首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The molecular defect in a reported case of isolated 17,20-lyase deficiency in a 46XY individual has been elucidated. The patient was found to be a compound heterozygote, carrying two different mutant alleles in the CYP17 gene. One allele contains a point mutation of arginine (CGC) to cysteine (TGC) at amino acid 496 in exon 8. The second allele contains a stop codon (TAG) in place of glutamine (CAG) at position 461 in exon 8 which is located 19 amino acids to the carboxy-terminal side of the P-450(17) alpha heme binding cysteine. COS-1 cells transfected with cDNAs containing one or the other of these mutations showed dramatically reduced 17 alpha-hydroxylase and 17,20-lyase activities relative to cells transfected with the wild type P-450(17) alpha cDNA. While the in vitro data in COS 1 cells can explain the patient's physical phenotype, with female external genitalia, it was somewhat discordant with the clinical expression of isolated 17,20-lyase deficiency with relative preservation of 17 alpha-hydroxylase activity in vivo. In addition to the expression studies of these two examples of mutants in the C-terminal region of cytochrome P-450(17) alpha, a third mutant cDNA construct containing a 4-base duplication at codon 480 previously found in patients with combined 17 alpha-hydroxylase/17,20-lyase deficiency was also expressed in COS-1 cells. This expressed protein was completely inactive with respect to both activities, supporting the biochemical findings in serum and in vitro biochemical data obtained using a testis from the patient. The results from these patients clearly indicate the importance of the C-terminal region of human P-450(17) alpha in its enzymatic activities.  相似文献   

2.
The molecular basis of 17 alpha-hydroxylase/17,20-lyase deficiency syndrome in a 14-yr-old 46,XY Italian patient was investigated by amplification, subcloning, and sequencing of specific exonic sequences from genomic DNA samples. A homozygous mutation, consisting of a 518-basepair (bp) deletion combined with a 469-bp insertion, was identified in the CYP17 gene of the patient. The deletion spans much of exon II, the whole intron 2, and a portion of exon III. A part (156 bp) of the inserted sequence shows 95.5% identity to the nuclear antigen-binding site on Marek disease virus DNA and sequences found in rearranged mitochondrial DNA of rat hepatoma cells. A similar degree of sequence identity (99%) was also found between the above sequences and part of the lac operon of E. coli. The inserted sequence is lacking the BamHI site in intron 2 of CYP17 and contains an in-frame stop codon (TAA). Thus, the mutated gene encodes a truncated nonfunctional steroid hydroxylase, giving rise to symptoms associated with complete combined 17 alpha-hydroxylase/17,20-lyase deficiency. The family history revealed that the patient is the child of a consanguineous marriage and has two genotypically and phenotypically female sisters also suffering from symptoms of the disease. Investigation of genomic DNA from these sisters revealed that in each case both CYP17 alleles contained the same mutation. On the other hand, the parents were found to be heterozygous for this mutation. The insertion could not be found in DNA from normal individuals or in the CYP17 gene of other Italian patients with the 17 alpha-hydroxylase deficiency syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Steroid 17 alpha-hydroxylase and 17,20-lyase activities reside within the same polypeptide chain (cytochrome P-450(17 alpha)), and consequently human 17 alpha-hydroxylase deficiencies are characterized by defects in either or both of these activities. Human mutants having these deficiencies represent an excellent source of material for investigation of P-450(17 alpha) structure-function relationships. The CYP17 gene from an individual having partial combined 17 alpha-hydroxylase/17,20-lyase deficiency has been characterized structurally and the homozygous mutation found to be the deletion of the phenylalanine codon (TTC) at either amino acid position 53 or 54 in exon 1. Reconstruction of this mutation into a human P-450(17 alpha) cDNA followed by expression in COS 1 cells led to production of the same amount of immunodetectable P-450(17 alpha) protein as found with expression of the normal human P-450(17 alpha) cDNA. However, 17 alpha-hydroxylase activity of this mutant protein measured in intact cells was less than 37% of that observed upon expression of the wild-type enzyme, whereas 17,20-lyase activity of the mutant was less than 8% of that observed with the normal enzyme. When estimated in intact cells, the Km for 17 alpha-hydroxylation of progesterone was increased by a factor of 2 in the mutant enzyme, whereas the Vmax was reduced by a factor of 3. In order to estimate the kinetic parameters for the 17,20-lyase reaction, microsomes were isolated from transfected COS 1 cells to enrich for this activity. Surprisingly, the specific activity of the mutant 17 alpha-hydroxylase in microsomes was 3-fold less than that observed in intact cells, indicating that the structure of mutant P-450(17 alpha) was dramatically altered upon disruption of COS 1 cells. Apparently the deletion of a single phenylalanine in the N-terminal region of P-450(17 alpha) alters its folding in such a way that both enzymatic activities are dramatically decreased, leading to the partial combined deficiency observed in this individual.  相似文献   

4.
Background: Defects in cytochrome P450c17 are uncommon forms of congenital adrenal hyperplasia caused by CYP17A1 mutations. An H373L mutation in the CYP17A1 gene has been identified in Japanese and Chinese patients. This mutation impairs 17α-hydroxylase and 17,20-lyase activity. Case: A 23-year-old Korean female (46,XX) presented with absent spontaneous puberty and hypertension. Hormonal findings were consistent with combined 17α-hydroxylase/17,20-lyase deficiency. Very high levels of progesterone and 11-deoxycorticosterone were detected, coincident with normal 17-hydroxysteroid levels. Plasma levels of dehydroepiandrosterone, androstenedione and testosterone were extremely low. Mutation analysis of the CYP17A1 gene identified a homozygous missense mutation changing His (CAC) to Leu (CTC) at codon 373. This mutation is known to completely abolish both 17α-hydroxylase and 17,20-lyase activity. The patient's nonconsanguineous parents were heterozygous for this mutation. Of note, her serum steroid levels indicated decreased, but still present, 17α-hydroxylase activity in vivo. Conclusion: We detected a homozygous H373L mutation in a patient with combined 17α-hydroxylase/17,20-lyase deficiency. Our findings demonstrate minimally preserved 17α-hydroxylase activity in vivo and contribute to our knowledge of the regional prevalence of this mutation in Northeast Asia.  相似文献   

5.
The CYP17 gene, located on chromosome 10q24-q25, encodes the cytochrome P450c17 enzyme. Mutations of this gene cause the 17alpha-hydroxylase/17,20-lyase deficiency, which is a rare, autosomal recessive form of congenital adrenal hyperplasia. Approximately 50 different mutations of the CYP17 gene have been described, of which some mutations have been identified in certain ethnic groups. In this study, we present the clinical history, hormonal findings and mutational analysis of two patients from unrelated families, who were evaluated for hypertension, hypokalemia and sexual infantilism. In the first patient, who was a 37-year-old female, additional studies showed a large myelolipoma in the left adrenal gland, and a smaller tumor in the right adrenal gland. In the second patient, who was a 31-year-old phenotypic female, clinical work-up revealed a 46,XY kariotype, absence of ovaries and presence of testes located in the inner opening of both inguinal canals. Analysis of the CYP17 gene by polymerase chain reaction amplification and direct sequencing demonstrated a novel homozygous mutation of codon 440 from CGC (Arg) to TGC (Cys) in both patients. The effect of this novel mutation on 17alpha-hydroxylase/17,20-lyase activity was assessed by in vitro studies on the mutant and wild-type P450c17 generated by site-directed mutagenesis and transfected in nonsteroidogenic COS-1 cells. These studies showed that the mutant P450c17 protein was produced in transfected COS-1 cells, but it had negligible 17alpha-hydroxylase and 17,20-lyase activities. In addition, three-dimensional computerized modeling of the heme-binding site of the P450c17 enzyme indicated that replacement of Arg by Cys at amino acid position 440 predicts a loss of the catalytic activity of the enzyme, as the mutant enzyme containing Cys440 fails to form a hydrogen bond with the propionate group of heme, which renders the mutant enzyme unable to stabilize the proper position of heme. Based on these findings we conclude that expressing the CYP17 gene with functional analysis, combined with three-dimensional computerized modeling of the heme-binding site of the protein provide feasible tools for molecular characterizing of functional consequences of the novel CYP17 mutation on enzyme function.  相似文献   

6.
Cytochrome p450c17 (CYP17) converts the C21 steroids pregnenolone and progesterone to the C19 androgen precursors dehydroepiandrosterone (DHEA) and androstenedione, respectively, via sequential 17alpha-hydroxylase and 17,20-lyase reactions. Disabling mutations in CYP17 cause combined 17alpha-hydroxylase/17,20-lyase deficiency, but rare missense mutations cause isolated loss of 17,20-lyase activity by disrupting interactions of redox partner proteins with CYP17. We studied an adolescent male with clinical and biochemical features of isolated 17,20-lyase deficiency, including micropenis, hypospadias, and gynecomastia, who is homozygous for CYP17 mutation E305G, which lies in the active site. When expressed in HEK-293 cells or Saccharomyces cerevisiae, mutation E305G retains 17alpha-hydroxylase activities, converting pregnenolone and progesterone to 17alpha-hydroxysteroids. However, mutation E305G lacks 17,20-lyase activity for the conversion of 17alpha-hydroxypregnenolone to DHEA, which is the dominant pathway to C19 steroids catalyzed by human CYP17 (the delta5-steroid pathway). In contrast, mutation E305G exhibits 11-fold greater catalytic efficiency (kcat/Km) for the cleavage of 17alpha-hydroxyprogesterone to androstenedione compared with wild-type CYP17. We conclude that mutation E305G selectively impairs 17,20-lyase activity for DHEA synthesis despite an increased capacity to form androstenedione. Mutation E305G provides genetic evidence that androstenedione formation from 17alpha-hydroxyprogesterone via the minor delta4-steroid pathway alone is not sufficient for complete formation of the male phenotype in humans.  相似文献   

7.
8.
Steroid 17 alpha-hydroxylase deficiency is caused by defects in cytochrome P450c17, the single enzyme that has 17-alpha hydroxylase and 17,20-lyase activities. We describe a rapid and efficient polymerase chain reaction tactic for identifying these genetic lesions and identify Ser106----Pro as the cause of 17 alpha-hydroxylase deficiency in two unrelated homozygous patients from Guam. We used site-directed mutagenesis of the normal P450c17 cDNA to construct the Pro106 mutant, and expressed both the normal and mutant sequences in monkey COS-1 cells and in yeast. Expression of the normal sequence permitted the cells to convert pregnenolone to 17-OH pregnenolone, progesterone to 17-OH progesterone, and 17-OH pregnenolone to dehydroepiandrosterone, showing the normal sequence conferred both 17 alpha-hydroxylase and 17,20-lyase activities. Expression of the mutant sequence generated P450c17 mRNA, but conferred none of these activities, proving that the Ser106----Pro mutation abolished the 17 alpha-hydroxylase and 17,20-lyase activities. An HhaI restriction site created by the mutation should permit screening of large populations.  相似文献   

9.
We report studies of two unrelated Japanese patients with 17α-hydroxylase deficiency caused by mutations of the 17α-hydroxylase (CYP17) gene. We amplified all eight exons of the CYP17 gene, including the exon-intron boundaries, by the polymerase chain reaction and determined their nucleotide sequences. Patient 1 had novel, compound heterozygous mutations of the CYP17 gene. One mutant allele had a guanine to thymine transversion at position +5 in the splice donor site of intron 2. This splice-site mutation caused exon 2 skipping, as shown by in vitro minigene expression analysis of an allelic construct, resulting in a frameshift and introducing a premature stop codon (TAG) 60 bp downstream from the exon 1-3 boundary. The other allele had a missense mutation of His (CAC) to Leu (CTC) at codon 373 in exon 6. These two mutations abolished the 17α-hydroxylase and 17,20-lyase activities. Restriction fragment length polymorphism (RFLP) analysis with a mismatch oligonucleotide showed that the patient’s mother and brother carried the splice-site mutation, but not the missense mutation. Patient 2 was homozygous for a novel 1-bp deletion (cytosine) at codon 131 in exon 2. This 1-bp deletion produces a frameshift in translation and introduces a premature stop codon (TAG) proximal to the highly conserved heme iron-binding cysteine at codon 442 in microsomal cytochrome P450 steroid 17α-hydroxylase (P450c17). RFLP analysis showed that the mother was heterozygous for the mutation. Received: 15 November 1997 / Accepted: 15 March 1998  相似文献   

10.
Cytochrome P450 17alpha-hydroxylase/17,20-lyase (CYP17) is a microsomal enzyme catalyzing two distinct activities, 17alpha-hydroxylase and 17,20-lyase, essential for the biosynthesis of adrenal and gonadal steroids. CYP17 is a potent oxidant, it is present in liver and nonsteroidogenic tissues, and it has been suggested to have catalytic properties distinct to its function in steroid metabolism. To identify CYP17 functions distinct of its 17alpha-hydroxylase/17,20-lyase activity, we used MA-10 mouse tumor Leydig cells known to be defective in 17alpha-hydroxylase/17,20-lyase activity. A CYP17 knocked down MA-10 clone (MA-10(CYP17KD)) was generated by homologous recombination and its steroidogenic capacity was compared with wild-type cells (MA-10(wt)). Although no differences in cell morphology and proliferation rates were observed between these cells, the human chorionic gonadotropin-induced progesterone formation and de novo synthesis of steroids were dramatically reduced in MA-10(CYP17KD) cells; their steroidogenic ability could be rescued in part by transfecting CYP17 DNA into the cells. Knocking down CYP17 mRNA by RNA interference yielded similar results. However, no significant difference was observed in the steroidogenic ability of cells treated with 22R-hydroxycholesterol, which suggested a defect in cholesterol biosynthesis. Incubation of MA-10(CYP17KD) cells with (14)C-labeled squalene resulted in the formation of reduced amounts of radiolabeled cholesterol compared with MA-10(wt) cells. In addition, treatment of MA-10(CYP17KD) cells with various cholesterol substrates indicated that unlike squalene, addition of squalene epoxide, lanosterol, zymosterol, and desmosterol could rescue the hormone-induced progesterone formation. Further in vitro studies demonstrated that expression of mouse CYP17 in bacteria resulted in the expression of squalene monooxygenase activity. In conclusion, these studies suggest that CYP17, in addition to its 17alpha-hydroxylase/17,20-lyase activity, critical in androgen formation, also expresses a secondary activity, squalene monooxygenase (epoxidase), of a well-established enzyme involved in cholesterol biosynthesis, which may become critical under certain conditions.  相似文献   

11.
17α-Hydroxylase deficiency is characterized by a defect in either or both of 17α-hydroxylase and 17,20-lyase activities, based on the fact that a single polypeptide P450c17 can catalyze both reactions. The clinical manifestations of 17α-hydroxylase/17,20-lyase deficiency seem to be more heterogeneous than expected, varying from the classical type to less symptomatic forms as also observed in 21-hydroxylase deficiency. We have sequenced all eight exons of the CYP17 (P450c17) gene in DNA from several patients, reconstructed the mutations in a human P450c17 cDNA and expressed the mutant P450c17 in COS 1 cells to characterize the kinetic properties of 17α-hydroxylase and 17,20-lyase activities. The molecular bases of cases clinically reported as 17α-hydroxylase deficiency have turned out to be complete or partial combined deficiencies of 17α-hydroxylase/17,20-lyase. The elucidation of the molecular basis generally explains the patient's clinical profiles including the sexual phenotype of the external genitalia. In one case clinically reported as isolated 17,20-lyase deficiency, the molecular basis was found to be partial combined deficiency of both activities, somewhat discordant with the patient's clinical profile. Based on the results obtained so far we can predict that those 17α-hydroxylase deficient individuals having a homozygous stop codon in the CYP17 gene positioned at the amino terminal side of the P450c17 heme-binding cysteine (442) will all have the same phenotype. However those individuals having homozygous missense mutations or those who are compound heterozygotes having a missense mutation in at least one CYP17 allele will display their own unique phenotype which clinically will be subtly different from all others.  相似文献   

12.
The enzyme CYP17 primarily regulates androgen production by mediating four reactions: conversion of pregnenolone and progesterone to 17-hydroxypregnenolone and 17-hydroxyprogesterone, respectively (17alpha-hydroxylase activity), followed by conversion of the 17-hydroxylated steroids to dehydroepiandrosterone and androstenedione, respectively (17,20-lyase activity). Most mammalian CYP17 isoforms have high 17alpha-hydroxylase relative to 17,20-lyase activities and preferentially mediate one of the two 17,20-lyase reactions. In contrast, Xenopus laevis CYP17 potently regulates all four reactions in the frog ovary. CYP17 isoforms generally rely on the cofactor cytochrome b(5) for the 17,20-lyase reaction, suggesting that the high lyase activity of Xenopus CYP17 might be due to a lesser dependence on b(5). The kinetics of Xenopus CYP17 expressed in yeast microsomes were therefore examined in the absence and presence of Xenopus on human b(5). Xenopus CYP17 mediated both 17,20-lyase reactions in the absence of b(5), confirming that the activity did not require b(5). However, both Xenopus and human b(5) slightly enhanced Xenopus CYP17-mediated lyase activity, indicating that the enzyme was still at least partially responsive to b(5). Surprisingly, only the human b(5) cofactor enhanced human CYP17-mediated lyase activity, implying that the human enzyme had more specific cofactor requirements than Xenopus CYP17. Studies using human/Xenopus chimeric b(5) proteins revealed that human b(5) residues 16-41 were important for the specific regulation of the lyase activity of HuCYP17, possibly serving as an interacting domain with the enzyme. CYP17 may therefore have evolved from a general producer of sex steroids in lower vertebrates to a more tightly regulated producer of both sex steroids and glucocorticoids in mammals.  相似文献   

13.
Congential adrenal hyperplasia due to 17α-hydroxylase/17/20-lyase deficiency is caused by genetic defects in the gene encoding P450c17 (CYP17). To date, 18 different mutations in 27 individuals have been identified and all of them are located in the coding region of CYP17. Several mutations have been reconstructed in human P450c17 cDNA and expressed in COS cells to characterize the kinetic properties of 17α-hydroxylase and 17,20-lyase activities. The molecular bases of cases clinically reported as 17α-hydroxylase deficiency have turned out to result from complete or partial combined deficiencies of 17α-hydroxylase/17,20-lyase. The elucidation of the molecular bases generally explains the patient's clinical profiles including the sexual phenotype of the external genitalia. In one case initially reported as isolated 17,20-lyase deficiency, the molecular basis was found to be partial combined deficiency of both activities, somewhat discordant with the patient's clinical profile. However, the patient was subsequently found to have 17α-hydroxylase deficiency, suggesting involvements of age-dependent unknown factors affecting P450c17 activity.  相似文献   

14.
Y S Fan  R Sasi  C Lee  J S Winter  M R Waterman  C C Lin 《Genomics》1992,14(4):1110-1111
The gene for human P450(17 alpha) (CYP17) was previously mapped to chromosome 10 through analysis of somatic cell hybrids. Using a modified procedure of fluorescence in situ hybridization, this gene has now been visualized on simultaneously banded chromosomes and localized to a specific subband of chromosome 10 at q24.3. This precise assignment may facilitate the understanding of the molecular basis of 17 alpha-hydroxylase/17,20-lyase deficiency and the evolution of the CYP superfamily of genes.  相似文献   

15.
Cytochrome P450c17 (CYP17) catalyzes both the 17alpha-hydroxylase and 17,20-lyase reactions in human steroid biosynthesis. Cytochrome b5 (b5) stimulates the rate of the 17,20-lyase reaction 10-fold with little influence on 17alpha-hydroxylase activity. Studies with apo-b5 suggest that stimulation of 17,20-lyase activity results from an allosteric action on the hCYP17 x POR complex, rather than electron transfer by b5. We hypothesized that specific residues on b5 interact with the hCYP17 x POR complex and that targeted mutation of surface-exposed residues might identify b5 residues critical for stimulating 17,20-lyase activity. We constructed, expressed, and purified 14 single plus 3 double b5 mutations and assayed their ability to stimulate 17,20-lyase activity. Most mutations did not alter the capacity of b5 to stimulate 17,20-lyase activity or appeared to modestly alter the affinity of b5 for the hCYP17 x POR complex. In contrast, mutation of E48, E49, or R52 reduced the maximal stimulation of 17,20-lyase activity. In particular, b5 mutation E48G + E49G lost over 95% of the capacity to stimulate 17,20-lyase activity, yet this mutation retained normal electron transfer properties. In addition, mutation E48G + E49G did not impair stimulation of 17,20-lyase activity by wild-type b5, suggesting that the mutation binds poorly to the site of the hCYP17 x POR complex occupied by b5. These data suggest that a specific allosteric binding site on b5, which includes residues E48, E49, and possibly R52, mediates the stimulation of 17,20-lyase activity.  相似文献   

16.
Bovine adrenocortical cells in primary culture were used to examine the trophic effect of ACTH on the induction of the 17 alpha-hydroxylase and C-17,20-lyase activities. The addition of exogenous pregnenolone to bovine adrenal microsomes showed the appearance of 17 alpha-hydroxy-pregnenolone before the formation of dehydroepiandrosterone. The same sequence of activities was evident in postmitochondrial supernate from bovine adrenocortical cells cultured 36 h in the presence of 1 microM ACTH but not in postmitochondrial supernate from control cells. In another study, bovine adrenocortical cells were cultured for 36 h after which 30 microM 17 alpha-hydroxypregnenolone was added to the medium and the incubation continued 1 h; there was a 4-fold increase in androgen content in the media from ACTH-treated cells over controls. Measurement of the 17 alpha-hydroxylase and C-17,20-lyase reactions in postmitochondrial supernate from cells cultured 0-72 h in the presence of ACTH or 1 mM dibutyryl cAMP showed concomitant increases in the two activities and both activities were inhibited by the same compounds known to inhibit 17 alpha-hydroxylase activity. These observations support the concept of the co-induction of 17 alpha-hydroxylase and C-17,20-lyase activities in response to ACTH; results in keeping with previous studies indicating that the two activities are catalyzed by a single gene product, the polypeptide chain P-45017a.  相似文献   

17.
P450c17 (17alpha-hydroxylase/17,20-lyase) catalyzes steroid 17alpha-hydroxylase and 17,20-lyase activities in the biosynthesis of androgens and estrogens. These two activities are differentially regulated in a tissue-specific and developmentally programmed manner. To visualize the active site topology of human P450c17 and to study the structural basis of its substrate specificity and catalytic selectivity, we constructed a second-generation computer-graphic model of human P450c17. The energetics of the model are comparable to those of the principal template of the model, P450BMP, as determined from its crystallographic coordinates. The protein structure analysis programs PROCHECK, WHATIF, and SurVol indicate that the predicted P450c17 structure is reasonable. The hydrophobic active site accommodates both delta4 and delta5 steroid substrates in a catalytically favorable orientation. The predicted contributions of positively charged residues to the redox-partner binding site were confirmed by site-directed mutagenesis. Molecular dynamic simulations with pregnenolone, 17-OH-pregnenolone, progesterone, and 17-OH-progesterone docked into the substrate-binding pocket demonstrated that regioselectivity of the hydroxylation reactions is determined both by proximity of hydrogens to the iron-oxo complex and by the stability of the carbon radicals generated after hydrogen abstraction. The model explains the activities of all known naturally occurring and synthetic human P450c17 mutants. The model predicted that mutation of lysine 89 would disrupt 17,20-lyase activity to a greater extent than 17alpha-hydroxylase activity; expression of a test mutant, K89N, in yeast confirmed this prediction. Hydrogen peroxide did not support catalysis of the 17,20-lyase reaction, as would be predicted by mechanisms involving a ferryl peroxide. Our present model and biochemical data suggest that both the hydroxylase and lyase activities proceed from a common steroid-binding geometry by an iron oxene mechanism. This model will facilitate studies of sex steroid synthesis and its disorders and the design of specific inhibitors useful in chemotherapy of sex steroid-dependent cancers.  相似文献   

18.
M Zachmann 《Hormone research》1992,38(5-6):211-216
Recent discoveries in molecular biology have much clarified the regulation and function of steroid-converting enzymes. Most progress has been made in the area of cytochromes, which regulate the side chain cleavage of cholesterol (P-450 SCC) and the 17 alpha-hydroxylase and 17,20-desmolase (or 17,20-lyase) activities (P-450 17 alpha), as well as in 3 beta-hydroxysteroid dehydrogenase. Nevertheless, there are some discrepancies between fundamental knowledge and clinical experience, which are difficult to understand: why is it for example possible that cases with 'pure' 17 alpha-hydroxylase or 17,20-desmolase deficiency exist, when there is only one cytochrome regulating both steps? After a brief review of clinical and biochemical findings in the various defects of testosterone biosynthesis, a case is discussed, which is of interest in this respect. This XY patient with female external genitalia, who has been shown to have compound heterozygous mutations, had 'pure' 17,20-desmolase deficiency up to adolescence, but additional 17 alpha-hydroxylase deficiency with hypertension developed thereafter. From this observation, it has to be concluded that as yet unknown, possibly age-dependent modulating factors exist, which influence the activity of the cytochrome. Also the estrogen replacement given to the patient might have played a role in this change.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号