首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Two new naphthalene derivatives and three naphthoquinones have been found in the root bark of Ventilago maderaspatana. Their structures are 2-acetyl-6,7-dimethoxy-3-methyl-1,8-methylenedioxynaphthalene (ventilaginone) and 1,3-dihydro-6,9-dihydroxy-7,8-dimethoxy-1-methylnaphtho[2,3-c]furan-3-one (ventilagol), 2(2′-acetoxypropyl)-3-hydroxy-5,7,8-trimethoxy-1,4-naphthoquinone (maderone), cordeauxione and isocordeauxione. The root bark of V. calyculata contains 2-methoxystypandrone and 1-hydroxy-6-methoxy-3-methylxanthone-8-carboxylic acid (calyxanthone).  相似文献   

2.
A red naphthoquinone, named hydroxysesamone, was isolated from the roots of Sesamum indicum together with a known yellow naphthoxirene derivative, 2,3-epoxy-2,3-dihydro-5,8-dihydroxy-2-(3-methyl-2-butenyl)-1,4-naphthoquinone, named 2,3-epoxysesamone. The structure of the naphthoquinone was characterized as 2,5,8-trihydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone on the basis of spectral evidence. Full assignments of NMR resonances of 2,3-epoxysesamone were also confirmed by two-dimensional NMR spectroscopic experiments. Chlorosesamone, hydroxysesamone and 2,3-epoxysesamone all showed antifungal activities toward Cladosporium fulvum.  相似文献   

3.
Chemical studies on the constituents of Eranthis cilicica led to isolation of ten chromone derivatives, two of which were previously known. Comprehensive spectroscopic analysis, including extensive 1D and 2D NMR data, and the results of enzymatic hydrolysis allowed the chemical structures of the compounds to be assigned as 8,11-dihydro-5-hydroxy-2,9-dihydroxymethyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, 5,7-dihydroxy-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2-methyl-4H-1-benzopyran-4-one, 5,7-dihydroxy-2-hydroxymethyl-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-4H-1-benzopyran-4-one, 7-[(β-d-glucopyranosyl)oxy]-5-hydroxy-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-2-methyl-4H-1-benzopyran-4-one, 7-[(β-d-glucopyranosyl)oxy]-5-hydroxy-2-hydroxymethyl-8-[(2E)-4-hydroxy-3-methylbut-2-enyl]-4H-1-benzopyran-4-one, 9-[(O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)oxy]methyl-8,11-dihydro-5,9-dihydroxy-2-methyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, 8,11-dihydro-5,9-dihydroxy-9-hydroxymethyl-2-methyl-4H-pyrano[2,3-g][1]benzoxepin-4-one, and 7-[(O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl)oxy]methyl-4-hydroxy-5H-furo[3,2-g][1]benzopyran-5-one, respectively. The isolated compounds were evaluated for their antioxidant activity.  相似文献   

4.
The 4′-O-β-d-glucopyranoside and the 4′-O-α-l-rhamnopyranoside of 2,3-dihydro-7-hydroxy-2-(4′-hydroxy-3′- methoxyphenyl)-3-hydroxymethyl-5-benzofuranpropanol have been isolated and identified. Also isolated were two d-glucosides and an l-arabinoside of (+)-isolariciresinol and a l-rhamnoside, a d-xyloside and a d-glucoside of 1-(4-hydroxy-3-methoxyphenyl)- 2-[4-(3-hydroxypropyl)-2-hydroxyphenoxy]-1,3-propanediol.  相似文献   

5.
We synthesized a series of novel small molecules, 2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine derivatives, by tandem reduction-oxirane opening of 2-nitroaroxymethyloxiranes in moderate or excellent yields. We investigated the effects of all of the compounds on HUVEC apoptosis and A549 cell growth. The results showed that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine was the most effective small molecule in promoting HUVEC apoptosis and inhibiting A549 cell proliferation, but 6-amino-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine could remarkably inhibit HUVEC apoptosis and might induce the formation of microvessel.  相似文献   

6.
From callus cultures of Cinchona ledgeriana seven known anthraquinones, purpurin, anthragallol-1,2-dimethylether, anthragallol-1,3-dimethylether, rubiadin, 1-hydroxy-2-hydroxymethylanthraquinone, 1-hydroxy-2-methylanthraquinone and morindone-5-methylether (or 1,7-dihydroxy-8-methoxy-2-methylanthraquinone), and eight new anthraquinones, 5,6-dimethoxy-1-(or -4-)hydroxy-2-(or -3-)hydroxymethylanthraquinone, 5-methoxy-2-(or -3-)methyl-1,4,6-trihydroxyanthraquinone, 2-hydroxy-1,3,4-trimethoxyanthraquinone, 4-methoxy-1,3,5-trihydroxyanthraquinone, 1,4-dimethoxy-2,3-methylenedioxyanthraquinone, 1,3-dihydroxy-4-methoxyanthraquinone, 1,3-dihydroxy-2,5-dimethoxyanthraquinone and 2,5-(or 3,5-)dihydroxy-1,3,4-(or -1,2,4-)trimethoxyanthraquinone have been isolated.  相似文献   

7.
Cyclooxygenase inhibitory and antioxidant bioassay-directed extraction and purification of celery seeds yielded sedanolide (1), senkyunolide-N (2), senkyunolide-J (3), 3-hydroxymethyl-6-methoxy-2,3-dihydro-1H-indol-2-ol (4), L-tryptophan (6), and 7-[3-(3,4-dihydroxy-4-hydroxymethyl-tetrahydro-furan-2-yloxy)-4,5-dihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy]-5-hydroxy-2-(4-hydroxy-3-methoxy-phenyl)-chromen-4-one (7). The structures of compounds 1-7 were determined using spectroscopic methods. Compound 4 is reported here for the first time. At 250 pg ml(-1), compounds 1-4, 6 and 7 displayed prostaglandin H endoperoxide synthase-I (COX-I) and prostaglandin H endoperoxide synthase-II (COX-II) inhibitory activities at pH 7. The acetylated product (5) of compound 4 also inhibited COX-I and COX-II enzymes when tested at 250 microg ml(-1). Compounds 6 and 7 exhibited good antioxidant activity at concentrations of 125 and 250 microg ml(-1). Only compounds 1-3 exhibited topoisomerase-I and -II enzyme inhibitory activity at concentrations of 100, 200 and 200 microg ml(-1), respectively.  相似文献   

8.
Boerhaavia diffusa L. is used in the traditional medicine of several Asian countries. The isolation and identification of five new compounds, together with 11 known compounds, from the ethyl acetate extract of the aerial part of B. diffusa grown Vietnam is reported. The structure of the new compounds was established by 1D and 2D NMR spectroscopy, and high resolution ESI-MS analysis. New compounds are two rotenoids: 9,11-dihydroxy-6,10-dimethoxy[1]benzopyrano[3,4-b][1]benzopyran-12(6H)-one (boeravinone P, 3) and 3-[2-(β-d-glucopyranosyloxy)-3-hydroxyphenyl]-5-hydroxy-2-hydroxymethyl-7-methoxy-6-methyl-4H-1-benzopyran-4-one (boeravinone Q, 9), an atropisomeric mixture of two rotenoid glycosides (3′,5-dihydroxy-2-hydroxymethyl-7-methoxy-6-methylisoflavone 2′-O-β-d-glucopyranoside, 11), a sesquiterpene lactone (4,10-dihydroxy-8-methoxyguai-7(11)-en-8,12-olide, 5) and a new phenylpropanoid glycoside (boerhaavic acid, 15).  相似文献   

9.
10.
The metabolism of quinones formed in the enzymatic oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) (Ia) and its methyl ether Ib in ligninolytic cultures of Phanerochaete chrysosporium was studied. A metabolite of 2-hydroxymethyl-5-methoxy-2,5-cyclohexadiene-1,4-dione (IIa, formed from Ia by oxidation) was isolated and identified as cis-4-hydroxy-6-hydroxymethyl-3-methoxy-cyclohex-2-en-one (IVa), formally the reduced hydroquinone IIIa. The formation of IVa was also observed when both veratryl alcohol Ia or 2,5-dihydroxy-4-methoxybenzyl alcohol (IIIa), the hydroquinone of IIa, were used as substrates. Analogously, cis-4-hydroxy-3-methoxy-6-methoxymethyl-cyclohex-2-en-one (IVc) was isolated and identified as a metabolite from either 3,4-dimethoxybenzyl methyl ether (Ib) or from its oxidation product 5-methoxy-2-methoxymethyl-2,5-cyclohexadiene-1,4-dione (IIb) as well as from the corresponding hydroquinone 2,5-dihydroxy-4-methoxybenzyl methyl ether (IIIc). The physiological role of these unprecedented conversions is discussed. Correspondence to: H. E. Schoemaker  相似文献   

11.
(2R,3R)-2 3-Dihydro-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-5-benzofuranpropanol 4′-O-β-d-glucopyranoside [dihydrodehydrodiconiferyl alcohol glucoside], (2R,3R)-2 3-dihydro-7-hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranpropanol 4′-O-β-d-glucopyranoside and 4′-O-α-l-rhamnopyranoside, 1-(4′-hydroxy-3′-methoxyphenyl)-2- [2″-hydroxy-4″-(3-hydroxypropyl)phenoxy]-1, 3-propanediol 1-O-β-d-glucopyranoside and 4′-O-β-d-xylopyranoside, 2,3-bis[(4′-hydroxy-3′-methoxyphenyl)-methyl]-1,4-butanediol 1-O-β-d-glucopyranoside [(?)-seco-isolariciresinol glucoside] and (1R,2S,3S)-1,2,3,4-tetrahydro-7-hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-6-methoxy-2 3-naphthalenedimethanol α2-O-β-d-xylopyranoside [(?)-isolariciresinol xyloside] have been isolated from needles of Picea abies and identified.  相似文献   

12.
Further cordiachromes, rel-10,11β-epoxy-11-ethoxy-8-hydroxy-2-methoxy-8aβ-methyl-5,6,7,8,8a,9,10aβ-octahydro-1,4-anthracendione, 6-formyl-2-methoxy-9-methyl-7,8-dihydro-1,4-phenanthrendione, rel-8,11;9,11-diepoxy-1,4-dihydroxy-2-methoxy-8aβ-methyl-5,6,7,8,8a,9,10,10aβ-octahydro-10-anthracenone, rel-9,11-epoxy-1,4,8-trihydroxy-2-methoxy-8aβ-methyl-5,6,7,8,8a,9,10,10aβ-octahydro-10-anthracenone, rel-2″-methoxy-7″-methyl-1″,4″-naphtalendione-(6″→5)-tetrahydropyran-(2-eq→O→2ax)-tetrahydropyran-(5′→6)- 2-methoxy-7-methyl-1,4-naphthalendione, together with the known, allantoin, sitosterol and 3β-O-d-glucopyranosylsitosterol, have been isolated from Auxemma oncocalyx. Their structures were determined from spectral data, including 2D NMR experiments.  相似文献   

13.
A series of 5-hydroxy-1,4-naphthoquinones analogues was synthesized from juglone (6) and their antiproliferative activity against a representative panel of six human solid tumor cell lines has been investigated. The 2,5-dihydroxy-3-(3-methylbut-2-enyl)naphthalene-1,4-dione (4) and 2,3-dihydro-5-hydroxy-2-(prop-1-en-2-yl)naphtho[2,3-b]furan-4,9-dione (27) were the most potent antiproliferative agents with GI50 values of 0.42–8.1 and 0.80–2.2 μM, respectively. The results provide insight into the correlation between some structural properties of 5-hydroxynaphthoquinones and their antiproliferative activity.  相似文献   

14.
Photo-oxygenation of 3-ethoxycarbonyl-5-(2,3-O-isopropylidene-β-d-erythrofuranosyl)-2-methylfuran and 3-hydroxymethyl-5-(2,3-O-isopropylidene-β-d-erythrofuranosyl)-2-methylfuran yields the corresponding endo-peroxides which rearrange at room temperature into the O-glycosyl derivatives ethyl 2,3-O-isopropylidene-β-d-erythrofuranosyl 2-acetylfumarate and 2,3-O-isopropylidene-β-d-erythrofuranosyl 3-acetyl-3-hydroxymethylacrylate, respectively. The endo-peroxides can be reduced without rearrangement, yielding C-glycosyl derivatives. Alcoholysis of the O-glycosyl derivatives yields 2,3-O-isopropylidene-d-erythrose, dialkyl 2-acetyl-3-alkoxysuccinates, 4-ethoxycarbonyl-5-methoxy-5-methyl-2-oxo-2,5-dihydrofuran and 4-hydroxymethyl-5-methoxy-5-methyl-2-oxo-2,5-dihydrofuran.  相似文献   

15.
A benzene extract of the trunk wood of an Aniba species contained 3a-allyl-2-aryl-5-methoxy-3-methyl-2,3,3a,6-tetrahydro-6-oxobenzofurans which may be responsible, through sequential Cope, retro-Claisen and Claisen rearrangements respectively for the formation of the co-occurring 5-allyl-2-aryl-5-methoxy-3-methyl-2,3,5,6-tetrahydro-6-oxobenzofurans; the 6-O-allyl-2-aryl-5-methoxy-3-methyl-2,3-dihydrobenzofurans and the 7-allyl-2-aryl-6-hydroxy-5-methoxy-3-methyl-2,3-dihydrobenzofurans. The examination of the stereochemistry of these products led to the formulation of burchellin, previously isolated from Aniba burchellii Kostermans, as (2S,3S,3aR)-3a-allyl-5-methoxy-2-piperonyl-3-methyl-2,3,3a,6-tetrahydro-6-oxobenzofuran. The structure 1-allyl-4,8-dihydroxy-7-(3-methoxy-4,5-methylenedioxyphenyl)-6-methyl-3-oxobicyclo[3,2,1]octane is tentatively proposed for an additional neolignan.  相似文献   

16.
The effect of hydroxy substitution on 1,4-naphthoquinone toxicity to cultured rat hepatocytes was studied. Toxicity of the quinones decreased in the series 5,8-dihydroxy-1,4-naphthoquinone greater than 5-hydroxy-1,4-naphthoquinone greater than 1,4-naphthoquinone greater than 2-hydroxy-1,4-naphthoquinone, and intracellular GSSG formation decreased in the order 5,8-dihydroxy-1,4-naphthoquinone greater than 5-hydroxy-1,4-naphthoquinone much greater than 1,4-naphthoquinone much greater than 2-hydroxy-1,4-naphthoquinone. The electrophilicity of the quinones decreased in the order 1,4-naphthoquinone much greater than 5-hydroxy-1,4-naphthoquinone greater than 5,8-dihydroxy-1,4-naphthoquinone much greater than 2-hydroxy-1,4-naphthoquinone. Treatment of the hepatocytes with BSO (buthionine sulfoximine) or BCNU (1,3-bis-2-chloroethyl-1-nitrosourea) increased 5-hydroxy-1, 4-naphthoquinone and 5,8-dihydroxy-1,4-naphthoquinone toxicity, whereas neither BSO nor BCNU largely affected 1,4-naphthoquinone and 2-hydroxy-1, 4-naphthoquinone toxicity. Dicumarol increased the toxicity of 1,4-naphthoquinone dramatically and somewhat the toxicity of 2-hydroxy-1,4- naphthoquinone, whereas 5-hydroxy-1,4-naphthoquinone and 5,8-dihydroxy-1,4-naphthoquinone toxicity increased only slightly. The toxicity of 5,8-dihydroxy-1,4-naphthoquinone decreased dramatically in reduced O2 concentration, whereas 1,4-naphthoquinone, 5-hydroxy-1,4-naphthoquinone, and 2-hydroxy-1,4-naphthoquinone toxicity was not largely affected. It was concluded that 5,8-dihydroxy-1,4-naphthoquinone toxicity is due to free radical formation, whereas the toxicity of 1,4-naphthoquinone and of 5-hydroxy-1,4-naphthoquinone also has an electrophilic addition component. The toxicity of 2-hydroxy-1,4-naphthoquinone could not be fully explained by either of these phenomena.  相似文献   

17.
The wood of Licaria aritu Ducke (Lauraceae) contains the neolignans licarin-A, (2S,3S)-2,3-dihydro-2-(4′-hydroxy-3′-methoxyphenyl)-7-methoxy-3-methyl-5-trans-propenylbenzofuran and licarin-B, (2S, 3S)-2,3-dihydro-7-methoxy-3-methyl-2-piperonyl-5-trans-propenylbenzofuran.  相似文献   

18.
Five new phenolic compounds, 4-(beta-D-glucopyranosyloxy)-3,5-dimethoxyphenyl-propanone (8), 3-[5-[(threo) 2,3-dihydro-2-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxybenzofuranyl]-propanoic acid (12), 2-[4-(3-hydroxy-1-propenyl)-2,6-dimethoxyphenoxy]-3-hydroxy-3-(4-hydroxy-3,5-dimethoxyphenyl)propyl-beta-D-glucopyranoside (13), 4-[(erythro) 2,3-dihydro-3(hydroxymethyl)-5-(3-hydropropyl)-7-methoxy-2-benzofuranyl]-2,6-dimethoxyphenyl-beta-D-glucopyranoside (14), 9-O-beta-D-xylopyranoside of icariol A2 (15), and known phenolic compounds were isolated from Kokuto, non-centrifuged cane sugar (Saccharum officinarum L.). Their structures were determined by a spectral investigation.  相似文献   

19.
Gas-liquid chromatography-mass spectrometry (GLC-MS) has been used for the separation, detection, and identification of 1,4-benzoxazin-3-ones (hydroxamic acids and lactams) and benzoxazolinones found in maize (Zea mays L.) extracts. Compounds of interest were partitioned into ethyl acetate from aqueous maize seedling extracts. For analysis by GLC-MS, trimethylsilyl derivatives were prepared, chromatographed on a column of 3% OV-1, and detected in the mass spectrometer. Mass spectra were obtained for all peaks present in extracts of four maize lines. A data comparison system was developed for relating unidentified spectra to the spectra of the reference compounds. Based on spectral comparisons, three hydroxamic acids (2,4-dihydroxy-2H-1, 4-benzoxazin-3(4H)-one; 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one; and 2,4-dihydroxy-7,8-dimethoxy-2H-1,4-benzoxazin-3(4H)-one), three lactams (2-hydroxy-2H-1,4-benzoxazin-3(4H)-one; 2,7-dihydroxy-2H-1,4-benzoxazin-3(4H)-one; and 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), one benzoxazolinone (6-methoxybenzoxazolinone), and two organic acids (malic and aconitic) were identified in the extracts. In addition, one other hydroxamic acid and one other related compound were tentatively identified based on mass spectral evidence.  相似文献   

20.
Four neolignans, dehydrodieugenol, its monomethylether, carinatone and carinatin have been isolated from the hexane fraction of the bark of Virola carinata. Three new neolignans were separated from the chloroform fraction and examined by spectroscopy and chemical reactions. Their structures were determined as (2S, 3S)-5-allyl- 7-methoxy-3-hydroxymethyl-2-(3′,4′-dimethoxyphenyl)-2,3-dihydrobenzofuran, (2S)- 1-(3′,4′-dimethoxyphenyl)-2-(3″-allyl-5″-methoxy-6″-hydroxyphenyl)propanone(1) ol(3), (1S,2S)-1-(3′,4′-dimethoxyphenyl)-2-(3″-allyl-5″-methoxy-6″-hydroxyphenyl) propanol(1) and called dihydrocarinatinol, carinatonol and carinatol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号