首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have characterized the biochemical function of the melanocortin 1 receptor (MC1R), a critical regulator of melanin synthesis, from 9 phylogenetically diverse primate species with varying coat colors. There is substantial diversity in melanocyte-stimulating hormone (MSH) binding affinity and basal levels of activity in the cloned MC1Rs. MSH binding was lost independently in lemur and New World monkey lineages, whereas high basal levels of MC1R activity occur in lemurs and some New World monkeys and Old World monkeys. Highest levels of basal activity were found in the MC1R of ruffed lemurs, which have the E94K mutation that leads to constitutive activation in other species. In 3 species (2 lemurs and the howler monkey), we report the novel finding that binding and inhibition of MC1R by agouti signaling protein (ASIP) can occur when MSH binding has been lost, thus enabling continuing regulation of the melanin type via ASIP expression. Together, these findings can explain the previous paradox of a predominantly pheomelanic coat in the red ruffed lemur (Varecia rubra). The presence of a functional, MSH-responsive MC1R in orangutan demonstrates that the mechanism of red hair generation in this ape is different from the prevalent mechanism in European human populations. Overall, we have found unexpected diversity in MC1R function among primates and show that the evolution of the regulatory control of MC1R activity occurs by independent variation of 3 distinct mechanisms: basal MC1R activity, MSH binding and activation, and ASIP binding and inhibition. This diversity of function is broadly associated with primate phylogeny and does not have a simple relation to coat color phenotype within primate clades.  相似文献   

2.
3.
Agouti: from mouse to man, from skin to fat   总被引:25,自引:0,他引:25  
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.  相似文献   

4.
《Small Ruminant Research》2008,80(2-3):183-187
Little is known about the inheritance and influence of the fleece color gene Melanocortin 1 Receptor (MC1R). Melanocortin 1 Receptor (MC1R) is a well-known gene responsible for red versus black fleece pigmentation and is hypothesized to be a candidate gene for variation in alpaca coloration patterns. Inheritance of red versus black pigmentation in the context of genetic mutation is well understood in many domesticated mammals. We characterized the MC1R gene in a population of multi-colored alpacas in order to better understand its effect on coat color in the alpaca. Our characterization of the alpaca MC1R gene revealed 11 mutations. Of these one is a 4 bp deletion, four are silent mutations and six are single nucleotide polymorphisms (SNPs) that alter the amino acid sequence (T28V, M87V, S126G, T128I, S196F, R301C). No mutation correlated completely with fleece color in alpacas at the MC1R locus. This may be due to the epistatic relationship of MC1R with other coat color genes especially agouti signaling protein (ASIP).  相似文献   

5.
肤色、黑色素皮质素受体1和紫外线   总被引:2,自引:1,他引:1  
吕雪梅  施鹏  张亚平 《遗传》2002,24(5):563-570
近期的研究表明,哺乳动物黑素细胞中黑色素皮质素受体1(MC1R)对调节棕黑色素和红黄色素的合成起关键的作用。MC1R基因的变异与动物的皮毛、人的皮肤和头发颜色差异密切相关。对小鼠的遗传学研究显示,MC1R是独特的、双功能控制受体。它由α-促黑色素皮质激素激活,其拮抗物为agouti蛋白,二者的共同作用导致哺乳动物表皮颜色的变异。另外,人类皮肤的色素沉着是决定于皮肤对外辐射的反应,以及由此引发皮肤癌的重要因素。MC1R变异与黑色素癌易感性相关。 Genotype,Melanocortin 1 Receptor and Ultrviolet Radiation Lü Xue-mei,SHI Peng,ZHANG Ya-ping Lab of Cellular & Molecular Evolution,Kunming Institute of Zoology,the Chinese Academy of Sciences,Kunming 650223,China Abstract:Recent work on the melanocortin 1 receptor (MC1R) suggests that MC1R plays a central role in regulation of eumelanin (brwon/black melanins) and phaeomelanin (red/yellow melanins) synthesis within the mammalian melanocyte.In the mouse,genetic studies show that the MC1R appears to be a unique,bifunctionally controlled receptor,activated by α–MSH and antagonized by agouti,both of which contribute to the variability seen in mammalian coat color.Variants of this receptor are associated with different animal's coat,human skin and hair colors.In addition,cutaneous pigmentation is a major determinant of the cutaneous response to ultraviolet radiation,and consequently of the risk of developing skin cancer.MC1R variants are a risk factor for melanoma susceptibility. Key words:Melanocortin-1 receptor gene; MC1R variants; ultraviolet radiation; skin and hair colors; skin cancer  相似文献   

6.
Sturm RA  Teasdale RD  Box NF 《Gene》2001,277(1-2):49-62
The synthesis of the visible pigment melanin by the melanocyte cell is the basis of the human pigmentary system, those genes directing the formation, transport and distribution of the specialised melanosome organelle in which melanin accumulates can legitimately be called pigmentation genes. The genes involved in this process have been identified through comparative genomic studies of mouse coat colour mutations and by the molecular characterisation of human hypopigmentary genetic diseases such as OCA1 and OCA2. The melanocyte responds to the peptide hormones alpha-MSH or ACTH through the MC1R G-protein coupled receptor to stimulate melanin production through induced maturation or switching of melanin type. The pheomelanosome, containing the key enzyme of the pathway tyrosinase, produces light red/yellowish melanin, whereas the eumelanosome produces darker melanins via induction of additional TYRP1, TYRP2, SILV enzymes, and the P-protein. Intramelanosomal pH governed by the P-protein may act as a critical determinant of tyrosinase enzyme activity to control the initial step in melanin synthesis or TYRP complex formation to facilitate melanogenesis and melanosomal maturation. The search for genetic variation in these candidate human pigmentation genes in various human populations has revealed high levels of polymorphism in the MC1R locus, with over 30 variant alleles so far identified. Functional correlation of MC1R alleles with skin and hair colour provides evidence that this receptor molecule is a principle component underlying normal human pigment variation.  相似文献   

7.
Melanocortin‐1 receptor (MC1R) and its ligands, α‐melanocyte stimulating hormone (αMSH) and agouti signaling protein (ASIP), regulate switching between eumelanin and pheomelanin synthesis in melanocytes. Here we investigated biological effects and signaling pathways of ASIP. Melan‐a non agouti (a/a) mouse melanocytes produce mainly eumelanin, but ASIP combined with phenylthiourea and extra cysteine could induce over 200‐fold increases in the pheomelanin to eumelanin ratio, and a tan‐yellow color in pelletted cells. Moreover, ASIP‐treated cells showed reduced proliferation and a melanoblast‐like appearance, seen also in melanocyte lines from yellow (Ay/a and Mc1re/ Mc1re) mice. However ASIP‐YY, a C‐terminal fragment of ASIP, induced neither biological nor pigmentary changes. As, like ASIP, ASIP‐YY inhibited the cAMP rise induced by αMSH analog NDP‐MSH, and reduced cAMP level without added MSH, the morphological changes and depigmentation seemed independent of cAMP signaling. Melanocytes genetically null for ASIP mediators attractin or mahogunin (Atrnmg‐3J/mg‐3J or Mgrn1md‐nc/md‐nc) also responded to both ASIP and ASIP‐YY in cAMP level, while only ASIP altered their proliferation and (in part) shape. Thus, ASIP–MC1R signaling includes a cAMP‐independent pathway through attractin and mahogunin, while the known cAMP‐dependent component requires neither attractin nor mahogunin.  相似文献   

8.
In mice and humans, binding of alpha-melanocyte--stimulating hormone to the melanocyte-stimulating--hormone receptor (MSHR), the protein product of melanocortin-1 receptor (MC1R) gene, leads to the synthesis of eumelanin. In the mouse, ligation of MSHR by agouti signaling protein (ASP) results in the production of pheomelanin. The role of ASP in humans is unclear. We sought to characterize the agouti signaling protein gene (ASIP) in a group of white subjects, to assess whether ASIP was a determinant of human pigmentation and whether this gene may be associated with increased melanoma risk. We found no evidence of coding-region sequence variation in ASIP, but detected a g.8818A-->G polymorphism in the 3' untranslated region. We genotyped 746 participants in a study of melanoma susceptibility for g.8818A-->G, by means of polymerase chain reaction and restriction fragment--length polymorphism analysis. Among the 147 healthy controls, the frequency of the G allele was.12. Carriage of the G allele was significantly associated with dark hair (odds ratio 1.8; 95% confidence interval [CI] 1.2--2.8) and brown eyes (odds ratio 1.9; 95% CI 1.3--2.8) after adjusting for age, gender, and disease status. ASIP g.8818A-->G was not associated independently with disease status. This is the first report of an association of ASIP with specific human pigmentation characteristics. It remains to be investigated whether the interaction of MC1R and ASIP can enhance prediction of human pigmentation and melanoma risk.  相似文献   

9.
Exposure of cultured human melanocytes to ultraviolet radiation (UV) results in DNA damage. In melanoma, UV‐signature mutations resulting from unrepaired photoproducts are rare, suggesting the possible involvement of oxidative DNA damage in melanocyte malignant transformation. Here we present data demonstrating immediate dose‐dependent generation of hydrogen peroxide in UV‐irradiated melanocytes, which correlated directly with a decrease in catalase activity. Pretreatment of melanocytes with α‐melanocortin (α‐MSH) reduced the UV‐induced generation of 7,8‐dihydro‐8‐oxyguanine (8‐oxodG), a major form of oxidative DNA damage. Pretreatment with α‐MSH also increased the protein levels of catalase and ferritin. The effect of α‐MSH on 8‐oxodG induction was mediated by activation of the melanocortin 1 receptor (MC1R), as it was absent in melanocytes expressing loss‐of‐function MC1R, and blocked by concomitant treatment with an analog of agouti signaling protein (ASIP), ASIP‐YY. This study provides unequivocal evidence for induction of oxidative DNA damage by UV in human melanocytes and reduction of this damage by α‐MSH. Our data unravel some mechanisms by which α‐MSH protects melanocytes from oxidative DNA damage, which partially explain the strong association of loss‐of‐function MC1R with melanoma.  相似文献   

10.
Melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor expressed in melanocytes, is a major determinant of skin pigmentation, phototype and cancer risk. Upon stimulation by αMSH, MC1R triggers the cAMP and ERK1/ERK2 MAPK pathways. In mouse melanocytes, ERK activation by αMSH binding to Mc1r depends on cAMP, and melanocytes are considered a paradigm for cAMP-dependent ERK activation. However, human MC1R variants associated with red hair, fair skin [red hair color (RHC) phenotype], and increased skin cancer risk display reduced cAMP signaling but activate ERKs as efficiently as wild type in heterologous cells, suggesting independent signaling to ERKs and cAMP in human melanocytes. We show that MC1R signaling activated the ERK pathway in normal human melanocytes and melanoma cells expressing physiological levels of endogenous RHC variants. ERK activation was comparable for wild-type and mutant MC1R and was independent on cAMP because it was neither triggered by stimulation of cAMP synthesis with forskolin nor blocked by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine. Stimulation of MC1R with αMSH did not lead to protein kinase C activation and ERK activation was unaffected by protein kinase C inhibitors. Conversely, pharmacological interference, small interfering RNA studies, expression profiles, and functional reconstitution experiments showed that αMSH-induced ERK activation resulted from Src tyrosine kinase-mediated transactivation of the stem cell factor receptor, a receptor tyrosine kinase essential for proliferation, differentiation, and survival of melanocyte precursors, thus demonstrating a functional link between the stem cell factor receptor and MC1R. Moreover, this transactivation phenomenon is unique because it is unaffected by natural mutations impairing canonical MC1R signaling through the cAMP pathway.  相似文献   

11.
Pigmentation genes such as TYR (tyrosinase), TYRP1 (tyrosinase-related protein 1), DCT (previously TYRP2, or tyrosinase-related protein 2), ASIP (agouti) and MC1R (melanocortin receptor 1) play a major role in cattle coat colour. To understand the genotypic profile underlying coat colour in native Korean Hanwoo cattle and Angus black cattle, portions of the above-mentioned genes were amplified. Sequence analysis revealed variation in the TYRP1 (exon 5) and MC1R genes. Restriction enzyme analysis of these two genes could distinguish between different colours of Hanwoo cattle. Quantitative estimates of melanin and eumelanin in hair from three different-coloured Hanwoo phenotypes and Angus black showed significant differences at the breed and phenotypic levels. Finally, sequence variants in MC1R were associated with total melanin and eumelanin in breeds as well as in Hanwoo phenotypes.  相似文献   

12.
13.
The tyrosinase family comprises three members, tyrosinase (Tyr), tyrosinase-related protein 1 (Tyrp1), and dopachrome tautomerase (Dct). Null mutations and deletions at the Tyr and Tyrp1 loci are known and phenotypically affect coat color due to the absence of enzyme or intracellular mislocalization. At the Dct locus, three mutations are known that lead to pigmentation phenotype. However, these mutations are not null mutations, and we therefore set out to generate a null allele at the Dct gene locus by removing exon 1 of the mouse Dct gene. Mice deficient in Dct [Dct(tm1(Cre)Bee)] lack Dct mRNA and dopachrome tautomerase protein. They are viable and do not show any abnormalities in Dct-expressing sites such as skin, retinal pigment epithelium, or brain. However, the mice show a diluted coat color phenotype, which is due to reduced melanin content in hair. Primary melanocytes from Dct knockout mice are viable in culture and show a normal distribution of tyrosinase and tyrosinase-related protein 1. In comparison to the knockout, the slaty mutation (Dct(slt)/Dct(slt)) has less melanin and affects growth of primary melanocytes severely. In summary, we have generated a knockout of the Dct gene in mice with effects restricted to pigment production and coat color.  相似文献   

14.
15.
Massese is an Italian dairy sheep breed characterized by animals with black skin and horns and black or apparent grey hairs. Owing to the presence of these two coat colour types, this breed can be considered an interesting model to evaluate the effects of coat colour gene polymorphisms on this phenotypic trait. Two main loci have been already shown to affect coat colour in sheep: Agouti and Extension coding for the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes, respectively. The Agouti locus is affected by a large duplication including the ASIP gene that may determine the Agouti white and tan allele (A(Wt)). Other disrupting or partially inactivating mutations have been identified in exon 2 (a deletion of 5 bp, D(5); and a deletion of 9 bp, D(9)) and in exon 4 (g.5172T>A, p.C126S) of the ASIP gene. Three missense mutations in the sheep MC1R gene cause the dominant black E(D) allele (p.M73K and p.D121N) and the putative recessive e allele (p.R67C). Here, we analysed these ASIP and MC1R mutations in 161 Massese sheep collected from four flocks. The presence of one duplicated copy allele including the ASIP gene was associated with grey coat colour (P = 9.4E-30). Almost all animals with a duplicated copy allele (37 out of 41) showed uniform apparent grey hair and almost all animals without a duplicated allele (117 out of 120) were completely black. Different forms of duplicated alleles were identified in Massese sheep including, in almost all cases, copies with exon 2 disrupting or partially inactivating mutations making these alleles different from the A(Wt) allele. A few exceptions were observed in the association between ASIP polymorphisms and coat colour: three grey sheep did not carry any duplicated copy allele and four black animals carried a duplicated copy allele. Of the latter four sheep, two carried the E(D) allele of the MC1R gene that may be the cause of their black coat colour. The coat colour of all other black animals may be determined by non-functional ASIP alleles (non-agouti alleles, A(a)) and in a few cases by the E(D) Extension allele. At least three frequent ASIP haplotypes ([D(5):g.5172T], [N:g.5172A] and [D(5):g.5172A]) were detected (organized into six different diplotypes). In conclusion, the results indicated that coat colours in the Massese sheep breed are mainly derived by combining ASIP and MC1R mutations.  相似文献   

16.
A hot-water extract of adzuki was obtained by boiling beans of adzuki (Vigna angularis). This hot-water extract was fractionated using HP-20 column chromatography. Its distilled water fraction (WEx) was found to stimulate tyrosinase activity in cultured mouse B16 melanoma cells and hair color pigmentation in C3H mice. At concentrations of 1–3 mg/ml, WEx stimulated melanogenesis without inhibiting cell growth. During this effect, WEx activated tyrosinase-inducing activity in the cells, but did not activate tyrosinase, which exists at an intracellular level. In this study, WEx increased cyclic adenosine-3′,5′-monophospate (cAMP) content in the cells and protein kinase A (PKA) activity, and stimulated translocation of cytosolic protein kinase C (PKC) to the membrane-bound PKC. These results suggest that the addition of WEx activates the adenylcyclase and protein kinase pathways and, as a result, stimulates melanogenesis. WEx was found to have pigmentation activity on hair color in C3H mice. It might be useful in anti-graying, protecting human skin from irradiation.  相似文献   

17.
18.
The melanocortin 1 receptor (MC1R) is the central melanocortin receptor involved in vertebrate pigmentation. Mutations in this gene cause variations in coat coloration in amniotes. Additionally, in mammals MC1R is the main receptor for agouti‐signaling protein (ASIP), making it the critical receptor for the establishment of dorsal‐ventral countershading. In fish, Mc1r is also involved in pigmentation, but it has been almost exclusively studied in relation to melanosome dispersion activity and as a putative genetic factor involved in dark/light adaptation. However, its role as the crucial component for the Asip1‐dependent control of dorsal‐ventral pigmentation remains unexplored. Using CRISPR/Cas9, we created mc1r homozygous knockout zebrafish and found that loss‐of‐function of mc1r causes a reduction of countershading and a general paling of the animals. We find ectopic development of melanophores and xanthophores, accompanied by a decrease in iridophore numbers in the ventral region of mc1r mutants. We also reveal subtle differences in the role of mc1r in repressing pigment cell development between the skin and scale niches in ventral regions.  相似文献   

19.
A hot-water extract of adzuki was obtained by boiling beans of adzuki (Vigna angularis). This hot-water extract was fractionated using HP-20 column chromatography. Its distilled water fraction (WEx) was found to stimulate tyrosinase activity in cultured mouse B16 melanoma cells and hair color pigmentation in C3H mice. At concentrations of 1-3 mg/ml, WEx stimulated melanogenesis without inhibiting cell growth. During this effect, WEx activated tyrosinase-inducing activity in the cells, but did not activate tyrosinase, which exists at an intracellular level. In this study, WEx increased cyclic adenosine-3',5'-monophospate (cAMP) content in the cells and protein kinase A (PKA) activity, and stimulated translocation of cytosolic protein kinase C (PKC) to the membrane-bound PKC. These results suggest that the addition of WEx activates the adenylcyclase and protein kinase pathways and, as a result, stimulates melanogenesis. WEx was found to have pigmentation activity on hair color in C3H mice. It might be useful in anti-graying, protecting human skin from irradiation.  相似文献   

20.
Agouti signaling protein (ASIP) is one of the key players in the modulation of hair pigmentation in mammals. Binding to the melanocortin 1 receptor, ASIP induces the synthesis of phaeomelanin, associated with reddish brown, red, tan, and yellow coats. We have sequenced 2.8?kb of the goat ASIP gene in 48 individuals and identified two missense (Cys126Gly and Val128Gly) and two intronic polymorphisms. In silico analysis revealed that the Cys126Gly substitution may cause a structural change by disrupting a highly conserved disulfide bond. We studied its segregation in 12 Spanish and Italian goat breeds (N?=?360) with different pigmentation patterns and found striking differences in the frequency of the putative loss-of-function Gly(126) allele (Italian 0.43, Spanish Peninsular 0.08), but we did not observe a clear association with coat color. This suggests that the frequency of this putative loss-of-function allele has evolved under the influence of demographic rather than selection factors in goats from these two geographical areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号