首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chorismate mutase of Brevibacterium flavum, a common enzyme in phenylalanine and tyrosine biosynthesis, was separted into two different component, A and B, with molecular weights of 250,000 and 25,000, respectively, by ammonium sulfate fractionation or gel-filtration. Both components were essential for the enzymatic activity. In the presence of the reaction substrate, chorismate, the two components associated reversibly to give an active enzyme complex with a molecular weight of 320,000. Binding sites of the feedback inhibitors, phenylalanine and tyrosine, on the enzyme were localized on component A as determined by hybridization experiments with the wild-type and mutant components. Tyrosine repressed the synthesis of component B much more strongly than that of component A, while phenylalanine did not show any significant repressive effect on either component. The wild-type strain No. 2247 had four times more component A than component B. Elution patterns in gel, DEAE-cellulose or hydroxyapatite column chromatography as well as the disc-gel electrophoretic pattern of chorismate mutase component A and 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase activities completely overlapped, suggesting the presence of a bifunctional protein having the two activities. In accord with this suggestion, chorismate mutase as well as DAHP synthetase was insensitive to feedback inhibition by phenylalanine and tyrosine in all the 3-fluorophenylalanine-resistant mutants tested that excreted both phenylalanine and tyrosine. All the phenylalanine and tyrosine double auxotrophs defective in chorismate mutase lacked component B but not A.  相似文献   

2.
Summary In extension of previous studies on the regulation of the aromatic amino acid pathway in blue-green and green algae the control of two branch-point enzymes, namely chorismate mutase and anthranilate synthetase has been studied. The activity of chorismate mutase in these organisms is effectively inhibited by l-tyrosine or l-phenylalanine. l-tryptophan, in contrast, proved to be a positive effector of the enzyme: in the absence of phenylalanine or tyrosine tryptophan slightly stimulated chorismate mutase activity; this stimulation was even brought about in the presence of excess phenylalanine or tyrosine, irrespective if the enzyme had been preincubated with these inhibitors or not. Tryptophan thus proved to completely revert the feedback inhibition of this enzyme by phenylalanine or tyrosine. Substrate saturation curves of chorismate mutase activity are hyperbolic in the presence of tryptophan and sigmoid in the presence of phenylalanine or tyrosine. In contrast to the enzymes of the green algae investigated, chorismate mutase activity of Anacystis nidulans, a member of the class of the blue-green algae was not affected by any of the aromatic amino acids.The activity of anthranilate synthetase, the second enzyme of the chorismic acid branch-point of the pathway was consistently inhibited by l-tryptophan in all the organisms tested. The results described here bear significance on the regulation of a multi-branched pathway the first enzyme of which is inhibited just by one endproduct.  相似文献   

3.
The enzyme activities specified by the tyrA and pheA genes were studied in wildtype strain Salmonella typhimurium and in phenylalanine and tyrosine auxotrophs. As in Aerobacter aerogenes and Escherichia coli, the wild-type enzymes of Salmonella catalyze two consecutive reactions: chorismate --> prephenate --> 4-hydroxy-phenylpyruvate (tyrA), and chorismate --> prephenate --> phenylpyruvate (pheA). A group of tyrA mutants capable of interallelic complementation had altered enzymes which retained chorismate mutase T activity but lacked prephenate dehydrogenase. Similarly, pheA mutants (in which interallelic complementation does not occur) had one group with altered enzymes which retained chorismate mutase P but lacked prephenate dehydratase. Tyrosine and phenylalanine auxotrophs outside of these categories showed loss of both activities of their respective bifunctional enzyme. TyrA mutants which had mutase T were considerably derepressed in this activity by tyrosine starvation and consequently excreted prephenate. A new and specific procedure was developed for assaying prephenate dehydrogenase activity.  相似文献   

4.
Candida maltosa synthesizes phenylalanine and tyrosine only via phenylpyruvate and p-hydroxyphenylpyruvate. Tryptophan is absolutely necessary for the enzymatic reaction of chorismate mutase and prephenate dehydrogenase; activity of prephenate dehydratase can be increased 2.5-fold in the presence of tryptophan. Activation of the chorismate mutase, prephenate dehydratase and prephenate dehydrogenase by tryptophan is competitive with respect to chorismate and prephenate with Ka 0.06mM, 0.56mM and 1.7mM. In addition tyrosine is a competitive inhibitor of chorismate mutase (Ki = 0.55mM) and prephenate dehydrogenase (Ki = 5.5mM).  相似文献   

5.
The regulatory properties of chorismate mutase, its cellular localization and isoenzyme pattern were investigated in 23 yeast species. All yeasts contained only a single form of the enzyme, which is localized exclusively in the cytosol. The enzyme activity from all sources was activated 3-(Rhodotorula aurantiaca) to 185-fold (Candida maltosa) by tryptophan. The tryphtophan concentration, which was necessary to obtain half maximum velocity was determined to be between 2 (Pichia guilliermondii) and 95 M (Yarrowia lipolytica). Ten yeast species possessed an enzyme that was inhibited by both phenylalanine and tyrosine. The chorismate mutase from four strains was inhibited only by tyrosine and the enzyme from two species was inhibited by phenylalanine alone. The enzyme inhibition by phenylalanine and tyrosine was completely reversed by tryptophan. Six enzyme sources were not inhibited and theY. lipolytica chorismate mutase was slightly activated by both amino acids.  相似文献   

6.
Chorismate mutase CM-1, an isozyme that is inhibited by phenylalanine and tyrosine and activated by tryptophan was purified 1200-fold from etiolated mung bean seedlings with a final yield of 18–20%. Loss of activity was rapid in highly purified preparations but was reduced by the addition of bovine serum albumin. Enzyme activity was unaffected by thiol-alkylating agents, reducing agents, EDTA, or divalent cations.The enzyme displayed pH-sensitive, positive homotrophic cooperativity toward chorismate with greatest cooperativity at the pH optimum of the tryptophan-free enzyme (pH 7.2–7.4) and least cooperativity at the pH optimum of the enzyme fully activated with tryptophan (pH 7.0). Activation by tryptophan reduced the Km for the enzyme, and modified the sigmoid substrate saturation kinetics to a rectangular hyperbola. Feedback inhibition by the end product amino acids phenylalanine and tyrosine was not additive but revealed heterotrophic cooperativity with chorismate. Tyrosine (Ki = 31 μM) was a slightly more effective inhibitor than phenylalanine (Ki = 37 μM) at 1 mm chorismate. Tryptophan at equimolar concentration antagonized the feedback inhibition by phenylalanine and tyrosine. The latter two, however, at higher concentrations reversed the tryptophan activation in a noncompetitive fashion with respect to either tryptophan or chorismate. The enzyme was responsive only to the l-isomers of the amino acids. The results indicate a primary role for chorismate mutase CM-1 from mung bean in the regulation of the synthesis of phenylalanine and tyrosine for protein synthesis.  相似文献   

7.
Repression of aromatic amino acid biosynthesis in Escherichia coli K-12   总被引:24,自引:20,他引:4  
Mutants of Escherichia coli K-12 were isolated in which the synthesis of the following, normally repressible enzymes of aromatic biosynthesis was constitutive: 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetases (phe and tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A. In the wild type, DAHP synthetase (phe) was multivalently repressed by phenylalanine plus tryptophan, whereas DAHP synthetase (tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A were repressed by tyrosine. DAHP synthetase (tyr) and chorismate mutase T-prephenate dehydrogenase were also repressed by phenylalanine in high concentration (10(-3)m). Besides the constitutive synthesis of DAHP synthetase (phe), the mutants had the same phenotype as strains mutated in the tyrosine regulatory gene tyrR. The mutations causing this phenotype were cotransducible with trpA, trpE, cysB, and pyrF and mapped in the same region as tyrR at approximately 26 min on the chromosome. It is concluded that these mutations may be alleles of the tyrR gene and that synthesis of the enzymes listed above is controlled by this gene. Chorismate mutase P and prephenate dehydratase activities which are carried on a single protein were repressed by phenylalanine alone and were not controlled by tyrR. Formation of this protein is presumed to be controlled by a separate, unknown regulator gene. The heat-stable phenylalanine transaminase and two enzymes of the common aromatic pathway, 5-dehydroquinate synthetase and 5-dehydroquinase, were not repressible under the conditions studied and were not affected by tyrR. DAHP synthetase (trp) and tryptophan synthetase were repressed by tryptophan and have previously been shown to be under the control of the trpR regulatory gene. These enzymes also were unaffected by tyrR.  相似文献   

8.
Two isozymes of chorismate mutase (CA mutase(1) and CA mutase(2)) and two isozymes of prephenate dehydratase (PPA dehydratase(1) and PPA dehydratase(2)) have been found in Pseudomonas aeruginosa. The activities CA mutase(2)-PPA dehydratase(2) catalyzing phenylalanine biosynthesis have been purified almost 40-fold and were found to be associated as a bifunctional enzyme or an enzyme complex. The enzymes specific for tyrosine biosynthesis did not appear to manifest such physical association. Thus, the organization of enzymes concerned with phenylalanine and tyrosine biosynthesis in P. aeruginosa is unique and is unlike most other organisms. Single site mutants have been isolated which have lost both CA mutase(2)-PPA dehydratase(2) activities resulting in a requirement for phenylalanine for growth. Single site revertants of these mutants regained both these activities simultaneously and were able to grow on minimal medium. A mutant, r(6), was also isolated which had normal CA mutase(2) but lacked PPA dehydratase(2) activity.  相似文献   

9.
10.
11.
Mobley EM  Kunkel BN  Keith B 《Gene》1999,240(1):115-123
Phenylalanine, tyrosine, and tryptophan have a dual biosynthetic role in plants; they are required for protein synthesis and are also precursors to a number of aromatic secondary metabolites critical to normal development and stress responses. Whereas much has been learned in recent years about the genetic control of tryptophan biosynthesis in Arabidopsis and other plants, relatively little is known about the genetic regulation of phenylalanine and tyrosine synthesis. We have isolated, characterized and determined the expression of Arabidopsis thaliana genes encoding chorismate mutase, the enzyme catalyzing the first committed step in phenylalanine and tyrosine synthesis. Three independent Arabidopsis chorismate mutase cDNAs were isolated by functional complementation of a Saccharomyces cerevisiae mutation. Two of these cDNAs have been reported independently (Eberhard et al., 1993. FEBS 334, 233-236; Eberhard et al., 1996. Plant J. 10, 815-821), but the third (designated CM-3) represents a novel gene. The different organ-specific expression patterns of these cDNAs, their regulation in response to pathogen infiltration, as well as the different enzymatic characteristics of the proteins they encode are also described. Together, these data suggest that each isoform may play a distinct physiological role in coordinating chorismate mutase activity with developmental and environmental signals.  相似文献   

12.
Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of Mycobacterium tuberculosis (MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency increases >100‐fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate‐pathway enzyme. The 2.35 Å crystal structure of the MtCM–MtDS complex bound to a transition‐state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active‐site residues on binding to MtDS. The mutagenesis of the C‐terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate‐mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of M. tuberculosis with an important regulatory feature. Experimental evidence suggests that such non‐covalent enzyme complexes comprising an AroQδ subclass chorismate mutase like MtCM are abundant in the bacterial order Actinomycetales.  相似文献   

13.
The aromatic amino acids are synthesized via a common biosynthetic pathway. A tryptophan-producing mutant of Corynebacterium glutamicum was genetically engineered to produce tyrosine or phenylalanine in abundance. To achieve this, three biosynthetic genes encoding the first enzyme in the common pathway, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DS), and the branch-point enzymes chorismate mutase and prephenate dehydratase were individually cloned from regulatory mutants of C. glutamicum which have either of the corresponding enzymes desensitized to end product inhibition. These cloned genes were assembled one after another onto a multicopy vector of C. glutamicum to yield two recombinant plasmids. One plasmid, designated pKY1, contains the DS and chorismate mutase genes, and the other, designated pKF1, contains all three biosynthetic genes. The enzymes specified by both plasmids were simultaneously overexpressed approximately sevenfold relative to the chromosomally encoded enzymes in a C. glutamicum strain. When transformed with pKY1 or pKF1, tryptophan-producing C. glutamicum KY10865, with the ability to produce 18 g of tryptophan per liter, was altered to produce a large amount of tyrosine (26 g/liter) or phenylalanine (28 g/liter), respectively, because the accelerated carbon flow through the common pathway was redirected to tyrosine or phenylalanine.  相似文献   

14.
The chorismate mutase and prephenate dehydratase genes of phenylalanine producing Corynebacterium glutamicum K38, which is resistant to p-fluorophenylalanine and m-fluorophenylalanine, were cloned into plasmid pCE53 in C. glutamicum KY9456, which lacks chorismate mutase and prephenate dehydratase. One of the resultant plasmids, pCmB4, contained a 9.4kb BamHI DNA fragment inserted into the unique BamHl site of pCE53. Plasmid pCmB4 complemented a phenylalanine and tyrosine double auxotroph of C. glutamicum KY9456. Introduction of pCmB4 into C. glutamicum RRL5 resulted in an about ten times increase in chorismate mutase activity. C. glutamicum K38 carrying the plasmid accumulated 19.0mg/ml of phenylalanine (50% increase over the yield of K38).  相似文献   

15.
We have isolated a chorismate mutase bradytroph (leaky auxotroph) ofAnabaena sp. PCC 7119 (ATCC 29151) as a spontaneous 6-fluorotryptophan-resistant mutant. The decreased chorismate mutase activity resulted in the production of quantities of the phenylalanine and tyrosine that limited rate of growth. 3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase activity in the mutant was elevated more than twofold over the wild-type activity, suggesting derepression of this enzyme. The physiological deregulation of DAHP synthase and the genetic-based deficiency of chorismate mutase promoted an elevated level of intracellular chorismate, which then overwhelmed the competitive inhibition of anthranilate synthase by tryptophan, resulting in the overproduction of tryptophan and indoleglycerolphosphate. The presence of exogenous serine increased the production of tryptophan at the expense of indoleglycerolphosphate. This indicated that the endogenous potential for increasing the amount of serine available for increased tryptophan production is limited.  相似文献   

16.
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase-an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis-and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn(2+) and Mn(2+) + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.  相似文献   

17.
Shikimate, anthranilate, indole, l -tryptophan, phenylpyruvate, l -p henylalanine, p-hydroxyphenylpyruvate or l -tyrosine were added to suspension-cultured Nicotiana tabacum (tabacco) and Daucus carota (carrot) tissues and incubated for 24 hours. Uptake of each compound was substantial as measured by its decrease in the medium. The levels of free tryptophan, phenylalanine and tyrosine were determined in the tissues after the 24 hours incubation. Shikimate did not change the aromatic animo acid levels in carrot tissue, but did increase all three in tobacco (3-fold or more), indicating a less stringent feedback control in tobacco. Anthranilate and indole increased the tissue tryptophan levels in both species by at least 17-fold, showing that the flow from anthranilate and indole to tryptophan was apparently unhindered by enzymatic control mechanisms. When tryptophan levels were elevated in both carrot and tobaccotissues by anthranilate, indole or tryptophan addition, there was also an increase in free phyenylalanine and tyrosine. This might be due to the reversal of phenylalanine and tyrosine feedback inhibition of chorismate mutase by the high tryptophan in the tissue. Chorismate mutase activity in tobacco crude extracts could be inhibited by 66–90% by 1 mM phenylalanine and /or tyrosine. Tryptophan at 1 mM stimulated the enzyme activity by 1/3 and completely reversed the phenylalanine and/or tyrosine inhibition of enzyme activity. Chorsimate mutase activity amino acids under a variety of conditions. Phenylpyruvate increased the phenylalanine levels and p-hydroxyphenylpyruvate increased the tyrosine levels in carrot and tobacco tissues indicating that there was no feedback control of the last step in phenylalanine and tyrosine biosynthesis.  相似文献   

18.
In the biosynthetic pathway of aromatic amino acids of Brevibacterium flavum, ratios of each biosynthetic flow at the chorismate branch point were calculated from the reaction velocities of anthranilate synthetase for tryptophan and chorismate mutase for phenylalanine and tyrosine at steady state concentrations of chorismate. When these aromatic amino acids were absent, the ratio was 61, showing an extremely preferential synthesis of tryptophan. The presence of tryptophan at 0.01 mM decreased the ratio to 0.07, showing a diversion of the preferential synthesis to phenylalanine and tyrosine. Complete recovery by glutamate of the ability to synthesize the Millon-positive substance in dialyzed cell extracts confirmed that tyrosine was synthesized via pretyrosine in this organism. Partially purified prephenate aminotransferase, the first enzyme in the tyrosine-specific branch, had a pH optimum of 8.0 and Km’s of 0.45 and 22 mM for prephenate and glutamate, respectively, and its activity was increased 15-fold by pyridoxal-5-phosphate. Neither its activity nor its synthesis was affected at all by the presence of the end product tyrosine or other aromatic amino acids. The ratio of each biosynthetic flow for tyrosine and phenylalanine at the prephenate branch point was calculated from the kinetic equations of prephenate aminotransferase and prephenate dehydratase, the first enzyme in the phenylalanine-specific branch. It showed that tyrosine was synthesized in preference to phenylalanine when phenylalanine and tyrosine were absent. Furthermore, this preferential synthesis was diverted to a balanced synthesis of phenylalanine and tyrosine through activation of prephenate dehydratase by the tyrosine thus synthesized. The feedback inhibition of prephenate dehydratase by phenylalanine was proposed to play a role in maintaining a balanced synthesis when supply of prephenate was decreased by feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP*) synthetase, the common key enzyme. Overproduction of the end products in various regulatory mutants was also explained by these results.  相似文献   

19.
The control of the synthesis of certain key enzymes of aromatic amino acid biosynthesis was studied. Tyrosine represses the first enzyme of the 3-deoxy-d-arabino heptulosonic acid 7-phosphate pathway, DAHP synthetase, as well as shikimate kinase and chorismate mutase about fivefold in cultures grown under conditions limiting the synthesis of the aromatic amino acids. A mixture of tyrosine and phenylalanine represses twofold further. Tryptophan does not appear to be involved in the control of these enzymes. The specific activity of at least one early enzyme, dehydroquinase, remains essentially constant under a variety of nutritional supplementations. Two enzymes in the terminal branches are repressed by the amino acids they help to synthesize: prephenate dehydrogenase can be repressed fourfold by tyrosine, and anthranilate synthetase can be repressed over 200-fold by tryptophan. There is no evidence that phenylalanine represses prephenate dehydratase. Regulatory mutants have been isolated in which various enzymes of the pathway are no longer repressible. One class is derepressed for several of the prechorismate enzymes, as well as chorismate mutase and prephenate dehydrogenase. In another mutant, several enzymes of tryptophan biosynthesis are no longer repressible. Thus, the rate of synthesis of enzymes at every stage of the pathway is under control of various aromatic amino acids. Tyrosine and phenylalanine control the synthesis of enzymes involved in the synthesis of the three aromatic amino acids. Each terminal branch is under the control of its end product.  相似文献   

20.
1. Mutants derived from the hydrogen bacterium Alcaligenes eutrophus strain H 16 auxotrophic for phenylalanine and tyrosine were isolated employing mutagenic agents (EMS, nitrite), the colistine counterselection technique and the "pin-point" isolation method. Three different types of mutants were found: (1) Mutants, requiring phenylalanine or phenylpyruvate for growth, were affected in chorismate mutase as well as prephenate dehydratase. Both activities were regained by reversion to prototrophy. The auxotrophic strains accumulated chorismic acid. (2) Strains with a growth response similar to that of the first group lacked only prephenate dehydratase activity which was partially regained by reversion. Chorismate mutase and prephenate dehydrogenase were derepressed up to two-fold. Mutants grown in minimal medium excreted prephenic acid. (3) The third type of mutants required phenylalanine or phenylpyruvate and grew slowly when supplemented with chorismate or prephenate. The enzymes involved in the specific pathway of phenylalanine and tyrosine were found to be present. Some of them were even more active than in the wild-type. 2. Mutants accumulating chorismic acid or prepheric acid were able to grow on minimal medium when incubated long enough. The chemical instability of the excretion products resulted in their nonenzymatic conversion to subsequent intermediates which were taken up by the cells, allowing growth. 3. A method is described for preparing barium prephenate using the auxotrophic mutant 6B-1 derived from A.eutrophus H 16. Prephenic acid, excreted by this strain, was obtained from the culture filtrate with a purity of at least 70% and a yield of approximately 180 mg per 21 of medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号