首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteolysis of casein by trypsin, chymotrypsin and papain was inhibited by ripened and unripened bontha, poovan, nendran, cavendish and rasthali bananas. The inhibition of trypsin, chymotrypsin and papain by different ripened banana cultivars was much more than that of unripened banana cultivars. The trypsin and chymotrypsin inhibitory activity of ripened poovan was heat stable, resistant to pronase and partly stable to trypsin but the trypsin and chymotrypsin inhibitory activity of unripened poovan was stable to heat and resistant to pronase only. The partial stability of trypsin inhibitory activity and instability of papain inhibitory activity of ripened poovan to alkaline pH suggests that the inhibitory factors of trypsin and papain were dissimilar. The probable role of unripened banana papain inhibitors in curing stomach ulcers and antinutritional role of ripened banana trypsin inhibitors is discussed.  相似文献   

2.
We demonstrate that the limited proteolysis of the lens fiber-cell gap junction protein, MP26, is intrinsic in mammalian lens fiber plasma membranes. Incubations of isolated intact bovine lens fiber plasma membranes in buffer alone did not elicit proteolysis of MP26. Incubations in the buffer with detergent, however, resulted in the limited proteolysis of MP26 which was totally inhibited by calcium chelators, thiol-alkylating agents, and protease inhibitors. As the limited proteolysis required the presence of detergent, it must depend on an enzymatic activity intrinsic in the lens fiber plasma membranes or in MP26 itself.  相似文献   

3.
鹰嘴豆种子胰蛋白酶抑制剂的分离纯化与鉴定   总被引:2,自引:0,他引:2  
为了寻找具有药物作用的天然胰蛋白酶抑制物,采用硫酸铵分级沉淀、离子交换层析(DEAE-纤维素52)及Sephadex G-100凝胶层析等方法, 从鹰嘴豆种子中分离出一种鹰嘴豆胰蛋白酶抑制剂(CPTI). 研究表明:CPTI对胰蛋白酶有较强的抑制作用,抑制率达80%,而对胰凝乳蛋白酶抑制作用较弱,抑制率为32%, 对胃蛋白酶、木瓜蛋白酶及枯草杆菌蛋白酶均无抑制作用; 用SDS-PAGE测得CPTI近似分子质量为25.7 kD; CPTI具有较高的热稳定性,在100 ℃下加热60 min,对胰蛋白酶活性仍保持78%抑制率; Lineveaer-Burk作图得知该抑制剂属竞争性抑制类型. 动力学测定显示,来自鹰嘴豆中的CPTI对胰蛋白酶的抑制作用常数(Ki)为3.99×10-7 mol/L.  相似文献   

4.
Fatty acid synthetase from lactating rat mammary gland after limited proteolysis with chymotrypsin or trypsin synthesizes longer chain fatty acids than those produced by the native enzyme. Of the seven partial reactions of the multienzyme complex, only the thioesterase activity was decreased. The results suggest that modification of the fatty acid synthetase product specificity by chymotrypsin and trypsin results from a specific action of these proteases on the thioesterase component. Trypsin, but not chymotrypsin, cleaved a catalytically active thioesterase from the complex; it thus appears that limited trypsinization will be a useful tool for the isolation of the thioesterase component of the multienzyme.  相似文献   

5.
研究了Papain及Trypsin裂解小鼠抗天花粉蛋白IgE单抗的条件及Fab的制备。Papain和Trypsin两者都可产生F(ab′)_2,分子量在150~160kD左右;经Papain裂解的主要产物中还有Fab,分子量72kD,可通过凝胶过滤获得纯的Fab。而Trypsin裂解物经DTT还原、碘乙酰胺烷化虽然也可得到Fab′(t),但不易纯化;可见,要制备Fab以采用Papain裂解为好,而制备F(ab′)_2则可采用Trypsin裂解。这二个酶的裂解速度是Trypsin大于Papain。  相似文献   

6.
1. Bovine kidney pyruvate dehydrogenase multienzyme complex is inactivated by elastase in a similar manner as described earlier for papain. The core component, lipoate acetyltransferase, is cleaved by elastase into an active fragment (Mr 26000) and a fragment with apparent Mr of 45000 as analyzed by dodecylsulfate gel electrophoresis. Due to the fragmentation of the core, the enzyme complex is disassembled into its component enzymes which retain their complete enzymatic activities as assayed separately. 2. A different mechanism was found for the inactivation of pyruvate dehydrogenase complex with trypsin and some other proteases (chymotrypsin, clostripain). In these cases, the pyruvate dehydrogenase component is inactivated rapidly by limited proteolysis. More slowly, the enzyme complex is disassembled simultaneously with fragmentation of the lipoate acetyltransferase which again results in an active fragment of Mr 26000 and another fragment of apparent Mr 45000. Upon prolonged proteolysis, the latter fragment is cleaved further to give products of Mr 36000 or lower. 3. The enzyme-bound lipoyl residues of the pyruvate dehydrogenase complex have been labelled covalently by incubation with [2-14C]pyruvate. After treatment of this [14C]acetyl-enzyme with papain, elastase, or trypsin, radioactivity was associated exclusively with the 45000-Mr and 36000-Mr fragments but not with the active 26000-Mr fragment. 4. It is concluded that the bovine kidney lipoate acetyltransferase core is composed of 60 subunits each consisting of two dissimilar folding domains. One of these contains the intersubunit binding sites as well as the active center for transacylation whereas the other possesses the enzyme-bound lipoyl residues.  相似文献   

7.
M Finel 《FEBS letters》1988,236(2):415-419
Paracoccus oxidase containing only two subunits was subjected to proteolysis by trypsin and chymotrypsin. Both subunits of the purified enzyme were cleaved at only a few sites and enzymatic activity was not inhibited. The cleavage sites were identified by protein sequencing. Subunit I was cleaved near the amino-terminus and subunit II in the loop connecting the two predicted trans-membrane helices. In native membrane fragments, but not in intact spheroplasts, this loop was accessible to both proteases. These results provide experimental evidence for the folding of subunit II in the membrane.  相似文献   

8.
Calf lens fiber plasma membranes, containing only the intrinsic membrane protein MP26 and its maturation product MP22 were treated with proteolytic enzymes such as trypsin, protease V8 from S. aureus or with chemical agents as CNBr in formic acid. The cleavage products, purified by electrophoresis, were analysed for their amino acid composition and N-terminal sequences. Proteolysis gave rise to peptides which were mainly shortened at the C-terminal end of the molecules. While the V8 protease produced a fragment with a similar N-terminal sequence as the maturation product MP22, trypsin yielded another cleavage product. Chemical hydrolysis yielded large fragments (11-15 kDa) with hydrophobic N-terminal sequences. Our results suggest that MP26 is characterised by an N-terminal signal sequence and possesses other hydrophobic domains which could function as untranslocated insertion sequences.  相似文献   

9.
cAMP-dependent protein kinase, derived from either calf lens or bovine heart, promotes the phosphorylation of three lens plasma membrane proteins of molecular mass 28 kDa, 26 kDa and 18 kDa. Correlation of the maximal level of phosphorylation of these components with the Coomassie blue staining intensity of fractionated lens membranes suggests that the phosphorylation of the 28 kDa and 18 kDa components may be approximately stoichiometric. The protein kinase substrates could be dephosphorylated by a cardiac sarcoplasmic-reticulum-bound protein phosphatase activity. The 26 k Da component comigrated with MP26, the major lens membrane component that has been localized to the lens fiber cell junction. Treatment of phosphorylated lens membranes with chymotrypsin did not suggest that any of the three major phosphorylated components was derived from the partial proteolysis of a larger phosphoprotein. After electrophoretic separation of phosphorylated proteins, treatment with N-chlorosuccinimide confirmed that there was little similarity in the structure of the three phosphoproteins. Chymotrypsin did, however, reveal a cryptic phosphorylation site in a 22 kDa fragment that appeared to be derived from MP26. Treatment of phosphorylated membranes with reducing agents resulted in the disappearance of the 28 kDa phosphorylated component and the appearance of a new phosphorylated component of 18 kDa; neither MP26 nor the original 18 kDa component was affected by such treatment. It is not clear whether the original 18 kDa phosphoprotein, present in unreduced samples, is the same as that generated with reducing agents from the 28 kDa phosphorylated lens membrane component.  相似文献   

10.
G-actin bound to deoxyribonuclease I (DNase I) is resistant to digestion by trypsin and chymotrypsin. In the absence of DNase I, G-actin is cleaved by these proteases to yield a 33 500 molecular weight core protein which is not degraded further. The major sites of proteolytic action in the amino acid sequence of actin have been identified as being adjacent to residues arginine-62 and lysine-68 for trypsin and leucine-57 for chymotrypsin. These residues are rendered inaccessible to proteases in the buffer by complex formation with DNase I. Digestion of G-actin with pronase from Streptomyces griseus yields fragmentation patterns that are similar to those observed with trypsin and chymotrypsin. This is likely to be because the specificities of the major constituents of pronase resemble those of trypsin and chymotrypsin. Again, complex formation with DNase I protects the otherwise vulnerable bonds in actin against proteolysis. Incubation with subtilisin Carlsberg leads to complete digestion of G-actin. No subtilisin-resistant core protein accumulates during the incubation. Protection of G-actin when complexed to DNase I is less than complete in this case but still is significant. This is interpreted in terms of the broad specificity of subtilisin and the observed fragmentation pattern of free G-actin when treated with subtilisin.  相似文献   

11.
Summary Two protease inhibitors from the culture fluid of Streptomyces violascens U 10600 have been purified with a method including freeze-drying, methanol extraction, dialysis, and ultrafiltration. By gel filtration on Sephadex G-15 a separation in two active inhibitors, one of trypsin and one of chymotrypsin, was made.The inhibitors were stable at 100°C, pH 5, for 20 min and at 24°C between pH 1.8 to 9.7. Both inhibitors were dialysable. They had no bacteriostatic or fungistatic effects. The trypsin inhibitor inhibited also papain and proteases from Aspergillus oryzae, Alternaria tenuissima, Entomophthora coronata, and to some extent Gibberella fujikuroi, but not chymotrypsin, kallikrein, ficin, or pepsin. The chymotrypsin inhibitor inhibited also papain and proteases from Aspergillus oryzae, Alternaria tenuissima, and Gibberella fujikuroi, but not trypsin, kallikrein, ficin, pepsin, or protease from Entomophthora coronata.  相似文献   

12.
M Pines  P Gierschik  A Spiegel 《FEBS letters》1985,182(2):355-359
The 35-kDa beta-subunit of transducin purified from rod outer segment membranes is cleaved into 2 major fragments by trypsin, and 7 major fragments by chymotrypsin. Identical fragments are visualized by immunoblotting with transducin-beta specific antisera after proteolysis of rod outer segment membranes, purified brain guanine nucleotide binding proteins, and brain membranes. The results indicate that the beta-subunits of transducin and of brain guanine nucleotide binding proteins are not only similar structurally, but are also similarly oriented in membranes with respect to accessibility to proteolytic enzymes.  相似文献   

13.
L N Lin  J F Brandts 《Biochemistry》1985,24(23):6533-6538
In an effort to further develop the technique of isomer-specific proteolysis, a number of proline-containing substrates were subjected to hydrolysis in the presence of chymotrypsin, trypsin, or prolidase. The objective was to determine whether direct hydrolysis of the cis form of the substrate could occur and, if so, the extent to which it is slower than the hydrolysis of the equivalent trans form. It is shown that for both peptide and amide substrates, which contain proline at the P2 position, the cis form can be hydrolyzed directly by either chymotrypsin or trypsin, in contrast to earlier suggestions in the literature. For similar amide substrates, it was found that chymotrypsin has a lower catalytic efficiency for the cis form, relative to the trans form, by a factor of 20 000 while, for trypsin and its substrate, the cis form was cleaved about 2000 times less efficiently. Results for a trypsin substrate with proline at the P2' position, rather than the P2 position, were quite different however, since there was no indication that the cis form could be directly cleaved even at the highest enzyme concentration. There was also no indication that prolidase could cleave the dipeptide Phe-Pro when the active bond itself is in the cis form. These collective results suggest that the ability of proteases to cleave a substrate with a cis peptide bond depends strongly on the location of the cis bond relative to the active bond that is being cleaved.  相似文献   

14.
The proteolysis of flu virions of the strain A/Puerto Rico/8/34 (subtype H1N1) by enzymes of various classes was studied to develop an approach to the study of the structural organization and interaction of the major protein components of the virion: hemagglutinin (HA), transmembrane homotrimeric glycoprotein, and matrix protein M1 forming a layer under the lipid membrane. Among the tested proteolytic enzymes and enzymic preparations (thermolysin, trypsin, chymotrypsin, subtilisin Carlsberg, pronase, papain, and bromelain), the cysteine proteases bromelain and papain and the enzymic preparation pronase efficiently removed HA ectodomains, while chymotrypsin, trypsin, and subtilisin Carlsberg deleted only a part of them. An analysis by MALDI TOF mass spectrometry allowed us to locate the sites of HA hydrolysis by various enzymic preparations. Bromelain, papain, trypsin, and pronase split the polypeptide chain after the K177 residue located before the transmembrane domain (HA2 185–211). Subtilisin Carlsberg hydrolyzed the peptide bond at other neighboring points: after L178 (a major site) or V176. The hydrolytic activity of bromelain measured by a highly specific chromogenic substrate of cysteine proteases Glp-Phe-Ala-pNA was almost three times higher in the presence of 5 mM β-mercaptoethanol than in the presence of 50 mM. However, the complete removal of ectodomains of HA by the high-and low-activity enzyme required identical time intervals. In the absence of the reducing reagent, the removal of HA by bromelain proceeded a little more slowly and was accompanied by significant fragmentation of protein M1. The action of trans-epoxysuccinyl-L-leucylamido)(4-guanidino)butane (E-64), a specific inhibitor of cysteine proteases, and HgCl2 On the hydrolysis of proteins HA and M1 by bromelain was investigated.  相似文献   

15.
Dictyostelium myosin was associated into dimers and small oligomers at very low ionic strength, filamentous at intermediate ionic strength, and monomeric in solution conditions of high ionic strength. These different associations were probed by fragmenting myosin with chymotrypsin, trypsin, or V-8 protease. All three proteases digested monomeric myosin giving rise to multiple fragments with a wide range of molecular weights. Filamentous myosin was not digested by the V-8 protease, was preferentially cleaved at a single site in the middle of the heavy chain by chymotrypsin, and was cleaved at several sites by trypsin. If the reaction was carried out in very low ionic strength, however, two of these proteases generated stable fragments of high molecular weight. Electron microscopic analysis of these stable fragments showed that tails were shorter than in intact myosin, indicating that the cleavage sites were in the rod portion of the molecule. Under the same conditions of enzymatic digestion, myosin that had been radio labeled in vivo with 32P was analyzed by SDS-PAGE and autoradiography. By comparing the state of phosphorylation and the size of the stable fragments, it was determined that the heavy chain phosphorylation site was located between 55 and 70 kD from the tip of the myosin tail, near a region where the tail displayed sharp bends.  相似文献   

16.
Insulin-like growth factor binding protein-6 (IGFBP-6) is an O-linked glycoprotein which specifically inhibits insulin-like growth factor (IGF)-II actions. The effects of O-glycosylation of IGFBP-6 on binding to glycosaminoglycans and proteolysis, both of which reduce the IGF binding affinity of other IGFBPs were studied. Binding of recombinant human nonglycosylated (n-g) IGFBP-6 to a range of glycosaminoglycans in vitro was approximately threefold greater than that of glycosylated (g) IGFBP-6. When bound to glycosaminoglycans, IGFBP-6 had approximately 10-fold reduced binding affinity for IGF-II. Exogenously added n-gIGFBP-6 but not gIGFBP-6 also bound to partially purified rat PC12 phaeochromocytoma membranes. Binding of n-gIGFBP-6 was inhibited by increasing salt concentrations, which is typical of glycosaminoglycan interactions. O-glycosylation also protected human IGFBP-6 from proteolysis by chymotrypsin and trypsin. Proteolysis decreased the binding affinity of IGFBP-6 for IGF-II, even with a relatively small reduction in apparent molecular mass as observed with chymotrypsin. Analysis by ESI-MS of IGFBP-6 following limited chymotryptic digestion showed that a 4.5-kDa C-terminal peptide was removed and peptide bonds involved in the putative high affinity IGF binding site were cleaved. The truncated, multiply cleaved IGFBP-6 remained held together by disulphide bonds. In contrast, trypsin cleaved IGFBP-6 in the mid-region of the molecule, resulting in a 16-kDa C-terminal peptide which did not bind IGF-II. These results indicate that O-glycosylation inhibits binding of IGFBP-6 to glycosaminoglycans and cell membranes and inhibits its proteolysis, thereby maintaining IGFBP-6 in a high-affinity, soluble form and so contributing to its inhibition of IGF-II actions.  相似文献   

17.
Four natural protease inhibitors have been partially purified by heat treatment, ion-exchange chromatography pand gel filtration from Neurospora crassa. The inhibitory activity has been estimated by measuring the inhibition of proteolysis of casein as well as by the protection of Neurospora tryptophan synthase from proteolytic inactivation. The inhibitors are all oligopeptides and possess molecular weights in the range 5000-24 000 and appear to be very specific to Neurospora proteases. They may be classified into two types. The first are specific to Neurospora alkaline protease and the second to acidic protease. None of them exhibited any effect on other proteases including trypsin, chymotrypsin, papain, pepsin, thermolysin, subtilisin and proteinase K. The possible physiological role of these inhibitors is discussed.  相似文献   

18.
The proteolysis of flu virions of the strain A/Puerto Rico/8/34 (subtype H1N1) by enzymes of various classes was studied to develop an approach to the study of the structural organization and interaction of the basic protein components of the virion environment: hemagglutinin (HA), transmembrane homotrimeric glycoprotein, and matrix protein M1 forming a layer under the lipid membrane. Among the tested proteolytic enzymes and enzymic preparations (thermolysin, trypsin, chymotrypsin, subtilisin Carlsberg, pronase, papain, and bromelain), the cysteine proteases bromelain and papain and the enzymic preparation pronase efficiently deleted HA ectodomains, while chymotrypsin, trypsin, and subtilisin Carlsberg deleted only a part of them. An analysis by MALDI TOF mass spectrometry allowed us to locate the sites of HA hydrolysis by various enzymic preparations. Bromelain, papain, trypsin, and pronase split the polypeptide chain after the K177 residue located before the transmembrane domain (HA2 185-211). Subtilisin Carlsberg hydrolyzed the peptide bond at other neighboring points: after L178 (a basic site) or V176. The hydrolytic activity of bromelain measured by a highly specific chromogenic substrate of cysteine proteases Glp-Phe-Ala-pNA was almost three times higher in the presence of 5 mM beta-mercaptoethanol than in the presence of 50 mM. However, the complete removal of exodomains of HA, HA, and low-activity enzyme by the HA high- and low-activity enzyme required identical time intervals. In the absence of the reducing reagent, the removal of HA by bromelain proceeded a little more slowly and was accompanied by significant fragmentation of protein Ml1. The action of trans-epoxysuccinyl-L-leucylamido)butane (E-64), a specific inhibitor of cysteine proteases, and HgCl2 on the hydrolysis of proteins HA and M1 by bromelain was investigated.  相似文献   

19.
Synthesis of MP26, the principal protein of lens fiber plasma membranes, was directed in the reticulocyte lysate system by poly A mRNA enriched from whole bovine lens RNA using oligo (dt)-cellulose chromatography. Synthesized MP26 was enriched by immune precipitation. The in vitro-synthesized MP26 had an electrophoretic mobility indistinguishable from that of the native molecule. MP26 showed a cotranslational requirement for dog pancreas microsomes in order for membrane association to occur. Microsome-associated in vitro- synthesized MP26 showed a sensitivity to digestion with chymotrypsin which was similar to the sensitivity of native MP26 in isolated lens fiber plasma membranes, indicating correct insertion of the MP26 into the microsome. Synthesis and membrane insertion of MP26 using N-formyl- [35S]methionyl tRNA as label demonstrated that no proteolytic processing or significant glycosylation accompanied membrane insertion. Chymotryptic cleavage of membrane-inserted, N-formyl-[35S]methionine- labeled MP26 resulted in loss of label, suggesting that the N-terminal of the in vitro-synthesized MP26 faces the cytoplasm.  相似文献   

20.
Hexon capsomers of human adenovirus type 1 (h1) labeled by iodine 125 were digested in a native state (trimers) by trypsin, chymotrypsin or papain, and the resulting hydrolysates were analyzed by SDS-PAGE. In each case, a discrete and temporally stable pattern of relatively large fragments was revealed. The degree of hexon polypeptide hydrolysis was maximal for papain, intermediate for chymotrypsin and minimal for trypsin, the largest fragments in the digest being 32, 40 and 80 kD, respectively. At room temperature, all the electrophoretically discernible hexon proteolytical fragments were held together in structures resembling intact hexon trimers and could be regarded as "hexon cores", of which papain hexon cores were the most stable during SDS-PAGE. Radioimmunoprecipitation analysis revealed a complete absence of native hexon antigenicity in thermodenaturated fragments of hexon protease digests, while native trypsin, chymotrypsin and papain hexon cores could be precipitated by hexon-specific antibodies. The immunoprecipitated material contained all of the hexon fragments found in appropriate hexon cores and retained the structure of the original cores. Trypsin, chymotrypsin and papain hexon cores were shown to possess at least part of native Ad h1 hexon antigenic determinants of each of the following specificities: species-specific (epsilon), cross-reactive with hexon of human adenoviruses (h3 and h6), simian adenovirus (sim 16), bovine adenoviruses (bos 3 and bos 7) and avian adenovirus (Aviadenovirus gal 1 or CELO). Thus, the full spectrum of known hexon antigenic determinants (species-specific to intergenus-crossreactive) is at least portly stable against protease attack of native hexon capsomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号