首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A cholesteryl ester transfer protein (CETP) of apparent Mr 74,000 has recently been purified from human plasma. Three monoclonal neutralizing antibodies to the CETP were obtained by immunizing mice with purified CETP. The antibodies, each recognizing a similar epitope on CETP, caused parallel and complete immunotitration of plasma cholesteryl ester and triglyceride transfer activities but only partial inhibition of phospholipid transfer activity. Monoclonal immunoaffinity chromatography of plasma or its fractions showed complete removal of cholesteryl ester and triglyceride transfer activities but incomplete removal of phospholipid transfer activity. Sodium dodecyl sulfate gel electrophoresis and immunoblotting of the immunoaffinity-retained fractions showed that only the Mr 74,000 protein was immunoreactive. The results suggest that the previously characterized CETP accounts for all of the cholesteryl ester and triglyceride transfer activity in human plasma but only part of the phospholipid transfer activity.  相似文献   

2.
The plasma cholesteryl ester transfer protein (CETP, Mr 74,000) has a binding site for neutral lipid which can readily equilibrate with lipoprotein cholesteryl esters or triglycerides. Recently, a monoclonal antibody (TP2) was obtained which neutralizes the cholesteryl ester (CE) and triglyceride (TG) transfer activities of the CETP. In this report, the epitope of the inhibitory monoclonal antibody has been localized to a hydrophobic 26-amino acid sequence at the COOH terminus of CETP. The Fab fragments of TP2 caused partial (50%) inhibition of CE transfer and complete inhibition of TG transfer by the CETP. Similarly, the Fab fragments inhibited (37%) the binding of CE to the CETP and abolished the binding of TG to the CETP. Surprisingly, the TP2 Fab was also found to enhance the binding of CETP to plasma lipoproteins and to phospholipid vesicles. In conclusion, the TP2 monoclonal antibody inhibits lipid transfer by blocking the uptake of lipid by CETP. The COOH-terminal epitope may be in or near the neutral lipid binding site. Occupancy of this site by TP2 Fab fragments or by neutral lipid may result in a conformational change of CETP causing enhanced binding to lipoproteins or vesicles.  相似文献   

3.
A cholesteryl ester transfer protein (CETP) of apparent Mr 74,000 has recently been purified from human plasma. Cholesteryl ester transfer activity was found to accumulate in the medium of cultured Hep G2 cells. The transfer activity was removed by immunoprecipitation with specific antibodies to the plasma CETP. Sodium dodecyl sulfate gel electrophoresis of immunoprecipitates prepared from the medium of cells pulsed with [35S]methionine revealed a broad specific band of protein of Mr 72,000 to 76,000; by contrast, immunoprecipitates of cellular homogenates showed a sharp specific band of Mr 58,000. The Mr 72,000 to 76,000 band disappears, concomitant with the appearance of lower Mr products, upon neuraminidase or glycopeptidase F treatment of medium immunoprecipitates or of purified CETP. The results indicate that liver cells have the capacity to synthesize and secrete CETP. The CETP peptide acquires asparagine-linked carbohydrate and sialic acid during intracellular processing.  相似文献   

4.
The plasma cholesteryl ester-transfer protein (CETP, Mr 74,000) promotes exchange of both neutral lipids and phospholipids (phosphatidylcholine, PC) between lipoproteins. To investigate the mechanism of facilitated lipid transfer, CETP was incubated with unilamellar egg PC vesicles containing small amounts of cholesteryl ester (CE) or triglyceride, and then analyzed by gel filtration chromatography. There was rapid transfer of radiolabeled CE or triglyceride and PC from vesicles to CETP. The CETP with bound lipids was isolated and incubated with low density lipoproteins (LDL), resulting in transfer of the lipids to LDL. The CETP bound up to 0.9 mol of CE or 0.2 mol of triglyceride and 11 mol of PC/mol of CETP. para-Chloromercuriphenylsulfonate, an inhibitor of CE and triglyceride transfer, was found to decrease the binding of radiolabeled CE and triglyceride by CETP. Under various conditions the CETP eluted either as an apparent monomer with bound lipid (Mr 75,000-93,000), or in complexes with vesicles. The distribution of CETP between these two states was influenced by the presence of apoA-I or albumin, incubation time, vesicle/CETP ratio, and buffer pH and ionic strength. The results indicate that the CETP has binding sites for CE, triglyceride, and PC which readily equilibrate with lipoprotein lipids and suggest that CETP can act as a carrier of lipid between lipoproteins.  相似文献   

5.
Lipoprotein lipase enhances the cholesteryl ester transfer protein (CETP)-mediated transfer of cholesteryl esters from plasma high density lipoproteins (HDL) to very low density lipoproteins (VLDL). In time course studies the stimulation of cholesteryl ester transfer by bovine milk lipase was correlated with accumulation of fatty acids in VLDL remnants. As the amount of fatty acid-poor albumin in the incubations was increased, there was decreased accumulation of fatty acids in VLDL remnants and a parallel decrease in the stimulation of cholesteryl ester transfer by lipolysis. Addition of sodium oleate to VLDL and albumin resulted in stimulation of the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. The stimulation of transfer of cholesteryl esters into previously lipolyzed VLDL was abolished by lowering the pH from 7.5 to 6.0, consistent with a role of lipoprotein ionized fatty acids. CETP-mediated cholesteryl ester transfer from HDL to VLDL was also augmented by phosholipase A2 and by a bacterial lipase which lacked phospholipase activity. When VLDL and HDL were re-isolated after a lipolysis experiment, both lipoproteins stimulated CETP activity. Postlipolysis VLDL and HDL bound much more CETP than native VLDL or HDL. Lipolysis of apoprotein-free phospholipid/triglyceride emulsions also resulted in enhanced binding of CETP to the emulsion particles. Incubation conditions which abolished the enhanced cholesteryl ester transfer into VLDL remnants reduced binding of CETP to remnants, emulsions, and HDL. In conclusion, the enhanced CETP-mediated transfer of cholesteryl esters from HDL to VLDL during lipolysis is related to the accumulation of products of lipolysis, especially fatty acids, in the lipoproteins. Lipids accumulating in VLDL remnants and HDL as a result of lipolysis may augment binding of CETP to these lipoproteins, leading to more efficient transfer of cholesteryl esters from HDL to VLDL.  相似文献   

6.
The net transfer of core lipids between lipoproteins is facilitated by cholesteryl ester transfer protein (CETP). We have recently documented CETP deficiency in a family with hyperalphalipoproteinemia, due to a CETP gene splicing defect. The purpose of the present study was to characterize the plasma lipoproteins within the low density lipoprotein (LDL) density range and also the cholesteryl ester fatty acid distribution amongst lipoproteins in CETP-deficient subjects. In CETP deficiency, the conventional LDL density range contained both an apoE-rich enlarged high density lipoprotein (HDL) (resembling HDLc), and also apoB-containing lipoproteins. Native gradient gel electrophoresis revealed clear speciation of LDL subclasses, including a distinct population larger in size than normal LDL. Anti-apoB affinity-purified LDL from the CETP-deficient subjects were shown to contain an elevated triglyceride to cholesteryl ester ratio, and also a high ratio of cholesteryl oleate to cholesteryl linoleate, compared to their own HDL or to LDL from normal subjects. Addition of purified CETP to CETP-deficient plasma results in equilibration of very low density lipoprotein (VLDL) cholesteryl esters with those of HDL. These data suggest that, in CETP-deficient humans, the cholesteryl esters of VLDL and its catabolic product, LDL, originate predominantly from intracellular acyl-CoA:cholesterol acyltransferase (ACAT). The CETP plays a role in the normal formation of LDL, removing triglyceride and transferring LCAT-derived cholesteryl esters into LDL precursors.  相似文献   

7.
Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl ester from high- and low-density lipoproteins to triglyceride-rich lipoproteins, and reciprocally mediates triglyceride transfer. The gene for cynomolgus monkey CETP was expressed in serum-free CHO culture with 2g/ml insulin as its only exogenous protein supplement. Cell growth was facilitated by immobilizing the CHO cells in alginate beads. Recombinant CETP (rCETP) was purified 176-fold with a three-step protocol resulting in a 60% final yield as measured by a fluorescent CETP activity assay. Typically, 3.4 mg of rCETP was purified from 1700 ml of media by affinity-gel chromatography involving Reactive Red 120 (RR120) followed by concanavalin A Sepharose 4B and rechromatography on RR120. SDS-PAGE shows a single broad band ofM r , ranging from 68,000 to 74,000 which immunoreacts in Western blot analysis. Amino acid analysis and protein sequencing of the purified protein agree with the theoretical amino acid composition and sequence of cynomolgus CETP.  相似文献   

8.
The aim of the present study was to identify the protein that accounts for the cholesteryl ester transfer protein (CETP)-inhibitory activity that is specifically associated with human plasma high density lipoproteins (HDL). To this end, human HDL apolipoproteins were fractionated by preparative polyacrylamide gradient gel electrophoresis, and 30 distinct protein fractions with molecular masses ranging from 80 down to 2 kDa were tested for their ability to inhibit CETP activity. One single apolipoprotein fraction was able to completely inhibit CETP activity. The N-terminal sequence of the 6-kDa protein inhibitor matched the N-terminal sequence of human apoC-I, the inhibition was completely blocked by specific anti-apolipoprotein C-I antibodies, and mass spectrometry analysis confirmed the identity of the isolated inhibitor with full-length human apoC-I. Pure apoC-I was able to abolish CETP activity in a concentration-dependent manner and with a high efficiency (IC(50) = 100 nmol/liter). The inhibitory potency of total delipidated HDL apolipoproteins completely disappeared after a treatment with anti-apolipoprotein C-I antibodies, and the apoC-I deprivation of native plasma HDL by immunoaffinity chromatography produced a mean 43% rise in cholesteryl ester transfer rates. The main localization of apoC-I in HDL and not in low density lipoprotein in normolipidemic plasma provides further support for the specific property of HDL in inhibiting CETP activity.  相似文献   

9.
Plasma cholesteryl ester transfer protein (CETP) has a profound effect on neutral lipid transfers between HDLs and apolipoprotein B (apoB)-containing lipoproteins when it is expressed in combination with human apoA-I in HuAI/CETP transgenic (Tg) rodents. In the present study, human apoA-I-mediated lipoprotein changes in HuAI/CETPTg rats are characterized by 3- to 5-fold increments in the apoB-containing lipoprotein-to-HDL cholesterol ratio, and in the cholesteryl ester-to-triglyceride ratio in apoB-containing lipoproteins. These changes occur despite no change in plasma CETP concentration in HuAI/CETPTg rats, as compared with CETPTg rats. A number of HDL apolipoproteins, including rat apoA-I and rat apoC-I are removed from the HDL surface as a result of human apoA-I overexpression. Rat apoC-I, which is known to constitute a potent inhibitor of CETP, accounts for approximately two-thirds of CETP inhibitory activity in HDL from wild-type rats, and the remainder is carried by other HDL-bound apolipoprotein inhibitors. It is concluded that human apoA-I overexpression modifies HDL particles in a way that suppresses their ability to inhibit CETP. An apoC-I decrease in HDL of HuAI/CETPTg rats contributes chiefly to the loss of the CETP-inhibitory potential that is normally associated with wild-type HDL.  相似文献   

10.
Cholesteryl ester transfer protein (CETP), a key regulator of high-density lipoprotein (HDL) metabolism, induces HDL remodeling by transferring lipids between apolipoprotein B-containing lipoproteins and HDL, and/or by promoting lipid transfer between HDL subparticles. In this study, we investigated the mechanism as to how CETP induces the generation of lipid-poor particles (pre-β-HDL) from HDL, which increases ATP-binding cassette transporter 1-mediated cholesterol efflux. This CETP-dependent HDL remodeling is enhanced by the CETP modulator dalcetrapib both in plasma and isolated HDL. The interaction of dalcetrapib with cysteine 13 of CETP is required, since this effect was abolished when using mutant CETP in which cysteine 13 was substituted for a serine residue. Other thiol-containing compounds were identified as CETP modulators interacting with cysteine 13 of CETP. In order to mimic dalcetrapib-bound CETP, mutant CETP proteins were prepared by replacing cysteine 13 with the bulky amino acid tyrosine or tryptophan. The resultant mutants showed virtually no CETP-dependent lipid transfer activity but demonstrated preserved CETP-dependent pre-β-HDL generation. Overall, these data demonstrate that the two functions of CETP i.e., cholesteryl ester transfer and HDL remodeling can be uncoupled by interaction of thiol-containing compounds with cysteine 13 of CETP or by introducing large amino acid residues in place of cysteine 13.  相似文献   

11.
CETP activity, measured as transfer of cholesteryl ester from exogenous HDL to exogenous VLDL and LDL, reflecting CETP mass as determined by ELISA, was documented in three groups of St. Kitts vervet monkeys fed diets enriched in saturated (Sat), monounsaturated (Mono), or n-6 polyunsaturated (Poly) fatty acids. CETP activity was not different when comparing the three dietary fats. However, CETP activity was significantly higher when cholesterol was added to each of the diets. Significant positive associations between CETP activity and VLDL and LDL cholesterol concentrations were found whereas significant negative associations were seen between CETP activity and HDL cholesterol in each of the diet groups. The strength of these associations was highest in the Sat group. Cholesteryl ester (CE) fatty acid composition of lipoproteins varied widely among diet groups, with the more polyunsaturated CE of the Poly group being associated with a higher rate of CE transfer to endogenous acceptor apolipoprotein B-containing lipoproteins. Finally, only the Sat diet group showed significant positive correlations of CETP activity with LDL particle diameter (r = 0.76), cholesteryl ester percentage (r = 0.67), and a strong negative correlation (r = -0.86) with LDL receptor function, estimated as the difference between native and methylated LDL turnover rates. We speculate that strong associations between CETP and LDL metabolism may explain, at least in part, the increased atherogenicity of dietary saturated fat.  相似文献   

12.
Purified human cholesteryl ester transfer protein (CETP) has been found, under certain conditions, to promote changes to the particle size distribution of high-density lipoproteins (HDL) which are comparable to those attributed to a putative HDL conversion factor. When preparations of either the conversion factor or CETP are incubated with HDL3 in the presence of very-low-density lipoproteins (VLDL) or low-density lipoproteins (LDL), the HDL3 are converted to very small particles. The possibility that the conversion factor may be identical to CETP was supported by two observations: (1) CETP was found to be the main protein constituent of preparations of the conversion factor and (2) an antibody to CETP not only abolished the cholesteryl ester transfer activity of the conversion factor preparations but also inhibited changes to HDL particle size. In additional studies, the changes to HDL particle size promoted by purified CETP were inhibited by the presence of fatty-acid-free bovine serum albumin; by contrast, albumin had no effect on the cholesteryl ester transfer activity of the CETP. The possibility that albumin may inhibit changes to HDL particle size by removing unesterified fatty acids from either the lipoproteins or CETP was tested by adding exogenous unesterified fatty acids to the incubations. In incubations of HDL with either VLDL or LDL, sodium oleate had no effect on HDL particle size. However, when CETP was also present in the incubation mixtures the capacity of CETP to reduce the particle size of HDL was greatly enhanced by the addition of sodium oleate. It is concluded that the changes in HDL particle size which were previously attributed to an HDL conversion factor can be explained in terms of the interacting effects of CETP and unesterified fatty acids.  相似文献   

13.
Transgenic mice expressing human cholesteryl ester transfer protein (HuCETPTg mice) were crossed with apolipoprotein CI-knocked out (apoCI-KO) mice. Although total cholesterol levels tended to be reduced as the result of CETP expression in HuCETPTg heterozygotes compared with C57BL6 control mice (-13%, not significant), a more pronounced decrease (-28%, p < 0.05) was observed when human CETP was expressed in an apoCI-deficient background (HuCETPTg/apoCI-KO mice). Gel permeation chromatography analysis revealed a significant, 6.1-fold rise (p < 0.05) in the cholesteryl ester content of very low density lipoproteins in HuCETPTg/apoCI-KO mice compared with control mice, whereas the 2.7-fold increase in HuCETPTg mice did not reach the significance level in these experiments. Approximately 50% decreases in the cholesteryl ester content and cholesteryl ester to triglyceride ratio of high density lipoproteins (HDL) were observed in HuCETPTg/apoCI-KO mice compared with controls (p < 0.05 in both cases), with intermediate -20% changes in HuCETPTg mice. The cholesteryl ester depletion of HDL was accompanied with a significant reduction in their mean apparent diameter (8.68 +/- 0.04 nm in HuCETPTg/apoCI-KO mice versus 8.83 +/- 0.02 nm in control mice; p < 0.05), again with intermediate values in HuCETPTg mice (8.77 +/- 0.04 nm). In vitro purified apoCI was able to inhibit cholesteryl ester exchange when added to either total plasma or reconstituted HDL-free mixtures, and coincidently, the specific activity of CETP was significantly increased in the apoCI-deficient state (173 +/- 75 pmol/microg/h in HuCETPTg/apoCI-KO mice versus 72 +/- 19 pmol/microg/h in HuCETPTg, p < 0.05). Finally, HDL from apoCI-KO mice were shown to interact more readily with purified CETP than control HDL that differ only by their apoCI content. Overall, the present observations provide direct support for a potent specific inhibition of CETP by plasma apoCI in vivo.  相似文献   

14.
The cDNA for cholesteryl ester transfer protein (CETP), a protein that catalyzes cholesteryl ester transfer between very low density and high density lipoproteins in plasma, was isolated from chicken liver. When the recombinant protein was overexpressed in HEK293 cells, cholesteryl ester transfer activity was observed in media and cell lysates. By Northern blot analysis, chicken CETP mRNA expression was detected in liver, brain, heart, and spleen. Changes in chicken CETP mRNA expression and plasma CETP activity with nutritional state were examined and found to increase following dietary supplementation with cholesterol in a similar way as in humans. Both the hepatic CETP mRNA levels and plasma CETP activity were significantly lower in mature (i.e egg-laying) hens than in immature female chickens, but were unaffected by age in male animals. Similar changes to those observed in female chickens were observed upon estradiol administration of males. The present study is the first to report the molecular characterization of an avian CETP, and the impairments of CETP gene and activity, which might be regulated by estrogen, play an important role in egg production in laying hens, demonstrating species-specific differences in the lipid metabolism of avian and mammalian species.  相似文献   

15.
Cholesteryl ester transfer protein may play a role in the cholesteryl ester metabolism between high density lipoproteins (HDL) and apolipoprotein B-containing lipoproteins. To investigate relationship between HDL and cholesteryl ester transfer protein (CETP) activity in the development of atherosclerosis, the present study has focused on CETP activity in the patients with familial hypercholesterolemia (GH). HDL-C and HDL-C/apo A-I mass ratio in heterozygous FH were lower than those in normolipidemic controls. There was a 2-fold increase in total CETP activity in incubated FH serum compared with normolipidemic controls. Assays for CETP activity in the lipoprotein deficient serum (d greater than 1.215 g/ml) were carried out by measuring the transfer of radioactive cholesteryl ester from HDL (1.125 less than d less than 1.21 g/ml) to LDL (1.019 less than d less than 1.060 g/ml). CETP activities in heterozygous FH (79 +/- 4 nmol/ml/h) was significantly higher than those in normolipidemic controls (54 +/- 6 nmol/ml/h). The increased total cholesteryl ester transfer mainly results from increased CETP activity in the d greater than 1.215 g/ml, possibly reflecting an increase in CETP mass in serum. Increased CETP activity in the d greater than 1.215 g/ml was correlated positively with IDL-cholesterol/triglyceride mass ratio (r = 0.496, p less than 0.01), and negatively with HDL-cholesterol/apo A-I mass ratio (r = -0.334, p less than 0.05). These results indicate that the enhanced CETP activities may contribute to increase risk for developing atherosclerosis in FH by changing the distribution of cholesteryl ester in serum lipoproteins.  相似文献   

16.
Plasma cholesteryl esters, synthesized within high density lipoproteins (HDL), may be transferred from HDL particles to other lipoproteins by plasma cholesteryl ester transfer protein (CETP). Alcohol consumption is associated with increased HDL cholesterol concentration and reduced plasma CETP activity. The alcohol-induced decrease in CETP activity may be due to a low concentration of CETP in plasma or the inhibition of CETP by specific inhibitor proteins or alterations in the composition of plasma lipoproteins. The first two possibilities are studied further in this paper using data on 47 alcohol abusers and 31 control subjects. The activity of CETP was measured as the rate of cholesteryl ester transfer between radio-labeled low density lipoproteins and unlabeled HDL using an in vitro method independent of endogenous plasma lipoproteins. Plasma CETP concentration was determined by a Triton-based radioimmunoassay. The alcohol abusers consuming alcohol (on average 154 g/day) had 28% higher HDL cholesterol (P less than 0.01), 27% lower plasma CETP concentration (P less than 0.001), and 22% lower plasma CETP activity (P less than 0.001) than the controls. Plasma CETP concentration showed a negative correlation with HDL cholesterol among all the subjects (r = -0.317, P less than 0.01) but not among the alcohol abusers alone (r = -0.102, N. S.). During 2 weeks of alcohol withdrawal, plasma CETP concentration and activity of 8 subjects increased, whereas HDL cholesterol decreased by 42% (P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Plasma cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester (CE) from high density lipoprotein (HDL) to apolipoprotein B-containing lipoproteins. Since CETP regulates the plasma levels of HDL cholesterol and the size of HDL particles, CETP is considered to be a key protein in reverse cholesterol transport, a protective system against atherosclerosis. CETP, as well as plasma phospholipid transfer protein, belongs to members of the lipid transfer/lipopolysaccharide-binding protein (LBP) gene family, which also includes the lipopolysaccharide-binding protein (LBP) and bactericidal/permeability-increasing protein. Although these four proteins possess different physiological functions, they share marked biochemical and structural similarities. The importance of plasma CETP in lipoprotein metabolism was demonstrated by the discovery of CETP-deficient subjects with a marked hyperalphalipoproteinemia (HALP). Two common mutations in the CETP gene, intron 14 splicing defect and exon 15 missense mutation (D442G), have been identified in Japanese HALP patients with CETP deficiency. The deficiency of CETP causes various abnormalities in the concentration, composition, and functions of both HDL and low density lipoprotein. Although the pathophysiological significance of CETP in terms of atherosclerosis has been controversial, the in vitro experiments showed that large CE-rich HDL particles in CETP deficiency are defective in cholesterol efflux. Epidemiological studies in Japanese-Americans and in the Omagari area where HALP subjects with the intron 14 splicing defect of CETP gene are markedly frequent, have shown an increased incidence of coronary atherosclerosis in CETP-deficient patients. The current review will focus on the recent findings on the molecular biology and pathophysiological aspects of plasma CETP, a key protein in reverse cholesterol transport.  相似文献   

18.
S Wang  L P Deng  M L Brown  L B Agellon  A R Tall 《Biochemistry》1991,30(14):3484-3490
Human plasma cholesteryl ester transfer protein (CETP) enhances transfer and exchange of cholesteryl ester (CE) and triglyceride (TG) between high-density lipoprotein and other lipoproteins. To define regions responsible for the neutral lipid transfer activities at the molecular level, a total of 27 linker insertion mutants at 18 different sites along the CETP molecule were prepared and transiently expressed in a mammalian cell line (COS). The inserted linkers were small (usually 6 bp) and did not interrupt the translational reading frame of the CETP cDNA. Although secretion of each mutant protein was less than that of wild-type CETP, the majority of the mutants had normal cholesteryl ester transfer activity (transfer activity per nanogram of CETP in media). However, insertional alterations in three regions severely impaired CE transfer activity: (1) in the region of amino acids 48-53; (2) at amino acid 165; and (3) in the region of amino acids 373-379. Although the impaired activities could also be a result of globally incorrect folding of these CETP mutants, hydrophobicity analysis and secondary structure predictions tended to exclude this possibility for most of the insertion sites at which insertions resulted in inactivation. The insertion at amino acid 379 occurs immediately after a triplet of lysine residues, suggesting that this region might be involved in an essential step in the mechanism of CE and TG transfer, such as the binding of CETP to phosphatidylcholine molecules in the lipoprotein surface. Effects on TG transfer activity were generally similar to those on CE transfer activity, suggesting a similar structural requirement for both neutral lipid transfer activities.  相似文献   

19.
The human cholesteryl ester transfer protein (CETP) facilitates the exchange of neutral lipids among lipoproteins. In order to evaluate the effects of increased plasma CETP on lipoprotein levels, a human CETP minigene was placed under the control of the mouse metallothionein-I promoter and used to develop transgenic mice. Integration of the human CETP transgene into the mouse genome resulted in the production of active plasma CETP. Zinc induction of CETP transgene expression caused depression of serum cholesterol due to a significant reduction of high density lipoprotein cholesterol. There was no change in total cholesterol content in very low and low density lipoproteins. However, there was a decrease in the free cholesterol/cholesteryl ester ratio in plasma and in all lipoprotein fractions of transgenic mouse plasma, suggesting stimulation of plasma cholesterol esterification. The results suggest that high levels of plasma CETP activity may be a cause of reduced high density lipoproteins in humans.  相似文献   

20.
Genetically engineered mice demonstrated that apolipoprotein (apo) CI is a potent, physiological inhibitor of plasma cholesteryl ester transfer protein (CETP) activity. The goal of this study was to determine the molecular mechanism of the apoCI-mediated blockade of CETP activity. Kinetic analyses revealed that the inhibitory property of apoCI is independent of the amount of active CETP, but it is tightly dependent on the amount of high density lipoproteins (HDL) in the incubation mixtures. The electrostatic charge of HDL, i.e. the main carrier of apoCI in human plasma, is gradually modified with increasing amounts of apoCI, and the neutralization of apoCI lysine residues by acetylation produces a marked reduction in its inhibitory potential. The inhibitory property of full-length apoCI is shared by its C-terminal alpha-helix with significant electrostratic properties, whereas its N-terminal alpha-helix with no CETP inhibitory property has no effect on HDL electronegativity. Finally, binding experiments demonstrated that apoCI and to a lower extent its C-terminal alpha-helix are able to disrupt CETP-lipoprotein complexes in a concentration-dependent manner. It was concluded that the inhibition of CETP activity by apoCI is in direct link with its specific electrostatic properties, and the apoCI-mediated reduction in the binding properties of lipoproteins results in weaker CETP-HDL interactions and fewer cholesteryl ester transfers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号