首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Ants interact with a diversity of organisms. These interactions, coupled with their abundance, cause ants to have ecologically important effects across multiple trophic levels. 2. Empirical study of ant nutritional ecology has led to the prediction that a macronutrient imbalance will affect ant behaviour and interspecific interactions that underlie these broad‐scale effects. Excess carbohydrate relative to protein is predicted to increase ant aggressiveness, predatory tendency and foraging activity, and to decrease collection of hemipteran honeydew and plant nectar. 3. In field experiments conducted in 2009 and 2010, captive colony fragments of a native ant, Formica podzolica (Hymenoptera: Formicidae), were provided with either simulated prey or carbohydrate solution ad libitum. Foraging behaviours and interactions with flowers, myrmecophilous aphids and aphid natural enemies on wild‐grown plants were documented. 4. Strong effects of macronutrient imbalance on foraging manifested quickly and consistently across colonies; in accordance with predictions, prey‐fed foragers collected both honeydew and floral nectar, whereas carbohydrate‐fed ants ceased collecting these resources. Counter to predictions, carbohydrate‐fed ants dramatically lowered their activity levels and did not prey upon aphids. 5. Ants had no effect on aphid enemies in 2009, when the latter were relatively rare, but decreased their abundance in 2010. Despite this protection, the net effect of ants on aphids was negative (measured only in 2009). Prey‐fed ants demonstrated a strong preference for honeydew over floral nectar, thus demonstrating that a macronutrient imbalance may lead to different interactions with similar resources. 6. This study links ant nutrition and community ecology by demonstrating the rapid, asymmetric and multitrophic consequences of nutritionally mediated behaviour.  相似文献   

2.
Mismatches in nutrient composition (e.g., protein, carbohydrates, lipids, etc.) between consumers and the resources they depend on can have ecological consequences, affecting traits from individual behavior to community structure. In many terrestrial ecosystems, ants depend on plant and insect mutualist partners for carbohydrate‐rich rewards that are nutritionally unbalanced (especially in protein) relative to colony needs. Despite imbalances, many carbohydrate‐feeding ant mutualists dominate communities—both competitively and numerically—raising the question of whether excess carbohydrates ‘fuel’ colony acquisition of limiting resources and growth. In a 10‐month field study, we manipulated carbohydrate access for the obligate plant‐ant Crematogaster nigriceps to test whether carbohydrate availability could be mechanistically linked to ecological dominance via heightened territory defense, increased protein foraging, and colony growth. Supplementation increased aggressive defense of hosts after only two weeks, but was also strongly linked to variation in rainfall. Contrary to predictions, we did not find that supplemented colonies increased protein foraging. Instead, colonies with reduced carbohydrate access discovered a greater proportion of protein baits, suggesting that carbohydrate deprivation increases foraging intensity. We found no significant effect of carbohydrate manipulation on brood or alate production. These results contrast with findings from several recent short‐term and lab‐based nutrient supplementation studies and highlight the role of seasonality and biotic context in colony‐foraging and reproductive decisions. These factors may be essential to understanding the consequences of carbohydrate access in natural plant‐ant systems.  相似文献   

3.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   

4.
Food competition among coexisting nectarivorous birds is conspicuousand often intense, affecting patterns of flower choice, dailybehavior budgets, and timing of successful reproduction. Exploitativecompetition involves loss of accumulated nectar to other individualsthat visited a flower first. Preliminary data support the useof Poisson models of the frequencies of point-source visitationand overlap for determining the probabilities of actual competitiveevents. Nectar losses from monitored flowers can be estimatedin terms of time intervals between visits weighted by flower-specificnectar production and bird-specific nectar removal capabilities.Foraging time budgets then provide a meaningful common denominatorfor assessing the impacts of competitive nectar losses, becausecompensatory increases in foraging time are required to maintaina balanced energy budget. Flexibility in foraging time budgetsmade possible by high efficiency foraging and predictably lowcompetitive losses may be an important determinant of reproductivetiming and success in nectar feeding birds. Aggressive displacement of competitors and territorial defenseof flowers are common forms of interference competition in nectar-feedingbirds. Aggression has definable caloric costs that ultimatelymust relate to caloric gains. Defense of flowers increases theaggressor's exclusive use of nectar, increases the predictabilityof a nectar supply, and increases the average amount of nectarobtained per flower. Simple cost-benefit models of territorialitydefine conditions when net benefits of territoriality are greaterthan those of alternatives.  相似文献   

5.
Plants bearing extrafloral nectaries (EFNs) vary the secretion of nectar between day and night, which creates turnover in the composition of interacting ant species. Daily variation in the composition of ant species foraging on vegetation is commonly observed, but its mechanisms are poorly understood. We evaluated the daily variation in nectar availability and interspecific aggressiveness between ants as possible regulatory mechanisms of the turnover in ant–plant interactions. We hypothesized that (i) plants would interact with more ant species during periods of higher secretion of nectar and that (ii) aggressive ant species would compete for nectar, creating a daily turnover of species collecting nectar. We tested this hypothesis by measuring the production of nectar during the day and night and by experimentally removing EFNs of Bionia coriacea (=Camptosema coriaceum) (Nees & Mart.) Benth. (Fabaceae: Faboideae) plants in a Brazilian savanna (Cerrado). We then compared the abundance and composition of ant species between those treatments and during the day. Our results indicate that more ant workers forage on plants during the day, when nectar was sugary, while more ant species forage at night, when aggressiveness between ant species was lower. We also detected a day/night turnover in ant species composition. Ant species foraging for nectar during the day were not the same at night, and this turnover did not occur on plants without EFNs. Both dominant ant species, diurnal Camponotus crassus (Hymenoptera: Formicidae) and nocturnal Camponotus rufipes (Hymenoptera: Formicidae), were the most aggressive species, attacking other ants in their specific periods of forage while also being very aggressive toward each other. However, this aggressiveness did not occur in the absence of nectar, which allowed non‐aggressive nocturnal ant species to forage only during the daytime, disrupting the turnover. We conclude that extrafloral‐nectar presence and interspecific aggressiveness between ants, along with other environmental factors, are important mechanisms creating turnovers in ants foraging on plants.  相似文献   

6.
Clara de Vega  Carlos M. Herrera 《Oikos》2012,121(11):1878-1888
Nectar‐dwelling yeasts are emerging as widely distributed organisms playing a potentially significant and barely unexplored ecological role in plant pollinator mutualisms. Previous efforts at understanding nectar–pollinator–yeast interactions have focused on bee‐pollinated plants, while the importance of nectarivorous ants as vectors for yeast dispersal remains unexplored so far. Here we assess the abundance and composition of the nectar fungal microbiota of the ant‐pollinated plant Cytinus hypocistis, study whether yeast transmission is coupled with ant visitation, and discern whether ant‐ transported yeasts promote changes in nectar characteristics. Our results show that a high percentage of flowers (77%) and plants (94%) contained yeasts, with yeast cell density in nectar reaching up to 6.2 × 104 cells mm?3, being the highest densities associated with the presence of the nectar‐specialist yeast Metschnikowia reukaufii. The establishment of fungal microbiota in nectar required flower visitation by ants, with 70% of yeast species transported by them being also detected in nectar. Ant‐vectored yeasts diminished the nutritional quality of nectar, with flowers exposed to pollinators and yeasts containing significantly lower nectar sugar concentration than virgin flowers (13.4% and 22.8%, respectively). Nectar of flowers that harbored M. reukaufii showed the lowest quality, with nectar concentration declining significantly with increasing yeast density. Additionally, yeasts modified patterns of interpopulation variation in nectar traits, homo genizing differences between populations in some nectar attributes. We show for the first time that the outcome of the tripartite pollinator–flower–yeast interaction is highly dependent on the identity and inherent properties of the participants, even to the extent of influencing the species composition of this ternary system, and can be mediated by ecological characteristics of plant populations. Through their influence on plant functional traits, yeasts have the potential to alter nectar consumption, pollinator foraging behavior and ultimately plant reproduction.  相似文献   

7.
Ants are extensive users of arboreal sugars, but little is known about how ecological dominance or habitat succession influences this interaction. We investigated how the availability and use of arboreal sugar resources by ants changes across a restoration chronosequence. We surveyed the use and availability of hemipteran honeydew and floral nectar on the two dominant plant genera, Eucalyptus and Acacia, in study sites in south eastern Australia. Sugars used by ants are likely to drive their role as ecosystem engineers, while sugars not used by ants remain available to other organisms. We also tested whether the use of sugars differed between ecologically dominant and non-dominant ants; taxa likely to perform different functions in ecosystems. No floral nectar was available on Acacia, but later successional eucalypts supported more floral resources and fewer mutualist hemiptera. Successional stage significantly affected how much sugar remained unexploited by ants, with similar trends for ant use of sugars. Non-dominant ants used mainly floral nectar, while hemipteran honeydew resources were used disproportionately by dominant ants, consistent with the prediction that this group monopolises persistent carbohydrate resources. This pattern was similar across successional stages, but the difference was least in habitats with the greatest availability of floral nectar, suggesting that high sugar availability may reduce the incentive to defend honeydew. Across habitat types, the proportion of dominant ants increased with the availability of hemipteran honeydew. This suggests that honeydew availability may regulate ecological dominance, thus affecting ant-driven ecosystem processes.  相似文献   

8.
Abstract Ants (Hymenoptera: Formicidae) consume a broad spectrum of liquid food sources including nectar and honeydew, which play a key role in their diet especially in tropical forests. This study compares carbohydrates and amino acids from a representative spectrum of liquid sources used by ants in the canopy and understorey of a tropical rainforest in northern Queensland, Australia. Eighteen floral nectars, 16 extrafloral nectars, two wound sap and four homopteran honeydew sources were analysed using high performance liquid chromatography. Wounds comprised flower abscission scars on Normanbya normanbyi L. H. Bailey and bitemarks on Cardwellia sublimis F. Muell. where ants were actively involved in wounding. Discriminant analysis was performed to model differences between food sources in sugar and amino acid concentration and composition. All characteristics varied significantly among plant species. Honeydew contained a broader spectrum of sugars (including melezitose, raffinose, melibiose, lactose and maltose) than nectar (sucrose, glucose, fructose), but certain extrafloral nectars had similar amino acid profiles and, like honeydew sources, were often monopolized by ants. Most common amino acids across the sources were proline, alanine and threonine among 17 α‐amino acids identified. Interspecific variability concealed characteristic differences in sugar and amino acid parameters between nectar, honeydew and wound sap across all plants, but these types differed significantly when found on the same plant. Among all sources studied, only a few flower nectars were naturally not consumed by ants and they were significantly less attended than sugar controls in feeding trials. These nectars did not differ in sugars and amino acids from ant‐attended flower nectars, suggesting the activity of repellents. Apart from these exceptions, variability in amino acids and carbohydrates is proposed to play a key role in ant preferences and nutrition.  相似文献   

9.
Ecological dominance in ants is often fuelled by carbohydrate intake. Most studies have focused on the importance of invasive ant mutualistic associations with trophobionts whereas few studies have investigated the importance of floral nectar on invasion success. In this study, utilisation of temporarily available floral nectar by the invasive Argentine ant, Linepithema humile, was compared to that of the dominant native ant, Anoplolepis custodiens, within the Cape Floristic Region (CFR), a biodiversity hotspot. The effect of these two focal ant species on species composition and abundance of ground foraging ants as well as floral arthropod visitors in inflorescences of Proteacea species was assessed. Foraging activity, and trophic ecology inferred from the abundance of natural stable isotopes of Carbon (δ13C) and Nitrogen (δ15N), and the ratio of Carbon to Nitrogen (C:N) were compared between the two ant species during three flowering periods. Linepithema humile significantly reduced the abundance and species diversity of both above-ground and floral arthropod species abundance and composition. Linepithema humile increased its foraging activity with increasing nectar availability, switching its diet to a more herbivorous one. Anoplolepis custodiens did not respond as effectively to increasing floral nectar or negatively impact floral arthropod visitors. This study showed that the availability of floral nectar and ability of L. humile to more effectively utilise this temporarily available resource than native ants, can contribute significantly to the further spread and persistence of L. humile in natural environments in the CFR.  相似文献   

10.
Argentine ants displace floral arthropods in a biodiversity hotspot   总被引:2,自引:1,他引:1  
Argentine ant (Linepithema humile (Mayr)) invasions are often associated with the displacement of ground‐dwelling arthropods. Argentine ant invasions can also exert other effects on the community through interactions with plants and their associated arthropods. For example, carbohydrate resources (e.g. floral or extrafloral nectar) may influence foraging behaviour and interactions among ants and other arthropods. In South Africa's Cape Floristic Region, Argentine ants and some native ant species are attracted to the floral nectar of Leucospermum conocarpodendron Rourke (Proteaceae), a native tree that also has extrafloral nectaries (EFNs). Despite having relatively low abundance in pitfall traps, Argentine ants visited inflorescences more frequently and in higher abundance than the most frequently observed native ants, Camponotus spp., though neither native nor Argentine ant floral foraging was influenced by the EFNs. Non‐metric multidimensional scaling revealed significant dissimilarity in arthropod communities on inflorescences with Argentine ants compared to inflorescences with native or no ants, with Coleoptera, Diptera, Hymenoptera, Arachnida, Orthoptera, and Blattaria all being underrepresented in inflorescences with Argentine ants compared to ant‐excluded inflorescences. Native honeybees (Apis mellifera capensis Eschscholtz) spent 75% less time foraging on inflorescences with Argentine ants than on inflorescences without ants. Neither Argentine ant nor native ant visits to inflorescences had a detectable effect on seed set of Le. conocarpodendron. However, a pollen supplementation experiment revealed that like many other proteas, Le. conocarpodendron is not pollen‐limited. Flower predation was negatively associated with increased ant visit frequency to the inflorescences, but did not differ among inflorescences visited by native and Argentine ants. Displacement of arthropods appears to be a consistent consequence of Argentine ant invasions. The displacement of floral arthropods by Argentine ants may have far‐reaching consequences for this biodiversity hotspot and other regions that are rich in insect‐pollinated plants.  相似文献   

11.
Dominant competitors govern resource use in many communities, leading to predictions of local exclusion and lower species diversity where dominant species are abundant. However, subordinate and dominant species frequently co‐occur. One mechanism that could facilitate resource sharing and co‐occurrence of dominant and subordinate competitors is fine‐scale resource dispersion. Here, we distributed 6 g of a food resource into 1, 2, 8, 32 or 64 units in small 0.40 m2 areas centred on nests of the dominant ant Monomorium sydneyense. We tested three hypotheses. First, we hypothesized that the species richness and abundance of foraging ants would increase with increasing resource dispersion. Accordingly, species richness doubled and total ant abundance was two orders of magnitude higher in high resource dispersion treatments. Secondly, we hypothesized that increasing resource dispersion would reduce competitive interactions such as resource turnover events and lower the probability of food resources being occupied. Substantial support for this hypothesis was observed. Finally, we tested the hypothesis that the foraging time of each species would be proportional to the relative abundance of each species solely in high resource dispersion treatments. Expected and observed foraging times were statistically similar for only the dominant ant M. sydneyense. The subdominant Pheidole rugosula increased its foraging time much more than was expected, while two subordinate ants showed no relationship between observed and expected times. Thus, while increasing resource dispersion significantly increased overall species richness, this increase in co‐occurrence did not correlate with a significant increase in foraging time for the two subordinate species. Rather, changes in resource dispersion appeared to benefit only the subdominant species. Inter‐site variation appeared more important for other subordinate species indetermining co‐occurrence and foraging time. Multiple mechanisms facilitate co‐occurrence and resource sharing in this community, and probably in most other communities.  相似文献   

12.
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.  相似文献   

13.
Predation risk is one of the largest costs associated with foraging in small mammals. Small mammals select microhabitat features such as tree and shrub canopy cover, woody debris and vegetative ground cover that can lower the risk of detection from predators and provide greater protection if discovered. Small mammals also increase foraging activity and decrease selection for cover when cloud cover increases and moon illumination is less. Often researchers assume small mammals in urban areas respond to these cues in the same manner as in natural areas, but these cues themselves are altered in urban zones. In this study, we investigated how Amur honeysuckle (Lonicera maackii) and coarse woody debris (CWD) affected giving‐up density (GUD) in white‐footed mice (Peromyscus leucopus). Each of three habitat treatments (open flood channel, the edge and interior of the honeysuckle patch) contained cover treatments with coarse woody debris present or absent. The six treatment combinations were compared to environmental variables (temperature, humidity and illumination) and habitat variables to test their effect on GUD. Peromyscus leucopus foraged to lower densities in areas with CWD present and also under the honeysuckle canopy, using this invasive shrub to decrease predation risk, potentially increasing survivability within this urban park. Increased human presence negatively affected foraging behavior across treatments. Human presence and light pollution significantly influenced P. leucopus, modifying their foraging behavior and demonstrating that both fine‐ and coarse‐scale urban factors can affect small mammals. Foraging increased as humidity increased, particularly under the honeysuckle canopy. Changes in illumination due to moonlight and cloud cover did not affect foraging behavior, suggesting urban light pollution may have altered behavioral responses to changes in light levels. Lonicera maackii seemed to facilitate foraging in P. leucopus, even though it adversely affects the plant community, suggesting that its impact may not be entirely negative.  相似文献   

14.
A yearlong arboreal baiting survey of ants was conducted during 1983 on Barro Colorado Island, Panama. Because of a severe El Nino event, the 1983 dry season in Panama was exceptionally long and dry with a distinct boundary between the dry and wet seasons. Baits, located on tree trunks, attracted both terrestrial and arboreal ants, allowing comparisons between the two groups. Species composition at baits changed dramatically with season. Baits were primarily occupied by arboreal species during the dry season, while wet season baits were occupied mostly by terrestrial species. Arboreal and terrestrial ants differed markedly in their preferences for protein‐ or carbohydrate‐based baits; arboreal ants preferred protein‐based baits and terrestrial ants preferred carbohydrate‐based baits. Foraging preference for protein suggests that protein resources were limiting for arboreal ants, particularly during the dry season, and that carbohydrate resources were limiting for terrestrial ants. Fundamental differences in arboreal and terrestrial habitats may promote the differences in foraging strategies observed during an annual cycle in a seasonal tropical forest.  相似文献   

15.
1. Several studies have recently focused on the structure of ecological networks involving ants and plants with extrafloral nectaries; however, little is known about the effects of temporal variation in resource abundance on the structure of ant–plant networks mediated by floral nectar. 2. In this study, it was evaluated how strong seasonality in resource availability in a semi‐arid tropical environment affects the structure of ant–flower networks. We recorded ants collecting floral nectar during two seasons (from December 2009 to January 2013): dry and green seasons. Then, we built interaction networks for flower‐visiting ants in the Brazilian Caatinga separately for each combination of transect and season. 3. In general, strong seasonality directly influenced patterns of ant–flower interactions and the overall complexity of these ecological networks. During the dry season, networks were more connected, less modular, and exhibited greater niche overlap of flower‐visiting ants than during the green season. Moreover, resource utilisation by ants during the dry season tended to be more aggregated. These findings indicate that during the dry season, ant species tended to share many resource bases, probably owing to lower overall resource availability during this season. Species composition of the ant network component was highly season specific; however, a central core of highly generalised ants was present during both seasons. 4. The stability of this central core between seasons could strongly affect the ecological and evolutionary dynamics of these interaction networks. This study contributes to the understanding of the structure and dynamics of ant‐flower interactions in extremely seasonal environments.  相似文献   

16.
The small formicoxenine ant Temnothorax saxonicus was known from about 40 localities in Central Europe nesting in anorganic substrates on floor of xerothermous forests whereas investigations of 198 tree canopies in 19 forest sites of the same region provided no indication for arboreal nesting or foraging. We present the first evidence for canopy‐nesting populations of T. saxonicus on old Quercus trees in 3 sites having maximum calibrated topsoil temperatures of 17.9 ± 0.3 °C which were significantly (P < 0.007) lower than 22.8 ± 2.0 °C measured in 5 sites with ground‐nesting populations. The thermal deficit on forest floor inhibits brood development in ground nests and caused a moving to canopy were maximum calibrated temperatures of the, now wooden, substrates are at least 26.1 °C for the whole canopy and 30.8 °C in more sun‐exposed spots. T. saxonicus competed here successfully with the obligatory canopy ants T. affinis and T. corticalis. The distributional data of this rope‐climbing study support former results that highest nest densities of small arboreal ants occur in temperate climate over the entire canopy mantle of single trees situated in open land or in park‐like environments but occur in the top of the canopy in tree stands with high degree of canopy closure.  相似文献   

17.
1. The ecologically dominant leaf‐cutting ants exhibit one of the most complex forms of morphological caste‐based division of labour in order to efficiently conduct tasks, ranging from harvesting fresh leaf material to caring for the vulnerable fungal crop they farm as food. While much of their division of labour is well known, the role of the smallest workers on foraging trails is puzzling. Frequently these minim workers hitchhike on leaf fragments and it has been suggested that they may act to reduce the microbial contamination of leaf material before they enter the nest. Here we investigated this potentially important role of minims with field colonies of Atta colombica. 2. We experimentally increased the microbial load of leaf fragments and found that this resulted in minims hitchhiking on leaf fragments for longer. Furthermore, we show that leaves naturally have a significant microbial load and that the presence of hitchhikers reduces the microbial load of both experimentally manipulated and natural leaf fragments. 3. Intriguingly, the microbial load of leaves high in the canopy where ants were foraging was much lower than closer to the ground where the ants avoided cutting leaves. This suggests that the often perplexing foraging patterns of leaf‐cutting ants may in part be explained by the ants avoiding leaves that are more heavily contaminated with microbes. 4. The removal of microbial contaminants is therefore an important role of hitchhiking minim workers in natural colonies of Atta leaf‐cutting ants, although other tasks such as trail maintenance and defence also explain their occurrence on trails.  相似文献   

18.
To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus‐growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher‐attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower‐attine lineages. Higher‐attine fungi form two clades, Clade‐A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade‐B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade‐A fungi because some leafcutter species ranging across South America cultivate Clade‐B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade‐B fungi because some Trachymyrmex species cultivate Clade‐A fungi and other Trachymyrmex species cultivate fungi known so far only from lower‐attine ants; (iii) in some locations, single higher‐attine ant species or closely related cryptic species cultivate both Clade‐A and Clade‐B fungi; and (iv) ant–fungus co‐evolution among higher‐attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade‐A or Clade‐B fungi, sustaining with either cultivar‐type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade‐A or Clade‐B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade‐A), but must derive from ant–fungus synergisms and unique ant adaptations.  相似文献   

19.
Thousands of plant species throughout tropical and temperate zones secrete extrafloral nectar to attract ants, whose presence provides an indirect defense against herbivores. Extrafloral nectaries are located close to flowers and may modify competition between ants and pollinators. Here, we used Lima bean (Phaseolus lunatus L.) to study the plants interaction between ants and flower visitors and its consequences for plant fitness. To test these objectives, we carried out two field experiments in which we manipulated the presence of ants and nectar production via induction with jasmonic acid (JA). We then measured floral and extrafloral nectar production, the number of patrolling ants and flower visitors as well as specific plant fitness traits. Lima bean plants under JA induction produced more nectar in both extrafloral nectaries and flowers, attracted more ants and produced more flowers and seeds than non‐induced plants. Despite an increase in floral nectar in JA plants, application of this hormone had no significant effects on flower visitor attraction. Finally, ant presence did not result in a decrease in the number of visits, but our results suggest that ants could negatively affect pollination efficiency. In particular, JA‐induced plants without ants produced a greater number of seeds compared with the JA‐treated plants with ants.  相似文献   

20.
Species‐specific climate responses within ecological communities may disrupt the synchrony of co‐evolved mutualisms that are based on the shared timing of seasonal events, such as seed dispersal by ants (myrmecochory). The spring phenology of plants and ants coincides with marked changes in temperature, light and moisture. We investigate how these environmental drivers influence both seed release by early and late spring woodland herb species, and initiation of spring foraging by seed‐dispersing ants. We pair experimental herbaceous transplants with artificial ant bait stations across north‐ and south‐facing slopes at two contrasting geographic locations. This use of space enables robust identification of plant fruiting and ant foraging cues, and the use of transplants permits us to assess plasticity in plant phenology. We find that warming temperatures act as the primary phenological cue for plant fruiting and ant foraging. Moreover, the plasticity in plant response across locations, despite transplants being from the same source, suggests a high degree of portability in the seed‐dispersing mutualism. However, we also find evidence for potential climate‐driven facilitative failure that may lead to phenological asynchrony. Specifically, at the location where the early flowering species (Hepatica nobilis) is decreasing in abundance and distribution, we find far fewer seed‐dispersing ants foraging during its fruit set than during that of the later flowering Hexastylis arifolia. Notably, the key seed disperser, Aphaenogaster rudis, fails to emerge during early fruit set at this location. At the second location, A. picea forages equally during early and late seed release. These results indicate that climate‐driven changes might shift species‐specific interactions in a plant–ant mutualism resulting in winners and losers within the myrmecochorous plant guild.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号