首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The seven mammalian channels from the classical (TRPC) subfamily of transient receptor potential (TRP) channels are thought to be receptor-operated cation channels activated in a phospholipase C (PLC)-dependent manner. Based on sequence similarity, TRPC channels can be divided into four subgroups. Group 4 comprises TRPC4 and TRPC5, and is most closely related to group 1 (TRPC1). The functional properties observed following heterologous expression of TRPC4 or TRPC5 in mammalian cells are contradictory and, therefore, controversial. In our hands, and in several independent studies, both channels, probably as homotetramers, form receptor-operated, Ca2+-permeable, nonselective cation channels activated independently of inositol 1,4,5-trisphosphate (InsP3) receptor activation or Ca2+ store-depletion. As heteromultimers with TRPC1, TRPC4 and TRPC5 form receptor-operated, Ca2+-permeable, nonselective cation channels with biophysical properties distinct from homomeric TRPC4 or TRPC5. In other studies, TRPC4 and TRPC5 have been shown to be store-operated channels, with moderate to high Ca2+ permeabilities. At present there is no clear explanation for these major differences in functional properties. To date, little is known as to which native cation channels are formed by TRPC4 and TRPC5. Endothelial cells from TRPC4−/− mice lack a highly Ca2+-permeable, store-dependent current, and data support a role for TRPC4 in endothelium-mediated vasorelaxation. A similar current in adrenal cortical cells is reduced by TRPC4 antisense. From similarities in the properties of the currents and expression of appropriate isoforms in the tissues, it is likely that heteromultimers of TRPC1 and TRPC4 or TRPC5 form receptor-operated nonselective cation channels in central neurones, and that TRPC4 contributes to nonselective cation channels in intestinal smooth muscle.  相似文献   

2.
Lead toxicity is long-recognised but continues to be a major public health problem. Its effects are wide-ranging and include induction of hyper-anxiety states. In general it is thought to act by interfering with Ca2+ signalling but specific targets are not clearly identified. Transient receptor potential canonical 5 (TRPC5) is a Ca2+-permeable ion channel that is linked positively to innate fear responses and unusual amongst ion channels in being stimulated by trivalent lanthanides, which include gadolinium. Here we show investigation of the effect of lead, which is a divalent ion (Pb2+). Intracellular Ca2+ and whole-cell patch-clamp recordings were performed on HEK 293 cells conditionally over-expressing TRPC5 or other TRP channels. Extracellular application of Pb2+ stimulated TRPC5 at concentrations greater than 1 μM. Control cells without TRPC5 showed little or no response to Pb2+ and expression of other TRP channels (TRPM2 or TRPM3) revealed partial inhibition by 10 μM Pb2+. The stimulatory effect on TRPC5 depended on an extracellular residue (E543) near the ion pore: similar to gadolinium action, E543Q TRPC5 was resistant to Pb2+ but showed normal stimulation by the receptor agonist sphingosine-1-phosphate. The study shows that Pb2+ is a relatively potent stimulator of the TRPC5 channel, generating the hypothesis that a function of the channel is to sense metal ion poisoning.  相似文献   

3.
Chen S  He FF  Wang H  Fang Z  Shao N  Tian XJ  Liu JS  Zhu ZH  Wang YM  Wang S  Huang K  Zhang C 《Cell calcium》2011,50(6):523-529
Albumin, which is the most abundant component of urine proteins, exerts injurious effects on renal cells in chronic kidney diseases. However, the toxicity of albumin to podocytes is not well elucidated. Here, we show that a high concentration of albumin triggers intracellular calcium ([Ca2+]i) increase through mechanisms involving the intracellular calcium store release and extracellular calcium influx in conditionally immortalized podocytes. The canonical transient receptor potential-6 (TRPC6) channel, which is associated with a subset of familial forms of focal segmental glomerulosclerosis (FSGS) and several acquired proteinuric kidney diseases, was shown to be one of the important Ca2+ permeable ion channels in podocytes. Therefore we explored the role of TRPC6 on albumin-induced functional and structural changes in podocytes. It was found that albumin-induced increase in [Ca2+]i was blocked by TRPC6 siRNA or SKF-96365, a blocker of TRP cation channels. Long-term albumin exposure caused an up-regulation of TRPC6 expression in podocytes, which was inhibited by TRPC6 siRNA. Additionally, the inhibition of TRPC6 prevented the F-actin cytoskeleton disruption that is induced by albumin overload. Moreover, albumin overload induced expression of the endoplasmic reticulum (ER) stress protein GRP78, led to caspase-12 activation and ultimately podocyte apoptosis, all of which were abolished by the knockdown of TRPC6 using TRPC6 siRNA. These results support the view that albumin overload may induce ER stress and the subsequent apoptosis in podocytes via TRPC6-mediated Ca2+ entry.  相似文献   

4.
The classical type of transient receptor potential channel (TRPC) is a molecular candidate for Ca2+-permeable cation channels in mammalian cells. Especially, TRPC4 has the similar properties to Ca2+-permeable nonselective cation channels (NSCCs) activated by muscarinic stimulation in visceral smooth muscles. In visceral smooth muscles, NSCCs activated by muscarinic stimulation were blocked by anti-Gαi/o antibodies. However, there is still no report which Gα proteins are involved in the activation process of TRPC4. Among Gα proteins, only Gαi protein can activate TRPC4 channel. The activation effect of Gαi was specific for TRPC4 because Gαi has no activation effect on TRPC5, TRPC6 and TRPV6. Coexpression with muscarinic receptor M2 induced TRPC4 current activation by muscarinic stimulation with carbachol, which was inhibited by pertussis toxin. These results suggest that Gαi is involved specifically in the activation of TRPC4.  相似文献   

5.
The human TRP protein family comprises a family of 27 cation channels with diverse permeation and gating properties. The common theme is that they are very important regulators of intracellular Ca2+ signaling in diverse cell types, either by providing a Ca2+ influx pathway, or by depolarising the membrane potential, which on one hand triggers the activation of voltage-gated Ca2+ channels, and on the other limits the driving force for Ca2+ entry. Here we focus on the role of these TRP channels in vascular smooth muscle and cardiac striated muscle. We give an overview of highlights from the recent literature, and highlight the important and diverse roles of TRP channels in the pathophysiology of the cardiovascular system.The discovery of the superfamily of Transient Receptor Potential (TRP) channels has significantly enhanced our knowledge of multiple signal transduction mechanisms in cardiac muscle and vascular smooth muscle cells (VSMC). In recent years, multiple studies have provided evidence for the involvement of these channels, not only in the regulation of contraction, but also in cell proliferation and remodeling in pathological conditions.The mammalian family of TRP cation channels is composed by 28 genes which can be divided into 6 subfamilies groups based on sequence similarity: TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipins), TRPV (Vanilloid), TRPP (Policystin) and TRPA (Ankyrin-rich protein). Functional TRP channels are believed to form four-unit complexes in the plasma, each of them expressed with six transmembrane domain and intracellular N and C termini.Here we review the current knowledge on the expression of TRP channels in both muscle types, and discuss their functional properties and role in physiological and pathophysiological processes.  相似文献   

6.
The Transient Receptor Potential (TRP) protein superfamily is a group of cation channels expressed in various cell types and involved in respiratory diseases such as cystic fibrosis (CF), the genetic disease caused by CF Transmembrane conductance Regulator (CFTR) mutations. In human airway epithelial cells, there is growing evidence for a functional link between CFTR and TRP channels. TRP channels contribute to transmitting extracellular signals into the cells and, in an indirect manner, to CFTR activity via a Ca2+ rise signaling. Indeed, mutated CFTR-epithelial cells are characterized by an increased Ca2+ influx and, on the opposite, by a decreased of magnesium influx, both being mediated by TRP channels. This increasing cellular Ca2+ triggers the activation of calcium-activated chloride channels (CaCC) or CFTR itself, via adenylyl cyclase, PKA and tyrosine kinases activation, but also leads to an exaltation of the inflammatory response. Another shortcoming in mutated CFTR-epithelial cells is a [Mg2+]i decrease, associated with impaired TRPM7 functioning. This deregulation has to be taken into consideration in CF physiopathology, as Mg2+ is required for ATP hydrolysis and CFTR activity. The modulation of druggable TRP channels could supplement CF therapy either an anti-inflammatory drug or for CFTR potentiation, according to the balance between exacerbation and respite phases. The present paper focus on TRPA1, TRPC6, TRPM7, TRPV2, TRPV4, TRPV6 and ORAI 1, the proteins identified, for now, as dysfunctional channels, in CF cells.  相似文献   

7.
Though most of the studies have focused on the effects of free fatty acids on T-cell activation, fatty acids incorporated into plasma membrane phospholipids may also affect cell signaling via diacylglycerol (DAG), generally produced by phospholipid hydrolysis. In the present study, we have synthesized a DAG-containing oleic acid and studied its implication in the modulation of calcium signaling in human Jurkat T-cells. 1-palmitoyl-2-oleoyl-sn-glycerol (POG) induced a dose-dependent increase in [Ca2+]i. This effect was due to the presence of oleic acid at the sn-2 position as no differences were observed between POG and 1-stearoly-2-oleoyl-sn-glycerol (SOG). However, the substitution of oleic acid with arachidonic acid at the sn-2 position of the DAG moiety exerted a different response on the increases in [Ca2+]i in these cells. POG-evoked increases in [Ca2+]i were not due to its metabolites. Furthermore, POG-induced increases in [Ca2+]i were due to the opening of TRPC3/TRPC6 channels as silencing of TRPC3 and TRPC6 genes by shRNA abolished calcium entry. Moreover, disruption of lipid rafts with methyl-β-cyclodextrin completely abolished POG-evoked increases in [Ca2+]i. In conclusion, our results demonstrate that oleic acid can influence T-lymphocyte functions, in the conjugated form of DAG, via opening TRPC3/6 channels.  相似文献   

8.
Cellular senescence has evolved as a protective mechanism to arrest growth of cells with oncogenic potential but is accompanied by the often pathologically deleterious senescence-associated secretory phenotype (SASP). Here we demonstrate an H2O2-dependent functional disruption controlling senescence-associated Ca2+ homeostasis and the SASP. Senescent cells fail to respond to H2O2-dependent plasma lamellar Ca2+ entry when compared to pre-senescent cells. Limiting exposure to senescence-associated H2O2 restores H2O2-dependent Ca2+ entry as well as transient receptor potential cation channel subfamily C member 6 (TRPC6) function. SA-TRPC6 and SASP expression is blocked by restoring Ca2+ entry with the TRP channel antagonist SKF-96365 or by the mTOR inhibitors rapamycin and Ku0063794. Together, our findings provide compelling evidence that redox and mTOR-mediated regulation of Ca2+ entry through TRPC6 modulates SASP gene expression and approaches which preserve normal Ca2+ homeostasis may prove useful in disrupting SASP activity.Impact statementThrough its ability to evoke responses from cells in a paracrine fashion, the senescence-associated secretory phenotype (SASP) has been linked to numerous age-associated disease pathologies including tumor invasion, cardiovascular dysfunction, neuroinflammation, osteoarthritis, and renal disease. Strategies which limit the amplitude and duration of SASP serve to delay age-related degenerative decline. Here we demonstrate that the SASP regulation is linked to shifts in intracellular Ca2+ homeostasis and strategies which rescue redox-dependent calcium entry including enzymatic H2O2 scavenging, TRP modulation, or mTOR inhibition block SASP and TRPC6 gene expression. As Ca2+ is indispensable for secretion from both secretory and non-secretory cells, it is exciting to speculate that the expression of plasma lamellar TRP channels critical for the maintenance of intracellular Ca2+ homeostasis may be coordinately regulated with the SASP.  相似文献   

9.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca2+-permeable channels. TRPC channels are activated by stimulation of Gαq-PLC-coupled receptors. Here, we report that TRPC4/TRPC5 can be activated by Gαi. We studied the essential role of Gαi subunits in TRPC4 activation and investigated changes in ion selectivity and pore dilation of the TRPC4 channel elicited by the Gαi2 subunit. Activation of TRPC4 by Gαi2 increased Ca2+ permeability and Ca2+ influx through TRPC4 channels. Co-expression of the muscarinic receptor (M2) and TRPC4 in HEK293 cells induced TRPC4-mediated Ca2+ influx. Moreover, both TRPC4β and the TRPC4β-Gαi2 signaling complex induced inhibition of neurite growth and arborization in cultured hippocampal neurons. Cells treated with KN-93, a CaMKII inhibitor, prevented TRPC4- and TRPC4-Gαi2Q205L-mediated inhibition of neurite branching and growth. These findings indicate an essential role of Gαi proteins in TRPC4 activation and extend our knowledge of the functional role of TRPC4 in hippocampal neurons.  相似文献   

10.
TRPC channels are Ca2+-permeable cation channels which are regulated downstream from receptor-coupled PIP2 hydrolysis. These channels contribute to a wide variety of cellular functions. Loss or gain of channel function has been associated with dysfunction and aberrant physiology. TRPC channel functions are influenced by their physical and functional interactions with numerous proteins that determine their regulation, scaffolding, trafficking, as well as their effects on the downstream cellular processes. Such interactions also compartmentalize the Ca2+ signals arising from TRPC channels. A large number of studies demonstrate that trafficking is a critical mode by which plasma membrane localization and surface expression of TRPC channels are regulated. This review will provide an overview of intracellular trafficking pathways as well as discuss the current state of knowledge regarding the mechanisms and components involved in trafficking of the seven members of the TRPC family (TRPC1–TRPC7).  相似文献   

11.
TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca2+ and Na+ currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca2+ influx in HEK293 cells.  相似文献   

12.
Capacitative calcium entry (CCE) refers to the influx of calcium through plasma membrane channels activated on depletion of endoplasmic sarcoplasmic/reticulum (ER/SR) Ca2+ stores, which is performed mainly by the transient receptor potential (TRP) channels. TRP channels are expressed in cardiomyocytes. Calcium-sensing receptor (CaR) is also expressed in rat cardiac tissue and plays an important role in mediating cardiomyocyte apoptosis. However, there are no data regarding the link between CaR and TRP channels in rat heart. In this study, in rat neonatal myocytes, by Ca2+ imaging, we found that the depletion of ER/SR Ca2+ stores by thapsigargin (TG) elicited a transient rise in cytoplasmic Ca2+ ([Ca2+]i), followed by sustained increase depending on extracellular Ca2+. But, TRP channels inhibitor (SKF96365), not L-type channels or the Na+/Ca2+ exchanger inhibitors, inhibited [Ca2+]i relatively high. Then, we found that the stimulation of CaR with its activator gadolinium chloride (GdCl3) or by an increased extracellular Ca2+([Ca2+]o) increased the concentration of intracelluar Ca2+, whereas, the sustained elevation of [Ca2+]i was reduced in the presence of SKF96365. Similarly, the duration of [Ca2+]i increase was also shortened in the absence of extracellular Ca2+. Western blot analysis showed that GdCl3 increased the expression of TRPC6, which was reversed by SKF96365. Additionally, SKF96365 reduced cardiomyocyte apoptosis induced by GdCl3. Our results suggested that CCE exhibited in rat neonatal myocytes and CaR activation induced Ca2+-permeable cationic channels TRPCs to gate the CCE, for which TRPC6 was one of the most likely candidates. TRPC6 channel was functionally coupled with CaR to enhance the cardiomyocyte apoptosis.  相似文献   

13.
Aging, cancer, and longevity have been linked to intracellular Ca2+ signaling and nociceptive transient receptor potential (TRP) channels. We found that TRP canonical 7 (TRPC7) is a nociceptive mechanoreceptor and that TRPC7 channels specifically mediate the initiation of ultraviolet B (UVB)‐induced skin aging and tumor development due to p53 gene family mutations. Within 30 min after UVB irradiation, TRPC7 mediated UVB‐induced Ca2+ influx and the subsequent production of reactive oxygen species in skin cells. Notably, this function was unique to TRPC7 and was not observed for other TRP channels. In TRPC7 knockout mice, we did not observe the significant UVB‐associated pathology seen in wild‐type mice, including epidermal thickening, abnormal keratinocyte differentiation, and DNA damage response activation. TRPC7 knockout mice also had significantly fewer UVB‐induced cancerous tumors than did wild‐type mice, and UVB‐induced p53 gene family mutations were prevented in TRPC7 knockout mice. These results indicate that TRPC7 activity is pivotal in the initiation of UVB‐induced skin aging and tumorigenesis and that the reduction in TRPC7 activity suppresses the UVB‐induced aging process and tumor development. Our findings support that TRPC7 is a potential tumor initiator gene and that it causes cell aging and genomic instability, followed by a change in the activity of proto‐oncogenes and tumor suppressor genes to promote tumorigenesis.  相似文献   

14.
The classical type of transient receptor potential (TRPC) channel is a molecular candidate for Ca2+-permeable cation channels in mammalian cells. Because TRPC4 and TRPC5 belong to the same subfamily of TRPC, they have been assumed to have the same physiological properties. However, we found that TRPC4 had its own functional characteristics different from those of TRPC5. TRPC4 channels had no constitutive activity and were activated by muscarinic stimulation only when a muscarinic receptor was co-expressed with TRPC4 in human embryonic kidney (HEK) cells. Endogenous muscarinic receptor appeared not to interact with TRPC4. TPRC4 activation by GTPγS was not desensitized. TPRC4 activation by GTPγS was not inhibited by either Rho kinase inhibitor or MLCK inhibitor. TRPC4 was sensitive to external pH with pK a of 7.3. Finally, TPRC4 activation by GTPγS was inhibited by the calmodulin inhibitor W-7. We conclude that TRPC4 and TRPC5 have different properties and their own physiological roles. These authors contributed equally to this work.  相似文献   

15.
TRP family of proteins are components of unique cation channels that are activated in response to diverse stimuli ranging from growth factor and neurotransmitter stimulation of plasma membrane receptors to a variety of chemical and sensory signals. This review will focus on members of the TRPC sub-family (TRPC1–TRPC7) which currently appear to be the strongest candidates for the enigmatic Ca2+ influx channels that are activated in response to stimulation of plasma membrane receptors which result in phosphatidyl inositol-(4,5)-bisphosphate (PIP2) hydrolysis, generation of IP3 and DAG, and IP3-induced Ca2+ release from the intracellular Ca2+ store via inositol trisphosphate receptor (IP3R). Homomeric or selective heteromeric interactions between TRPC monomers generate distinct channels that contribute to store-operated as well as store-independent Ca2+ entry mechanisms. The former is regulated by the emptying/refilling of internal Ca2+ store(s) while the latter depends on PIP2 hydrolysis (due to changes in PIP2 per se or an increase in diacylglycerol, DAG). Although the exact physiological function of TRPC channels and how they are regulated has not yet been conclusively established, it is clear that a variety of cellular functions are controlled by Ca2+ entry via these channels. Thus, it is critical to understand how cells coordinate the regulation of diverse TRPC channels to elicit specific physiological functions. It is now well established that segregation of TRPC channels mediated by interactions with signaling and scaffolding proteins, determines their localization and regulation in functionally distinct cellular domains. Furthermore, both protein and lipid components of intracellular and plasma membranes contribute to the organization of these microdomains. Such organization serves as a platform for the generation of spatially and temporally dictated [Ca2+]i signals which are critical for precise control of downstream cellular functions.  相似文献   

16.
The receptor-evoked Ca2+ signal in secretory epithelia mediate many cellular functions essential for cell survival and their most fundamental functions of secretory granules exocytosis and fluid and electrolyte secretion. Ca2+ influx is a key component of the receptor-evoked Ca2+ signal in secretory cell and is mediated by both TRPC and the STIM1-activated Orai1 channels that mediates the Ca2+ release-activated current (CRAC) Icrac. The core components of the receptor-evoked Ca2+ signal are assembled at the ER/PM junctions where exchange of materials between the plasma membrane and internal organelles take place, including transfer of lipids and Ca2+. The Ca2+ signal generated at the confined space of the ER/PM junctions is necessary for activation of the Ca2+-regulated proteins and ion channels that mediate exocytosis with high fidelity and tight control. In this review we discuss the general properties of Ca2+ signaling, PI(4,5)P2 and other lipids at the ER/PM junctions with regard to secretory cells function and disease caused by uncontrolled Ca2+ influx.  相似文献   

17.
Transient receptor potential (TRP) proteins have been identified as cation channels that are activated by agonist–receptor coupling and mediate various cellular functions. TRPC7, a homologue of TRP channels, has been shown to act as a Ca2+ channel activated by G protein-coupled stimulation and to be abundantly expressed in the heart with an as-yet-unknown function. We studied the role of TRPC7 in G protein-activated signaling in HEK293 cells and cultured cardiomyocytes in vitro transfected with FLAG-tagged TRPC7 cDNA and in Dahl salt-sensitive rats with heart failure in vivo. TRPC7-transfected HEK293 cells showed an augmentation of carbachol-induced intracellular Ca2+ transient, which was attenuated under a Ca2+-free condition or in the presence of SK&F96365 (a Ca2+-permeable channel blocker). Upon stimulation with angiotensin II (Ang II), cultured neonatal rat cardiomyocytes transfected with TRPC7 exhibited a significant increase in apoptosis detected by TUNEL staining, accompanied with a decrease in the expression of atrial natriuretic factor and destruction of actin fibers, as compared with non-transfected cardiomyocytes. Ang II-induced apoptosis was inhibited by CV-11974 (Candesartan; Ang II type 1 [AT1] receptor blocker), SK&F96365, and FK506 (calcineurin inhibitor). In Dahl salt-sensitive rats, apoptosis and TRPC7 expression were increased in the failing myocardium, and a long-term treatment with temocapril, an angiotensin-converting enzyme inhibitor, suppressed both. Our findings suggest that TRPC7 could act as a Ca2+ channel activated by AT1 receptors, leading to myocardial apoptosis possibly via a calcineurin-dependent pathway. TRPC7 might be a key initiator linking AT1-activation to myocardial apoptosis, and thereby contributing to the process of heart failure.  相似文献   

18.
We identified human TRPC3 protein by yeast two-hybrid screening of a human brain cDNA library with human TRPM4b as a bait. Immunoprecipitation and confocal microscopic analyses confirmed the protein-protein interaction between TRPM4b and TRPC3, and these two TRPs were found to be highly colocalized at the plasma membrane of HEK293T cells. Overexpression of TRPM4b suppressed TRPC3-mediated whole cell currents by more than 90% compared to those in TRPC3-expressed HEK293T cells. Furthermore, HEK293T cells stably overexpressing red fluorescent protein (RFP)-TRPM4b exhibited an almost complete abolition of UTP-induced store-operated Ca2+ entry, which is known to take place via endogenous TRPC channels in HEK293T cells. This study is believed to provide the first clear evidence that TRPM4b interacts physically with TRPC3, a member of a different TRP subfamily, and regulates negatively the channel activity, in turn suppressing store-operated Ca2+ entry through the TRPC3 channel.  相似文献   

19.
Transient receptor potential (TRP) channels are six transmembrane-spanning proteins, with variable selectivity for cations, that play a relevant role in intracellular Ca2 + homeostasis. There is a large body of evidence that shows association of TRP channels with the actin cytoskeleton or even the microtubules and demonstrating the functional importance of this interaction for TRP channel function. Conversely, cation currents through TRP channels have also been found to modulate cytoskeleton rearrangements. The interplay between TRP channels and the cytoskeleton has been demonstrated to be essential for full activation of a variety of cellular functions. Furthermore, TRP channels have been reported to take part of macromolecular complexes including different signal transduction proteins. Scaffolding proteins play a relevant role in the association of TRP proteins with other signaling molecules into specific microdomains. Especially relevant are the roles of the Homer family members for the regulation of TRPC channel gating in mammals and INAD in the modulation of Drosophila TRP channels. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

20.
Background: Catalase catalyzes the reduction of H2O2 to water and it can also remove organic hydroperoxides. Nervous system in body is especially sensitive to free radical damage due to rich content of easily oxidizible fatty acids and relatively low content of antioxidants including catalase. Recent studies indicate that reactive oxygen species actually target active channel function, in particular TRP channels. I review the effects of catalase on Ca2+ signaling and on TRP channel activation in neuroglial cells such as microglia and substantia nigra.

Materials: Review of the relevant literature and results from recent our basic studies, as well as critical analyses of published systematic reviews were obtained from the pubmed and the Science Citation Index.

Results: It was observed that oxidative stress-induced activations of TRPM2, TRPC3, TRPC5 and TRPV1 cation channels in neuronal cells are modulated by catalase, suggesting antioxidant-dependent activation/inhibition of the channels. I provide also, a general overview of the most important oxidative stress-associated changes in neuronal mitochondrial Ca2+ homeostasis due to oxidative stress-induced channel neuropathies. Catalase incubation induces protective effects on rat brain mitochondrial function and neuronal survival. A decrease in catalase activity through oxidative stress may have an important role in etiology of Parkinson’s disease and sensory pain.

Conclusion: The TRP channels can be activated by oxidative stress products, opening of nonspecific cation channels would result in Ca2+ influx, and then elevation of cytoplasmic free Ca2+ could stimulate mitochondrial Ca2+ uptake. Catalase modulates oxidative stress-induced Ca2+ influx and some TRP channels activity in neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号