首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I Thesleff 《Ontogenez》1989,20(4):341-349
A series of reciprocal interactions between epithelial and mesenchymal tissues control the morphogenesis and cell differentiation in the developing tooth. The molecular mechanisms operating in these interactions are, however, unknown at present. Structural components of the extracellular matrix (ECM) affect cellular behavior in the embryo and appear to be involved also in these regulatory processes. The ECM molecules exert their effects on cells through binding to specific matrix receptors on the cell surface. This review article summarizes our findings on the distribution patterns during tooth development of the ECM glycoproteins, fibronectin and tenascin, and of the cell surface proteoglycan, syndecan, which functions as a receptor for interstitial matrix. Based on the observed changes in these distribution patterns and on experimental evidence, roles for these molecules in epithelial-mesenchymal interactions during tooth development are suggested. Fibronectin and tenascin are enriched in the dental basement membrane at the time of odontoblast differentiation. These matrix glycoproteins may be involved in the cell-matrix interaction which controls differentiation of the dental mesenchymal cells into odontoblasts. Tenascin and syndecan are accumulated in the dental mesenchyme during bud stage of development. We have shown in tissue recombination experiments that the presumptive dental epithelium induces the expression of tenascin and syndecan in mesenchyme. We suggest that these molecules are involved in cell-matrix interactions, which regulate mesenchymal cell condensation during the earliest stages of tooth morphogenesis.  相似文献   

2.
Syndecan from embryonic tooth mesenchyme binds tenascin.   总被引:13,自引:0,他引:13  
Syndecan is a cell surface heparan sulfate-rich proteoglycan found on various epithelial cells but also in some embryonic mesenchymal tissues. We have immunoisolated syndecan from embryonic tooth mesenchyme that appeared as a 250-300-kDa molecule (Kav = 0.3 in Sepharose 4B), containing only heparan sulfate side chains (Mr = 35,000). Northern analysis of whole tooth germs and tooth mesenchymes also revealed high expression of syndecan mRNAs (2.6 and 3.4 kilobases). In the binding assay utilizing nitrocellulose as a solid phase to immobilize matrix molecules, syndecan immunoisolated from tooth mesenchyme revealed binding to tenascin, and this interaction was shown to be mediated via heparan sulfate side chains. In contrast, syndecan from mouse mammary epithelial cells showed only weak interaction with tenascin. We propose that syndecan and tenascin may represent interactions of a cell surface receptor and a matrix ligand involved in mesenchymal cell condensation and differentiation during early organogenesis.  相似文献   

3.
4.
The cell surface proteoglycan, syndecan, and the extracellular matrix glycoprotein, tenascin, are expressed in the mesenchyme during early development of many organs. We have studied the expression patterns of syndecan and tenascin during initiation of tooth development and in association with mesenchymal cell condensation and compared these with cell proliferation. Syndecan, tenascin and bromodeoxyuridine (BrdU) incorporation were localized by triple-labelling immunohistochemistry in serial sections of molar tooth germs of mouse embryos. Prior to formation of the epithelial tooth bud, syndecan accumulated in the mesenchymal cells which underlie the presumptive dental epithelium, but tenascin was not detected at this stage. Tenascin appeared during initiation of the epithelial down-growth at the lingual aspect of the tooth germ. During subsequent formation of the epithelial bud, at the late bud stage, syndecan and tenascin became exactly colocalized in the condensed mesenchyme which was clearly demarcated from other jaw mesenchyme. The expression of syndecan and tenascin was accompanied by rapid cell proliferation as indicated by marked BrdU incorporation. When development advanced to the cap stage, syndecan staining intensity in the dental papilla mesenchyme increased further whereas tenascin became reduced. In conclusion, the results demonstrate that the expression patterns of syndecan and tenascin overlap transiently during the period of mesenchymal cell condensation and that this is accompanied by cell proliferation. Syndecan and tenascin may play a role in growth control and in compartmentalization of the dental mesenchymal cells in the condensate.  相似文献   

5.
Morphogenesis of embryonic organs is regulated by epithelial-mesenchymal interactions associating with changes in the extracellular matrix (ECM). The response of the cells to the changes in the ECM must involve integral cell surface molecules that recognize their matrix ligand and initiate transmission of signal intracellularly. We have studied the expression of the cell surface proteoglycan, syndecan, which is a matrix receptor for epithelial cells (Saunders, S., M. Jalkanen, S. O'Farrell, and M. Bernfield. J. Cell Biol. In press.), and the matrix glycoprotein, tenascin, which has been proposed to be involved in epithelial-mesenchymal interactions (Chiquet-Ehrismann, R., E. J. Mackie, C. A. Pearson, and T. Sakakura. 1986. Cell. 47:131-139) in experimental tissue recombinations of dental epithelium and mesenchyme. Our earlier studies have shown that in mouse embryos both syndecan and tenascin are intensely expressed in the condensing dental mesenchyme surrounding the epithelial bud (Thesleff, I., M. Jalkanen, S. Vainio, and M. Bernfield. 1988. Dev. Biol. 129:565-572; Thesleff, I., E. Mackie, S. Vainio, and R. Chiquet-Ehrismann. 1987. Development. 101:289-296). Analysis of rat-mouse tissue recombinants by a monoclonal antibody against the murine syndecan showed that the presumptive dental epithelium induces the expression of syndecan in the underlying mesenchyme. The expression of tenascin was induced in the dental mesenchyme in the same area as syndecan. The syndecan and tenascin positive areas increased with time of epithelial-mesenchymal contact. Other ECM molecules, laminin, type III collagen, and fibronectin, did not show a staining pattern similar to that of syndecan and tenascin. Oral epithelium from older embryos had lost its ability to induce syndecan expression but the presumptive dental epithelium induced syndecan expression even in oral mesenchyme of older embryos. Our results indicate that the expression of syndecan and tenascin in the tooth mesenchyme is regulated by epithelial-mesenchymal interactions. Because of their early appearance, syndecan and tenascin may be used to study the molecular regulation of this interaction. The similar distribution patterns of syndecan and tenascin in vivo and in vitro and their early appearance as a result of epithelial-mesenchymal interaction suggest that these molecules may be involved in the condensation and differentiation of dental mesenchymal cells.  相似文献   

6.
Cellular behaviour during development is dictated, in part, by the insoluble extracellular matrix and the soluble growth factor peptides, the major molecules responsible for integrating cells into morphologically and functionally defined groups. These extracellular molecules influence cellular behaviour by binding at the cell surface to specific receptors that transduce intracellular signals in various ways not yet fully clear. Syndecan, a cell surface proteoglycan found predominantly on epithelia in mature tissues binds both extracellular matrix components (fibronectin, collagens I, III, V, and thrombospondin) and basic fibroblast growth factor (bFGF). Syndecan consists of chondroitin sulfate and heparan sulphate chains linked to a 31 kilodalton (kDa) integral membrane protein. Syndecan represents a family of integral membrane proteoglycans that differ in extracellular domains, but share cytoplasmic domains. Syndecan behaves as a matrix receptor: it binds selectively to components of the extracellular matrix, associates intracellularly with the actin cytoskeleton when cross-linked at the cell surface, its extracellular domain is shed upon cell rounding and it localizes solely to basolateral surfaces of simple epithelia. Mammary epithelial cells made syndecan-deficient become fibroblastic in morphology and cell behaviour, showing that syndecan maintains epithelial cell morphology. Syndecan changes in quantity, location and structure during development: it appears initially on four-cell embryos (prior to its known matrix ligands), becomes restricted in the pre-implementation embryo to the cells that will form the embryo proper, changes its expression due to epithelial-mesenchymal interactions (for example, induced in kidney mesenchyme by the ureteric bud), and with association of cells with extracellular matrix (for example, during B-cell differentiation), and ultimately, in mature tissues becomes restricted to epithelial tissues. The number and size of its glycosaminoglycan chains vary with changes in cell shape and organization yielding tissue type-specific polymorphic forms of syndecan. Its interactions with the major extracellular effector molecules that influence cell behaviour, its role in maintaining cell shape and its spatial and temporal changes in expression during development indicate that syndecan is involved in morphogenesis.  相似文献   

7.
Tooth morphogenesis and differentiation of the dental cells are guided by interactions between epithelial and mesenchymal tissues. Because the extracellular matrix is involved in these interactions, the expression of matrix receptors located at the cell surface may change during this developmental sequence. We have examined the distribution of an epithelial cell surface proteoglycan antigen, known to behave as a receptor for interstitial matrix, during tooth morphogenesis. Intense staining was seen around the cells of the embryonic oral epithelium as well as the dental epithelium at the early bud stage. With development, expression was greatly reduced in the enamel organ. Differentiation of these cells into ameloblasts was associated with the loss of expression, while the epithelial cells remaining in the stratum intermedium and stellate reticulum regained intense staining. The PG antigen was weakly expressed in the loose neural crest-derived jaw mesenchyme but it became strongly reactive in the condensed dental papilla mesenchyme when extensive morphogenetic movements took place. With development, the PG antigen disappeared from the advanced dental papilla mesenchyme but persisted in the dental sac mesenchyme, which gives rise to periodontal tissues. The PG antigen was not expressed by odontoblasts. Hence, the expression of the PG antigen changes during the epithelial-mesenchymal interactions of tooth development and is lost during terminal cell differentiation. The expression follows morphogenetic rather than histologic boundaries. The acquisition and loss of expression in epithelial and mesenchymal tissues during tooth development suggest that this proteoglycan has specific functions in the epithelial-mesenchymal interactions that guide morphogenesis.  相似文献   

8.
Morphogenesis of the kidney is regulated by reciprocal tissue interactions between the epithelial ureter bud and the metanephric mesenchyme. The differentiation of the kidney involves profound changes in the extracellular matrix, and therefore matrix receptors may have an important role in this process. We studied the expression of syndecan, a cell surface proteoglycan acting as a receptor for interstitial matrix materials, by using a monoclonal antibody against the core protein of the molecule. Syndecan was not detected in the uninduced metanephric mesenchyme. During the formation of the ureter bud from the Wolffian duct, syndecan appeared in the mesenchymal cells around the invaginating bud. Simultaneously with the first branching of the ureter bud, the whole nephric mesenchyme became syndecan positive, but a 3- to 10-cell-thick layer around the branching ureter bud, representing the presumptive tubular cells, was most intensely stained. During the assembly of the mesenchyme cells into pretubular aggregates, syndecan was detected in these aggregates and, to a lesser degree, in the morphologically undifferentiated mesenchyme. Thereafter syndecan was found only in the differentiating epithelium, from which it was gradually lost during maturation of the nephron. It was last detected in the periphery of the kidney, where tubulogenesis still continued. In transfilter cultures we showed that syndecan appeared in the nephric mesenchyme during the period when the mesenchyme becomes programmed to transform into epithelial structures. By using interspecies recombinations and a species-specific antibody we excluded the possibility that syndecan in the mesenchyme would originate from the inductor. We conclude that syndecan expression is regulated by epithelial-mesenchymal interactions. The findings that syndecan appeared as an early response to induction and that its distribution showed both spatial and temporal correlation with kidney morphogenesis suggest an important role for this molecule in development.  相似文献   

9.
10.
11.
This review surveys some recent trends in the study of the developmental interactions between epithelial and mesenchymal cells. The influence of such interactions on cell differentiation is considered with reference to kidney development, limb bud development, chondrogenesis and osteogenesis, and tooth development. Effects on epithelial morphogenesis are discussed, using salivary gland development as an example. The roles of humoral factors (hormones or growth factors) are considered, and the evidence for the participation of cell adhesion molecules is examined.  相似文献   

12.
Craniofacial development provides a number of opportunities to investigate the cellular and molecular biology of morphogenesis, cytodifferentiation, tissue-specific extracellular matrix (ECM) formations, and biomineralization. Regulatory processes associated with mandibular morphogenesis and specifically tooth formation are being investigated by the identification of when and where molecular determinants such as cell adhesion molecules (CAMs), substrate adhesion molecules (SAMs), and tissue-specific structural gene products are expressed during sequential developmental stages. Based upon in vitro organotypic culture studies in serumless, chemically defined medium, instructive and permissive signaling has been found to be required for both mandibular and dental morphogenesis and cytodifferentiation. For example, intrinsic developmental instructions (autocrine and paracrine factors), independent of long-range hormonal or exogenous growth factors, mediate morphogenesis from the initiation of the dental lamina through crown and initial root stages of tooth development. This review summarizes recent results using experimental embryology, organ culture, recombinant DNA technology, and immunocytology to elucidate mechanisms responsive to instructive epithelial-mesenchymal interactions associated with mandibular morphogenesis, tooth positional information, and subsequent tooth crown and initial root development.  相似文献   

13.
Syndecan is an integral membrane proteoglycan that behaves as a matrix receptor by binding cells to interstitial matrix and associating intracellularly with the actin cytoskeleton. Using immunohistology, we have now localized this proteoglycan during the morphogenesis of various derivatives of the surface ectoderm in mouse embryos. Syndecan is expressed on ectodermal epithelia, but is selectively lost from the cells that differentiate into the localized placodes that initiate lens, nasal, otic and vibrissal development. The loss is transient on presumptive ear, nasal and vibrissal epithelia; the derivatives of the differentiating ectodermal cells that have lost syndecan subsequently re-express syndecan. In contrast, syndecan is initially absent from the mesenchyme underlying the surface ectoderm, and is transiently expressed when the surface ectoderm loses syndecan. These results demonstrate that expression of syndecan is developmentally regulated in a distinct spatiotemporal pattern. On epithelia, syndecan is lost at a time and, location that correlates with epithelial cell differentiation and, on mesenchyme, syndecan is acquired when the cells aggregate in proximity to the epithelium. This pattern of change with morphogenetic events is unique and not duplicated by other matrix molecules or adhesion receptors.  相似文献   

14.
The extracellular matrix (ECM) offers a structural basis for regulating cell functions while also acting as a collection point for bioactive molecules and connective tissue cells. To perform pathological functions under a pathological condition, the involved cells need to regulate the ECM to support their altered functions. This is particularly common in the development of cancer. The ECM has been recognized as a key driver of cancer development and progression, and ECM remodeling occurs at all stages of cancer progression. Thus, cancer cells need to change the ECM to support relevant cell surface adhesion receptor–mediated cell functions. In this context, it is interesting to examine how cancer cells regulate ECM remodeling, which is critical to tumor malignancy and metastatic progression. Here, we review how the cell surface adhesion receptor, syndecan, regulates ECM remodeling as cancer progresses, and explore how this can help us better understand ECM remodeling under these pathological conditions  相似文献   

15.
Syndecan, a cell surface proteoglycan, binds multiple extracellular ligands, and is developmentally regulated in epithelial and mesenchymal tissues. The branching morphogenesis of embryonic lung is dependent on epithelial-mesenchymal interactions and, based on studies with inhibitors, on proteoglycan synthesis. To assess the role of syndecan in lung development, we examined the structure and distribution of syndecan in Day 12 to 18 embryonic mouse lungs using monoclonal antibody 281-2 for histology, immunopurification, and Western blots. At Day 12, syndecan localizes mainly on epithelial cell surfaces, but also stains mesenchymal cells near the epithelium. By Day 14, syndecan is expressed predominantly on epithelia and by Day 18, syndecan remains on airway epithelia but is absent from the alveolar pneumocytes. This change in expression correlates with a change in syndecan structure; the relative mass of syndecan gradually falls from Day 12 to Day 18 without a change in relative mass of the core protein. The difference is due to a developmental reduction in the size of the glycosaminoglycan chains; heparan sulfate chains on syndecan from Day 14 lungs were nearly twofold larger than those from Day 18 lungs. Newly synthesized syndecan in the lungs had the same relative mass as total syndecan, indicating that the change in mass is due to a developmental change in the nature of the syndecan synthesized. The alteration in syndecan structure could alter the function of this proteoglycan during lung development.  相似文献   

16.
Although local epithelial-mesenchymal tissue interactions which are presumably mediated by extracellular matrix molecules are important regulators of tooth morphogenesis and differentiation, our studies have indicated that these developmental processes also depend on circulating molecules. The iron-carrying serum protein transferrin is necessary for the early morphogenesis of mouse tooth in organ culture (A-M. Partanen, I. Thesleff, and P. Ekblom, 1984, Differentiation 27, 59-66). In the present study we have examined the effects of other growth factors on mouse tooth germs grown in a chemically defined medium containing transferrin. Fibroblast growth factor and platelet derived growth factor had no detectable effects but epidermal growth factor (EGF) inhibited dramatically the morphogenesis of teeth, and prevented odontoblast and ameloblast cell differentiation. EGF stimulated cell proliferation in the explants measured as [3H]thymidine incorporation in DNA. However, when the distribution of dividing cells was visualized in autoradiographs, it was observed that cell proliferation was stimulated in the dental epithelium but was inhibited in the dental mesenchyme. The inhibition of cell proliferation in the dental mesenchyme apparently caused the inhibition of morphogenesis. We do not know whether the dental epithelium or mesenchyme was the primary target for the action of EGF in the inhibition of morphogenesis. It is, however, apparent that the response of the dental mesenchymal cells to EGF (inhibition of proliferation) is regulated by their local environment, since EGF enhanced proliferation when these cells were disaggregated and cultured as monolayers. This indicates that the organ culture system where the various embryonic cell lineages are maintained in their original environment corresponds better to the in vivo situation when the roles of exogenous growth factors during development are examined.  相似文献   

17.
Branching morphogenesis is a fundamental developmental process which results in amplification of epithelial surface area for exchanging molecules in organs including the lung, kidney, mammary gland and salivary gland. These complex tree-like structures are built by iterative rounds of simple routines of epithelial morphogenesis, including bud formation, extension, and bifurcation, that require constant remodeling of the extracellular matrix (ECM) and the cytoskeleton. In this review, we highlight the current understanding of the role of the ECM and cytoskeletal dynamics in branching morphogenesis across these different organs. The cellular and molecular mechanisms shared during this morphogenetic process provide insight into the development of other branching organs.  相似文献   

18.
《Organogenesis》2013,9(2):56-64
Branching morphogenesis is a fundamental developmental process which results in amplification of epithelial surface area for exchanging molecules in organs including the lung, kidney, mammary gland and salivary gland. These complex tree-like structures are built by iterative rounds of simple routines of epithelial morphogenesis, including bud formation, extension, and bifurcation, that require constant remodeling of the extracellular matrix (ECM) and the cytoskeleton. In this review, we highlight the current understanding of the role of the ECM and cytoskeletal dynamics in branching morphogenesis across these different organs. The cellular and molecular mechanisms shared during this morphogenetic process provide insight into the development of other branching organs.  相似文献   

19.
Salivary gland branching morphogenesis   总被引:3,自引:0,他引:3  
Salivary gland branching morphogenesis involves coordinated cell growth, proliferation, differentiation, migration, apoptosis, and interaction of epithelial, mesenchymal, endothelial, and neuronal cells. The ex vivo analysis of embryonic mouse submandibular glands, which branch so reproducibly and beautifully in culture, is a powerful tool to investigate the molecular mechanisms regulating epithelium-mesenchyme interactions during development. The more recent analysis of genetically modified mice provides insight into the genetic regulation of branching morphogenesis. The review begins, as did the field historically, focusing on the role of the extracellular matrix (ECM), and its components such as glycosaminoglycans, collagens, and laminins. Following sections describe the modification of the ECM by proteases and the role of cell-matrix and cell-cell receptors. The review then focuses on two major families of growth factors implicated in salivary gland development, the fibroblast growth factors (FGFs) and the epidermal growth factors (EGFs). The salivary gland phenotypes in mice with genetic modification of FGFs and their receptors highlight the central role of FGFs during salivary gland branching morphogenesis. A broader section mentions other molecules implicated from analysis of the phenotypes of genetically modified mice or organ culture experiments. The review concludes with speculation on some future areas of research.  相似文献   

20.
We have shown earlier that epidermal growth factor (EGF) inhibits morphogenesis and cell differentiation in mouse embryonic teeth in organ culture. This inhibition depends on the stage of tooth development so that only teeth at early developmental stages respond to EGF (A-M. Partanen, P. Ekblom, and I. Thesleff (1985) Dev. Biol. 111, 84-94). We have now studied the quantity and pattern of EGF binding in teeth at various stages of development by incubating the dissected tooth germs with 125I-labeled EGF. Although the quantity of 125I-EGF binding per microgram DNA stays at the same level, localization of 125I-EGF binding by autoradiography reveals that the distribution of binding sites changes dramatically. In bud stage the epithelial tooth bud that is intruding into the underlying mesenchyme has binding sites for EGF, but the condensation of dental mesenchymal cells around the bud does not bind EGF. At the cap stage of development the dental mesenchyme binds EGF, but the dental epithelium shows no binding. This indicates that the dental mesenchyme is the primary target tissue for the inhibitory effect of EGF on tooth morphogenesis during early cap stage. During advanced morphogenesis the binding sites of EGF disappear also from the dental papilla mesenchyme, but the dental follicle which consists of condensed mesenchymal cells surrounding the tooth germ, binds EGF abundantly. We have also studied EGF binding during the development of other embryonic organs, kidney, salivary gland, lung, and skin, which are all formed by mesenchymal and epithelial components. The patterns of EGF binding in various tissues suggest that EGF may have a role in the organogenesis of epitheliomesenchymal organs as a stimulator of epithelial proliferation during initial epithelial bud formation and branching morphogenesis. The results of this study indicate that EGF stimulates or maintains proliferation of undifferentiated cells during embryonic development and that the expression of EGF receptors in different organs is not related to the age of the embryo, but is specific to the developmental stage of each organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号