase secretion after m3 muscarinic receptors occupation in rat pancreatic acini. Taken together, these data suggest that (a) activation of m3 muscarinic receptors in rat pancreatic acini increases tyrosine phosphorylation of p125(FAK) and its substrates, p130(cas) and paxillin by diacylglycerol-activated PKC- and calcium- dependent, and independent pathways, (b) these responses require activation of p21(rho) and an intact actin cytoskeleton, and (c) p125(FAK), p130(cas), and paxillin are unlikely related to secretion in rat pancreatic acinar cells.  相似文献   

7.
Neutrophil adhesion is fundamentally important during the onset of inflammatory responses. The adhesion signaling pathways control neutrophil arrest and extravasation and influence neutrophil shape and function at sites of inflammation. In the present study the intracellular signaling pathways for the adhesion of human neutrophils by pituitary growth hormone (GH) were examined. Pituitary GH triggered the tyrosine phosphorylation of Janus kinase 2 (Jak2) and STAT3 in neutrophils. In addition, pituitary GH treatment resulted in the morphological changes and the tyrosine phosphorylation of focal adhesion kinase (p125FAK) and paxillin. Preincubation with genistein, a tyrosine kinase inhibitor, blocked the GH-stimulated adhesion and Jak2, STAT3, p125FAK, and paxillin phosphorylation. Confocal microscopy revealed that pituitary GH stimulates the focal localization of p125FAK, paxillin, phosphotyrosine, and filamentous actin filament into the membrane rufflings and uropods of human neutrophils. Immunoprecipitation experiments revealed a physical association of Jak2 with p125FAK via STAT3 in vivo. Also an in vitro kinase assay showed an augmentation of p125FAK autophosphorylation as a result of pituitary GH treatment. These results suggest that pituitary GH modulates neutrophil adhesion through tyrosine phosphorylation of Jak2, p125FAK, and paxillin and actin polymerization.  相似文献   

8.
Formation of a complex between the tyrosine kinases FAK and Src is a key integrin-mediated signaling event implicated in cell motility, survival, and proliferation. Past studies indicate that FAK functions in the complex primarily as a "scaffold," acting to recruit and activate Src within cell/matrix adhesions. To study the cellular impact of FAK-associated Src signaling we developed a novel gain-of-function approach that involves expressing a chimeric protein with the FAK kinase domain replaced by the Src kinase domain. This FAK/Src chimera is subject to adhesion-dependent activation and promotes tyrosine phosphorylation of p130Cas and paxillin to higher steady-state levels than is achieved by wild-type FAK. When expressed in FAK -/- mouse embryo fibroblasts, the FAK/Src chimera resulted in a striking cellular phenotype characterized by unusual large peripheral adhesions, enhanced adhesive strength, and greatly reduced motility. Live cell imaging of the chimera-expressing FAK -/- cells provided evidence that the large peripheral adhesions are associated with a dynamic actin assembly process that is sensitive to a Src-selective inhibitor. These findings suggest that FAK-associated Src kinase activity has the capacity to promote adhesion integrity and actin assembly.  相似文献   

9.
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.  相似文献   

10.
SH-SY5Y neuroblastoma cells are a well-characterized model for studying the induction of neuronal differentiation. TPA treatment of these cells induces cytoskeletal rearrangements that ultimately result in neurite extension. However, the signaling pathways that precede these changes are poorly understood. Other investigators have shown that TPA treatment of SH-SY5Y cells results in increased tyrosine phosphorylation of cytoskeletal-associated proteins, including the adapter protein Cas. In this report, we examine the events upstream and downstream of Cas phosphorylation. We show that TPA treatment induces the PKC-dependent association of tyrosine-phosphorylated Cas with Crk. The activity of two protein tyrosine kinases, Src and FAK, was shown to be necessary and sufficient for TPA-induced Cas phosphorylation. We propose that the PKC-dependent phosphorylation of Cas by Src and FAK promotes the establishment of Cas-Crk complexes and that these interactions may play an important role in regulating the actin cytoskeleton during neuronal differentiation.  相似文献   

11.
We have previously shown that the Gq protein coupled receptor (GqPCR) agonist, carbachol (CCh), transactivates and recruits epidermal growth factor receptor (EGFr)-dependent signaling mechanisms in intestinal epithelial cells. Increasing evidence suggests that GqPCR agonists can also recruit focal adhesion-dependent signaling pathways in some cell types. Therefore, the aim of the present study was to investigate if CCh stimulates activation of the focal adhesion-associated protein, focal adhesion kinase (FAK), in intestinal epithelia and, if so, to examine the signaling mechanisms involved. Experiments were carried out on monolayers of T84 cells grown on permeable supports. CCh rapidly induced tyrosine phosphorylation of FAK in T84 cells. This effect was accompanied by phosphorylation of another focal adhesion-associated protein, paxillin, and association of FAK with paxillin. CCh-stimulated FAK phosphorylation was inhibited by a chelator of intracellular Ca2+, BAPTA/AM (20 microM), and was mimicked by thapsigargin (2 microM), which mobilizes intracellular Ca2+ in a receptor-independent fashion. CCh also induced association of FAK with the EGFr and FAK phosphorylation was attenuated by an EGFr inhibitor, tyrphostin AG1478, and an inhibitor of Src family kinases, PP2. The actin cytoskeleton disruptor, cytochalasin D (20 microM), abolished FAK phosphorylation in response to CCh but did not alter CCh-induced EGFr or ERK MAPK activation. In summary, these data demonstrate that agonists of GqPCRs have the ability to induce FAK activation in intestinal epithelial cells. GqPCR-induced FAK activation is mediated by via a pathway involving transactivation of the EGFr and alterations in the actin cytoskeleton.  相似文献   

12.
Osmotic shock induces GLUT4 translocation and glucose uptake through a mechanism independent of PI 3-kinase, but dependent on tyrosine phosphorylation of cellular proteins. To identify the tyrosine phosphorylated proteins required for osmotic shock-stimulated glucose uptake, we examined tyrosine phosphorylation of candidate proteins, and found that the 60-80kDa species including paxillin and the 120-130kDa species including p130Cas, PYK2, FAK and Gab1 were tyrosine-phosphorylated in response to osmotic shock. Inhibition of actin polymerization by cytochalasin D significantly decreased the tyrosine phosphorylation of paxillin, p130Cas, PYK2 and FAK but not Gab1, but had no effect on 2-deoxyglucose (DOG) uptake, suggesting a role for Gab1 in osmotic shock-induced glucose transport. Also, we found that osmotic shock increases the association of phospholipase C-gamma (PLC-gamma) with Gab1 and stimulates tyrosine phosphorylation of PLC-gamma itself. The PLC inhibitor, U73122, inhibited osmotic shock-induced 2-DOG uptake. These results suggest that tyrosine phosphorylation of Gab1 and subsequent recruitment and activation of PLC-gamma may play a role in osmotic shock-induced glucose transport.  相似文献   

13.
Muscarinic receptor-mediated changes in protein tyrosine phosphorylation were examined in differentiated human neuroblastoma SH-SY5Y cells. Treatment of differentiated cells with 1 mM carbachol caused rapid increases in the tyrosine phosphorylation of focal adhesion kinase (FAK), Cas, and paxillin. The src family kinase-selective inhibitor PP1 reduced carbachol-stimulated tyrosine phosphorylation of FAK, Cas, and paxillin by 50 to 75%. In contrast, carbachol-stimulated activation of ERK1/2 was unaffected by PP1. Src family kinase activation by carbachol was further demonstrated by increased carbachol-induced tyrosine phosphorylation of the src-substrate, p120, and tyrosine phosphorylation of the src family kinase activation-associated autophosphorylation site. Site-specific FAK phosphotyrosine antibodies were used to determine that the carbachol-stimulated increase in the autophosphorylation of FAK was unaffected by pretreatment with PP1, whereas the carbachol-stimulated increase in the src family kinase-mediated phosphotyrosine of FAK was completely blocked by pretreatment with PP1. In SH-SY5Y cell lines stably overexpressing Fyn, the phosphotyrosine immunoreactivity of FAK was 625% that of control cells. Thus, muscarinic receptors activate protein tyrosine phosphorylation in differentiated cells, and the tyrosine phosphorylation of FAK, Cas, and paxillin, but not ERK1/2, is mediated by a src family tyrosine kinase activated in response to stimulation of muscarinic receptors.  相似文献   

14.
15.
Abstract: The mechanism whereby agonist occupancy of muscarinic cholinergic receptors elicits an increased tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin has been examined. Addition of oxotremorine-M to SH-SY5Y neuroblastoma cells resulted in rapid increases in the phosphorylation of FAK ( t 1/2 = 2 min) and paxillin that were independent of integrin-extracellular matrix interactions, cell attachment, and the production of phosphoinositide-derived second messengers. In contrast, the increased tyrosine phosphorylations of FAK and paxillin were inhibited by inclusion of either cytochalasin D or mevastatin, agents that disrupt the cytoskeleton. Furthermore, phosphorylation of FAK and paxillin could be prevented by addition of either wortmannin or LY-294002, under conditions in which the synthesis of phosphatidylinositol 4-phosphate was markedly attenuated. These results indicate that muscarinic receptor-mediated increases in the tyrosine phosphorylation of FAK and paxillin in SH-SY5Y neuroblastoma cells depend on both the maintenance of an actin cytoskeleton and the ability of these cells to synthesize phosphoinositides.  相似文献   

16.
Huang Z  Yan DP  Ge BX 《Cellular signalling》2008,20(11):2002-2012
The adaptor protein paxillin plays an important role in cell migration. Although the c-Jun amino-terminal kinase (JNK) phosphorylation of paxillin on Ser 178 has been found to be critical for cell migration, the precise mechanism by which JNK regulates cell migration is still not very clear. Here, the migration of human corneal epithelial (HCE) cells was used to determine which signaling pathways are involved in EGF-induced paxillin phosphorylation. Paxillin was phosphorylated on Tyr 31 and Tyr 118 after induction of migration by EGF in HCE cells. Specific inhibition of JNK activation by inhibitor SP600125 or overexpression of a dominant-negative JNK mutant not only blocked EGF-induced cell migration, but also eliminated tyrosine phosphorylation of paxillin on Tyr 31 and Tyr 118. HCE cells overexpressing paxillin-S178A mutant also exhibited lower mobility, and reduced phosphorylation of Tyr 31 and Tyr 118. However, paxillin-S178A-inhibited cell migration can be rescued by overexpression of paxillin-Y31E/Y118E mutant. Importantly, inhibition of JNK by SP600125 or overexpression of paxillin-S178A mutant prevented the association of FAK with paxillin. Taken together, these results suggest that phosphorylation of paxillin on Ser 178 by JNK is required for the association of paxillin with FAK, and subsequent tyrosine phosphorylation of paxillin.  相似文献   

17.
Humoral factors and extracellular matrix are critical co-regulators of smooth muscle cell (SMC) migration and proliferation. We reported previously that focal adhesion kinase (FAK)-related non-kinase (FRNK) is expressed selectively in SMC and can inhibit platelet-derived growth factor BB homodimer (PDGF-BB)-induced proliferation and migration of SMC by attenuating FAK activity. The goal of the current studies was to identify the mechanism by which FAK/FRNK regulates SMC growth and migration in response to diverse mitogenic signals. Transient overexpression of FRNK in SMC attenuated autophosphorylation of FAK at Tyr-397, reduced Src family-dependent tyrosine phosphorylation of FAK at Tyr-576, Tyr-577, and Tyr-881, and reduced phosphorylation of the FAK/Src substrates Cas and paxillin. However, FRNK expression did not alter the magnitude or dynamics of ERK activation induced by PDGF-BB or angiotensin II. Instead, FRNK expression markedly attenuated PDGF-BB-, angiotensin II-, and integrin-stimulated Rac1 activity and attenuates downstream signaling to JNK. Importantly, constitutively active Rac1 rescued the proliferation defects in FRNK expressing cells. Based on these observations, we hypothesize that FAK activation is required to integrate integrin signals with those from receptor tyrosine kinases and G protein-coupled receptors through downstream activation of Rac1 and that in SMC, FRNK may control proliferation and migration by buffering FAK-dependent Rac1 activation.  相似文献   

18.
Abstract: In SH-SY5Y human neuroblastoma cells, insulin-like growth factor (IGF)-I mediates membrane ruffling and growth cone extension. We have previously shown that IGF-I activates the tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated protein kinase (ERK) 2. In the current study, we examined which signaling pathway underlies IGF-I-mediated FAK phosphorylation and cytoskeletal changes and determined if an intact cytoskeleton was required for IGF-I signaling. Treatment of SH-SY5Y cells with cytochalasin D disrupted the actin cytoskeleton and prevented any morphological changes induced by IGF-I. Inhibitors of phosphatidylinositol 3-kinase (PI 3-K) blocked IGF-I-mediated changes in the actin cytoskeleton as measured by membrane ruffling. In contrast, PD98059, a selective inhibitor of ERK kinase, had no effect on IGF-I-induced membrane ruffling. In parallel with effects on the actin cytoskeleton, cytochalasin D and PI 3-K inhibitors blocked IGF-I-induced FAK tyrosine phosphorylation, whereas PD98059 had no effect. It is interesting that cytochalasin D did not block IGF-I-induced ERK2 tyrosine phosphorylation. Therefore, it is likely that FAK and ERK2 tyrosine phosphorylations are regulated by separate pathways during IGF-I signaling. Our study suggests that integrity as well as dynamic motility of the actin cytoskeleton mediated by PI 3-K is required for IGF-I-induced FAK tyrosine phosphorylation, but not for ERK2 activation.  相似文献   

19.
We show that tyrosine phosphorylation of FAK was increased as precartilage condensation occurred, followed by a subsequent decrease in proliferation of in vitro micromass culture of wing bud mesenchymal cells. FAK was associated with fibronectin and paxillin, which were maximal at day 3 of culture. FAK was also associated with signaling molecules such as PLC-gamma and PI3-kinase through c-Src. The beta1 integrin antibody and several inhibitors of signaling molecules such as herbimycin A, U73122, LY294002, as well as cytochalasin D, an actin depolymerizing agent, remarkably decreased tyrosine phosphorylation of FAK and its association with fibronectin and paxillin during condensation. resulting in a marked inhibition of condensation and chondrogenesis. Taken together, our findings suggest that beta1 integrin-mediated interaction of mesenchymal cells and fibronectin signals to accelerate the precartilage condensation through tyrosine phosphorylation of FAK and its association with paxillin. This signaling pathway is required for precartilage condensation and subsequent cartilage nodule formation in chondrogenesis.  相似文献   

20.
The binding of integrins to extracellular matrix triggers signals that promote cell spreading. We previously demonstrated that expression of the integrin β1 cytoplasmic domain in the context of a chimeric transmembrane receptor with the Tac subunit of the interleukin-2 receptor (Tac-β1) inhibits cell spreading. To study the mechanism whereby Tac-β1 inhibits cell spreading, we examined the effect of Tac-β1 on early signaling events following integrin engagement namely FAK and Src signaling. We infected primary fibroblasts with adenoviruses expressing Tac or Tac-β1 and found that Tac-β1 prevented FAK activation by inhibiting the phosphorylation of FAK at Tyr-397. In contrast, Src activation was maintained, as phosphorylation of Src at Tyr-419 and Tyr-530 were not responsive to expression of Tac-β1. Importantly, adhesion-induced tyrosine phosphorylation of the Src substrates p130Cas and paxillin was inhibited, indicating that Src signaling was blocked by Tac-β1. These Src-dependent signaling events were found to require FAK signaling. Our results suggest that Tac-β1 inhibits cell spreading, at least in part, by preventing the phosphorylation of FAK at Tyr-397 and the assembly of signaling complexes necessary for phosphorylation of p130Cas and other downstream effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号