首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 216 毫秒
1.
The mouse Chromosome 1 locus Ity regulates the extent to which Salmonella typhimurium replicates within the reticuloendothelial cell system (RES) during the first days of infection. If animals are homozygous for the Itys susceptibility allele, the Gram-negative bacterium undergoes rapid net multiplication, and mice die of a typhoid fever-like disease by day 10 of infection. Animals that are homozygous or heterozygous for the resistance allele, Ityr, control net bacterial replication and survive the first phase of salmonellosis. Indirect studies have implicated the resident macrophage as the effector cell for regulation of early in vivo salmonellae growth. To verify this supposition and to evaluate the phenotypic expression of Ity, we developed an in vitro assay to compare kinetics of S. typhimurium growth within Ityr and Itys macrophages. Resident peritoneal and splenic macrophages were used from inbred Ityr and Itys mice and from Ity congeneic mice. With these mice and through the use of radiolabeled S. typhimurium and an avirulent temperature-sensitive mutant of the bacterium, we found that: phagocytosis of S. typhimurium by Ityr and by Itys macrophages was the same; S. typhimurium grew to a greater extent in Itys peritoneal and splenic macrophages than in Ityr cells; Ityr macrophages killed intracellular salmonellae more efficiently than did Itys macrophages. Thus, we have demonstrated directly that Ity is expressed by the macrophage and have shown for the first time with Ity congeneic mice that the basis for differential net growth of virulent S. typhimurium in Ityr and Itys macrophages is a variation in the degree of bacterial kill.  相似文献   

2.
The genotype of a mouse influences whether or not it will survive infection with the agent of murine typhoid, Salmonella typhimurium. The best-characterized murine salmonella response gene is a Chromosome 1 locus designated Ity. Inbred strains of mice that express the Itys allele are unable to contain the net growth of Salmonella typhimurium within their spleens and livers, and usually die early in the infection. By contrast, mice homozygous or heterozygous for the Ityr allele are able to control the net multiplication of Salmonella typhimurium within these organs. The Ity gene also appears to regulate the extent of replication within murine reticuloendothelial cell tissues of the obligate intracellular parasite Leishmania donovani, as well as the facultative intracellular bacteria Mycobacterium bovis and Mycobacterium lepraemurium. Previous studies from our laboratory strongly suggested that Ityr mice are more resistant to S. typhimurium infection than are Itys mice, because resident Ityr macrophages kill salmonellae more efficiently than do Itys macrophages. In this study, we used an in vitro macrophage assay to assess the specificity of the enhanced killing capacity of Ityr macrophages. We found that Ityr macrophages were better able than Itys macrophages to kill both intracellular bacteria (Salmonella typhi) and extracellular bacteria (Escherichia coli, Staphylococcus aureus, Corynebacterium diphtheriae). Thus, the diversity of organisms affected by Ity expression suggests that the product of this gene may play a key regulatory role in the initial interaction of mice with a variety of microbial agents.  相似文献   

3.
The early response of inbred mice to infection with S. typhimurium is controlled by the mouse Chromosome 1 locus, Ity. To better understand the expression of this gene, the initial interactions between the reticuloendothelial system (RES) and i.v. injected salmonellae were compared in resistant (Ityr) and susceptible (Itys) mice. In both mouse strains 99% of the bacteria was cleared from the blood within 2 hr, and uptake of S. typhimurium by splenic and hepatic macrophages was similar regardless of Ity genotype. In vivo phagocytosis of bacteria was followed by a 30 to 60% decline in viable bacteria, which was attributed to the bactericidal activity of RES macrophages. Experiments with radiolabeled S. typhimurium strains TML and TML/TS27 (a temperature-sensitive mutant) confirmed that the efficiency of this early phase killing was not under Ity control. Despite the equivalent uptake and initial bactericidal activity by resident macrophages, bacterial numbers in the RES organs of Itys mice were significantly greater than in Ityr mice by approximately 24 hr after infection. These data suggest that Ity regulates the level of surviving intracellular bacteria that accumulate within resident macrophages of the liver and spleen.  相似文献   

4.
Our study was performed to investigate whether macrophages become activated during an infection with Salmonella typhimurium and, if so, whether these activated macrophages kill S. typhimurium faster than resident macrophages. Mice received i.v. injections with a sublethal number of S. typhimurium; on about day 12 of the infection the numbers of bacteria in the liver and the spleen were maximal. During the infection, activation of peritoneal macrophages could be demonstrated on the basis of three criteria, i.e., the ability to inhibit the proliferation of Toxoplasma gondii, an enhanced production of H2O2 and an increased expression of Ia Ag. The rate of in vitro intracellular killing of S. typhimurium by these activated macrophages was not increased compared to that for resident macrophages. To determine the growth of S. typhimurium in activated mice a nalidixic acid-resistant mutant strain, called S. typhimurium 510R, was used. The net growth rates of the mutant S. typhimurium 510R in the spleen of S. typhimurium 510-activated and normal mice were similar. However, in the liver of S. typhimurium 510-activated mice the number of S. typhimurium 510R did not change during 3 to 48 h after injection. The role of specific antibodies during the initial phase of the infection was negligible, because only low levels of antibodies were detected during the first 15 days of infection and the growth rates of S. typhimurium 510 in the spleen and liver of mice with high titers of antibodies were not significantly different from the rates in normal mice. The results of this study demonstrate that although macrophages become activated during an infection with S. typhimurium, these cells do not display an enhanced bactericidal activity in vitro and in vivo no significant effect on the growth rate of S. typhimurium in the spleen and a bacteriostatic effect in the liver is found. Hence macrophage activation is probably not very important in the host defense against S. typhimurium.  相似文献   

5.
The effect of Lps on the resistance of mice to gram-negative infection was compared in two genetically different backgrounds; C3H and C57BL. To mimic the natural sequence of pathogenetic events, infection was induced via a mucosal surface (intravesically), with Escherichia coli which remained at the mucosal site and Salmonella typhimurium which invaded to e.g., livers and spleens. Susceptibility was assessed as the bacterial persistence in kidneys, bladders, livers, and spleens at various times after infection. The initial clearance of both bacterial species from the mucosal site was significantly impaired in Lpsd mice both in the C3H and C57BL backgrounds. In the C57BL mice, additional unknown determinants conferred increased resistance to mucosal infection compared to the C3H mouse. For S. typhimurium, these resistance factors and alleles at the Lps locus dominated over Ity as determinants of resistance to mucosal infection. The Itys genotype conferred a significant increase in the susceptibility only to systemic infection, especially in the Lpsd, Itys mice. These results demonstrate an important difference between the genetic determinants of host resistance at mucosal and systemic sites, and emphasize the role of LPS induced host defense mechanisms for bacterial clearance from mucosal surfaces.  相似文献   

6.
The aim of the present study was to determine whether the difference between the rate of intracellular killing of Salmonella typhimurium by macrophages of salmonella-resistant CBA and salmonella-susceptible C57BL/10 mice also holds for other salmonellae and other bacteria species. After in vivo phagocytosis, the initial rate of in vitro intracellular killing of S. typhimurium phagetype 505, S. typhimurium phagetype 510, and S. typhimurium M206 by macrophages of CBA mice amounted always to approximately 1.7 times the value found for macrophages of C57BL/10 mice (p less than 0.001), indicating that the difference in killing efficiency between CBA and C57BL/10 macrophages holds for various strains of S. typhimurium. However, some other salmonella species, i.e., S. dublin and S. heidelberg, as well as E. coli 054 and 02K1+, Listeria monocytogenes EGD and L347, and Staphylococcus aureus were killed equally efficiently by macrophages of both mouse strains. These findings indicate that the difference between the rates of intracellular killing by macrophages of salmonella-resistant CBA and salmonella-susceptible C57BL/10 does not hold for several other bacteria species and thus might be specific for S. typhimurium. Subsequent experiments showed that the in vivo proliferation of S. typhimurium 510 in the first 2 days after i.v. injection was 2.0-fold to 3.0-fold higher in the spleens and livers of C57BL/10 mice than in those of CBA mice, whereas the in vivo proliferation of S. dublin and S. heidelberg was between 1.0-fold to 1.4-fold higher in the C57BL/10 mice. These findings suggest that the differences between the rate of in vitro intracellular killing of salmonella by CBA and C57BL/10 macrophages are reflected in differences in the rate of in vivo proliferation of these microorganisms in CBA and C57BL/10 mice. To gain insight into the involvement of the oxidative metabolism of CBA and C57BL/10 macrophages in the difference in the rate of intracellular killing of S. typhimurium, the O2 consumption and H2O2 release by resident peritoneal macrophages was determined. The amplitudes of the respiratory burst and the release of H2O2 was identical in macrophages of the two mouse strains after triggering by either preopsonized heat-killed S. typhimurium or phorbol myristic acetate. These findings indicate that the mouse species-associated difference in the intracellular killing of S. typhimurium is not caused by a difference in the oxidative metabolism of CBA and C57BL/10 macrophages.  相似文献   

7.
BSVS mice are known to be highly susceptible to salmonella infection. We have shown that the bulk of the difference in susceptibility between BSVS and salmonella-resistant A/J mice is the result of a genetic difference at a single locus not closely linked to H-2, Igh-C, or Hbb, and not X-linked. We have backcrossed the A/J allele at this locus into BSVS mice for 8 successive generations and have demonstrated that the salmonella resistance afforded by this allele is not the result of a restoration of the generalized poor T-dependent responsiveness of BSVS mice. The salmonella resistance locus we have examined with these 2 strains is probably the same as the Ity locus described by others.  相似文献   

8.
The contribution of granulocytes to differences in the innate susceptibility of mouse strains to infection by Salmonella typhimurium was assessed on the basis of the size and composition of the inflammatory exudate after i.p. injection of bacteria and the intracellular killing of the bacteria by exudate peritoneal cells and blood granulocytes of resistant CBA and susceptible C57BL/10 mice. The increase in the numbers of both peritoneal granulocytes and macrophages 24 hr after i.p. injection of various numbers of live S. typhimurium was two to four times higher in C57BL/10 mice (p less than 0.05) than in CBA mice. However, despite the larger number of phagocytes in the inflammatory exudate, the numbers of viable S. typhimurium in the peritoneal cavity 24 hr after injection was higher (p less than 0.01) in C57BL/10 mice than in CBA mice. Because the proportion of noningested bacteria was similar in the two mouse strains (less than 30%), these findings indicate a difference in the rate of intracellular killing of the bacteria by exudate peritoneal cells (greater than 75% granulocytes) of the two mouse strains. Subsequent determination of the initial rate of intracellular killing (Kk) of S. typhimurium revealed that after phagocytosis of the bacteria in vivo, exudate peritoneal granulocytes (harvested 24 hr after i.p. injection of 10(3) live S. typhimurium) of CBA mice killed S. typhimurium twice as efficiently (Kk = 0.014 min-1; p less than 0.01) as exudate granulocytes of C57BL/10 mice (Kk = 0.008 min-1) did. Similarly, the initial rate of intracellular killing of the ingested S. typhimurium by blood granulocytes of CBA mice (Kk = 0.017 min-1) was two times higher (p less than 0.01) than that of C57BL/10 mice (Kk = 0.007 min-1). These findings may be specific for S. typhimurium, because L. monocytogenes were killed with equal efficiency by exudate granulocytes and blood granulocytes of these mouse strains (p greater than 0.20). The results of the present study are relevant with respect to the innate resistance of mice to S. typhimurium, particularly during the initial phase of infection when the inflammatory exudate contains predominantly granulocytes.  相似文献   

9.
目的:观察减毒沙门氏菌携带的血小板第四因子活性片段PF417 70 的放射保护作用。方法:通过口服途经喂饲小鼠携带PF4活性片段的减毒沙门氏菌,在第 2次喂饲后小鼠接受 70 0cGy全身照射,然后观察PIRES2 EGFP PF417 70 在小鼠体内的表达,并观察小鼠的造血恢复情况。结果:在小鼠的肝脏、脾脏、肾脏、小肠、外周血及骨髓均能检测到GFP的表达和转基因的整合。与对照组比较,实验组小鼠的生存期明显延长,照射后第 7d和 1 4d骨髓有核细胞数、骨髓培养的CFU GM和HPP CFC数量明显增加 (P <0 0 5 )。结论:首次应用减毒沙门氏菌SL32 61为载体来介导PF4活性片段的生物学作用,并证实通过口服途径可以保护小鼠免受放射损伤,并促进放射损伤后小鼠的造血恢复。  相似文献   

10.
The effect of recombinant murine interferon-gamma (rIFN-gamma) as single stimulus for the activation of antibacterial activity of macrophages was investigated on the basis of the rate of intracellular killing of Listeria monocytogenes and Salmonella typhimurium by normal and rIFN gamma-activated peritoneal macrophages of CBA and C57BL/10 mice, which differ in natural resistance to infection by these bacteria. Eighteen hours after i.p. injection of 10 to 1 X 10(4) U rIFN-gamma, resident and exudate peritoneal macrophages which had phagocytosed L. monocytogenes or S. typhimurium in vivo, killed both species in vitro just as efficiently as did resident macrophages of normal mice. Similar results were obtained after 18 hr of in vitro incubation of resident or exudate peritoneal macrophages with 0.1 to 1 X 10(4) U/ml rIFN-gamma. Consistent with the in vitro findings, two i.v. injections of 5 X 10(4) U rIFN-gamma did not affect the rate of in vivo proliferation of L. monocytogenes or S. typhimurium in the spleens of mice during the first 2 days after i.v. injection of the bacteria. Compared with the effect on the controls, two i.p. injections of 5 X 10(2) to 5 X 10(4) U rIFN-gamma did not decrease the numbers of viable S. typhimurium in either the peritoneal cell suspension or the spleen 24 hr after i.p. injection of the bacteria. Checking the state of activation of rIFN-gamma-activated macrophages on the basis of two commonly used criteria for macrophage activation showed that rIFN-gamma-activated macrophages inhibited the intracellular replication of Toxoplasma gondii and displayed enhanced O2 consumption and H2O2 release after stimulation with phorbol myristate acetate compared with macrophages from normal CBA and C57BL/10 mice. The present findings show that as single activating stimulus, rIFN-gamma is not capable of activating the antibacterial effector functions of peritoneal macrophages against facultative intracellular pathogens such as L. monocytogenes and S. typhimurium.  相似文献   

11.
12.
The plant lectins, Concanavalin A (Con A) and Galanthus nivalis agglutinin (GNA) have been prefed to rats for 3 d pre- and 6 d postinfection with Salmonella typhimurium S986 or Salm. enteritidis 857. Con A significantly increased numbers of Salm. typhimurium S986 in the large intestine and in faeces, and severely impaired growth of the rats, more severely than is the case of infection with Salmonella typhimurium alone. Con A had much less effect on rats infected with Salm. enteritidis 857 only showing a significant increase in numbers in the colon, accompanied by intermittent increases of Salmonella in the faeces during the study. GNA significantly reduced pathogen numbers in the lower part of the small bowel and the large intestine of rats infected with Salm. typhimurium S986 and significantly improved rat growth. GNA had little effect on infection by Salm. enteritidis 857 with slight decreases in Salmonella numbers in the small intestine and large intestine and transient increases in the faeces.  相似文献   

13.
Ity resistant A/J mice were challenged with a lethal dose (2 x 10(3) organisms) of Salmonella typhimurium. Infected mice treated with 1 microgram of GM-CSF twice daily showed increased median survival time and had a higher survival fraction than untreated controls. GM-CSF was most effective when given for a brief period (1 to 2 days) after infection. Pretreatment of the mice or delayed treatment with GM-CSF had no effect on the survival of the mice. Studies on the effect of GM-CSF on the bacterial load showed that mice treated with GM-CSF had fewer S. typhimurium in the spleen and peritoneal cavity on day 4 but not on day 2 after infection. GM-CSF treatment of ity-susceptible C57BL/6 mice infected with 10 organisms had no therapeutic effect.  相似文献   

14.
Following oral inoculation of BALB/c mice, Salmonella abortusovis strain SS44 was recovered in lower numbers from the Peyer's patches and mesenteric lymph nodes compared with S. typhimurium strain SL1344, whereas splenic infections were equivalent between the two serovars. SS44 was cured of its virulence plasmid or subjected to mutagenesis of the spv genes, and the Spv(-) derivatives were tested for virulence in mice. Plasmid-cured S. abortusovis SU40 retained virulence in BALB/c mice when inoculated intraperitoneally. On the other hand, mice infected orally with SU40 had greatly reduced splenic infection compared to those infected with wild-type SS44. Similar results were obtained after Tn5 insertion mutagenesis of the spvR gene or deletion of the spvABCD locus. These results suggest that in the gut-associated lymphoid tissues S. abortusovis may replicate less than S. typhimurium and that the S. abortusovis virulence plasmid primarily affects systemic infection after oral inoculation but not after intraperitoneal administration in the mouse model.  相似文献   

15.
Although the virulence plasmid of Salmonella typhimurium has a copy number of one to two per chromosome, plasmid-free segregants are produced at a rate less than 10(-7) per cell per generation. Three regions appear to be involved in the maintenance of this virulence plasmid. The first two, repB and repC, are functional replicons hybridizing with IncFII and IncFI plasmids, respectively, neither exhibiting the segregational stability of the parent virulence plasmid. The third region, par, cloned as a 3.9-kilobase Sau3A fragment, is not a functional replicon but exhibits incompatibility with the virulence plasmid. Subsequent tests revealed the ability of this 3.9-kilobase par insert to increase the stability of pACYC184 in S. typhimurium from less than 34% to 99% plasmid-containing cells after 50 generations. In addition, the par region increased the stability of oriC, R388, and repC replicons in both S. typhimurium and Escherichia coli hosts. The par region encodes 44,000- and 40,000-molecular-weight proteins essential for the Par+ phenotype but not for the Inc+ phenotype. Although actual sequestering of plasmids within the cell was not demonstrated, all results indicate that the par region described is an actual partitioning locus, similar in organization to those described for plasmids F, P1, and NR1.  相似文献   

16.
To study the role of cAMP in the virulence of S. typhimurium, cAMP-producing plasmid pTG 4 was transferred to cAMP-deficient S. typhimurium mutant. The transfer of the plasmid enhanced the virulence of the microorganisms due to the increased destruction of macrophages and the intensified multiplication of salmonellae in the spleen of mice.  相似文献   

17.
Balb/c mice were inoculated intraperitoneally with TA2662, a smooth derivative of the Salmonella typhimurium Ames tester strain (TA102) which carries the mutable hisG locus on a multicopy plasmid, or TA103, which carries the same hisG gene on the chromosome. The bacteria were recovered at various times from the livers and spleens of the infected mice. Total numbers of bacteria were determined and the mutant frequency was estimated. The frequency of occurrence of histidine prototrophs in experiments using TA2662 was substantially above the frequency found with this strain grown in vitro. The mutant frequencies in experiments using TA103 recovered from mice were also highly significantly increased above background. We did not identify factors which might suggest selection in vivo for histidine prototrophs. There is sufficient histidine in body fluids of the host for the growth of His- bacteria. The His- and His+ derivatives were found to grow equally well in vitro in the presence of amounts of histidine approximating concentrations known to exist in vivo. It is probable that mutations in TA2662 are greatly underestimated, since the hisG-containing plasmid is lost at relatively high frequency during incubation in a variety of conditions.  相似文献   

18.
A recessive Salmonella Typhimurium susceptibility locus (immunity to Typhimurium (Ity3) was reported previously on distal mouse chromosome 1 using a cross between C57BL/6J and wild-derived MOLF/Ei mice. This quantitative trait locus is located in a genomic region spanning 84 Mb, rich in candidate genes for which a role in host resistance to Salmonella infection is either known or can be envisioned. In this study, we report the evaluation of neutrophil cytosolic factor 2 (Ncf2) as a candidate Salmonella susceptibility gene for Ity3. Ncf2 encodes p67phox, a subunit of the multiprotein enzyme complex NADPH oxidase, known to be responsible for the generation of superoxides. Congenic mice carrying the Ity3 region from MOLF/Ei, B6.MOLF-Ity/Ity3 were more susceptible to infection compared with control mice heterozygous at Ity3, B6.MOLF-Ity/Ity3(MOLF/B6), confirming the existence of a recessive Salmonella susceptibility locus on distal chromosome 1. Spleen Ncf2 expression levels were lower in infected congenic mice homozygous for the MOLF/Ei allele at Ity3 compared with mice heterozygous at Ity3. C57BL/6J and MOLF/Ei Ncf2 sequence comparisons revealed one nonconservative amino acid change (R394Q) in the functional and highly conserved Phox and Bem1 domain of the protein. Functional analysis revealed that the MOLF/Ei allele had reduced PMA- and Salmonella-induced superoxide induction as compared with their wild-type counterparts ex vivo. The R394Q substitution seems to occur on an amino acid involved in electrostatic interactions with p40phox, crucial in its activation. Moreover, a human mutation in the corresponding R395W, resulting in chronic granulatomous disease, is known to lead to reduced superoxide levels. These results support the candidacy of Ncf2 as the gene underlying Ity3.  相似文献   

19.
Mice infected subcutaneously with wild-type Salmonella typhimurium, SR11, developed a significant splenomegaly when compared with mice infected with an equal number of a plasmid-cured strain. Further, the bacterial load in the spleen at 14 days after infection, measured as colony-forming units per gram tissue, was significantly higher in mice infected with the parent strain than in mice infected with the plasmid-cured strain. These data confirm the previously reported plasmid-associated ability of Salmonella to multiply within the spleen. In addition, lymph node cells (LNC) from mice infected with the parent strain had a significantly reduced ability to proliferate in response to concanavalin A, a T-cell mitogen, and to heat-killed S. typhimurium cells when compared with LNC isolated from mice infected with the plasmid-cured strain. Finally, reintroduction of a functional Tn5-tagged 90-kb plasmid into a plasmid-free strain restored its capacity to cause a marked splenomegaly and to suppress lymph node cell proliferation in BALB/c mice. These data demonstrate that the 90-kb plasmid of highly virulent S. typhimurium strains mediates several novel pathogenic properties in infected mice: (1) enhancement of the ability of Salmonella to multiply within the spleen; (2) stimulation of a splenic inflammatory response as displayed by marked splenomegaly; and (3) a general suppression of lymphocyte responsiveness to both T-cell mitogens and specific Salmonella antigens.  相似文献   

20.
To determine the underlining mechanism of the difference in innate susceptibility of mouse strains to infection by Salmonella typhimurium, the ingestion and in vitro intracellular killing of S. typhimurium by resident peritoneal macrophages of mouse strains that differ in natural resistance to this microorganism has been studied. The results revealed that the rate constants of in vitro phagocytosis (Kph) in the presence of inactivated rabbit immune serum did not differ between macrophages of susceptible C57BL/10 and resistant CBA mice (for both strains: Kph = 0.021 min-1). The rate constant of in vitro intracellular killing (Kk) was determined 1) after in vivo phagocytosis (CBA, Kk = 0.055 min-1; C57BL/10, Kk = 0.031 min-1), 2) after in vitro phagocytosis of preopsonized bacteria (CBA, Kk = 0.020 min-1; C57BL/10, Kk = 0.012 min-1), and 3) during continuous phagocytosis in vitro (CBA, Kk = 0.029 min-1; C57BL/10, Kk = 0.013 min-1). With all three approaches, the initial rate of intracellular killing by normal macrophages of Salmonella-resistant CBA mice amounted to about 1.7 times the value found for macrophages of susceptible C57BL/10 mice (p less than 0.01). This trait difference was independent of the previous way of ingestion of the bacteria, unaffected by the kind of opsonization, and specific for S. typhimurium, because Staphylococcus aureus and Listeria monocytogenes were killed by macrophages of these mouse strains with equal efficiency (p greater than 0.50). These findings indicate that a difference in genetic background expressed in the efficacy of intracellular killing by resident peritoneal macrophages immediately upon ingestion of S. typhimurium is relevant for the innate resistance of mice against S. typhimurium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号