首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the association of habitat fragmentation with genetic structure of male black grouse Tetrao tetrix. Using 14 microsatellites, we compared the genetic differentiation of males among nine localities in continuous lowland habitats in Finland to the genetic differentiation among 14 localities in fragmented habitats in the Alps (France, Switzerland and Italy). In both areas, we found significant genetic differentiation. However, the average differentiation, measured as theta, was more than three times higher in the Alps than in Finland. The greater differentiation found in the Alps is probably due to the presence of mountain ridges rising above natural habitats of the species, which form barriers to gene flow, and to a higher influence of genetic drift resulting from lower effective sizes in highly fragmented habitats. The detection of isolation by distance in the Alps suggests that gene flow among populations does occur. The genetic variability measured as gene diversity HE and allelic richness A was lower in the Alps than in Finland. This could result from the higher fragmentation and/or from the fact that populations in the Alps are isolated from the main species range and have a lower effective size than in Finland. This study suggests that habitat fragmentation can affect genetic structure of avian species with relatively high dispersal propensities.  相似文献   

2.
In the Alps, the capercaillie is distributed in a metapopulation pattern with local populations on mountain ranges separated by farmland valleys. Habitat deterioration, primarily related to human land use, resulted in population declines and range contractions became obvious. At the edge of a species' range, lower connectivity and less gene flow may render populations more susceptible to decline and extinction than in the core of the range. If this were true for the capercaillie in the Alps, edge populations should be subject to limited gene flow and should show genetic signs of a more severe population decline than core populations. To test this hypothesis, we used microsatellite DNA typing techniques. We assessed genetic variation within and among 18 local capercaillie populations across the Alps in relation to geographical distribution within the metapopulation system. All populations showed high levels of genetic variation in terms of average number of alleles, allelic richness and heterozygosity. Excess heterozygosity suggested a recent population decline, that was more pronounced in edge than core populations. We found high gene flow, but also significant differentiation among populations. Differentiation among edge populations was related to geographical distance, and appeared to be a recent process, most probably caused by reduced gene flow after population decline. In the core group, the high mountains of the central Alps seem to limit dispersal, and genetic drift was the most likely explanation for the observed differentiation among populations. We conclude that maintaining connectivity within the metapopulation system is vital for capercaillie conservation in the Alps.  相似文献   

3.
Aims The dispersal of pollen and seeds is spatially restricted and may vary among plant populations because of varying biotic interactions, population histories or abiotic conditions. Because gene dispersal is spatially restricted, it will eventually result in the development of spatial genetic structure (SGS), which in turn can allow insights into gene dispersal processes. Here, we assessed the effect of habitat characteristics like population density and community structure on small-scale SGS and estimate historical gene dispersal at different spatial scales.Methods In a set of 12 populations of the subtropical understory shrub Ardisia crenata, we assessed genetic variation at 7 microsatellite loci within and among populations. We investigated small-scale genetic structure with spatial genetic autocorrelation statistics and heterogeneity tests and estimated gene dispersal distances based on population differentiation and on within-population SGS. SGS was related to habitat characteristics by multiple regression.Important findings The populations showed high genetic diversity (H e = 0.64) within populations and rather strong genetic differentiation (F ′ ST = 0.208) among populations, following an isolation-by-distance pattern, which suggests that populations are in gene flow–drift equilibrium. Significant SGS was present within populations (mean Sp = 0.027). Population density and species diversity had a joint effect on SGS with low population density and high species diversity leading to stronger small-scale SGS. Estimates of historical gene dispersal from between-population differentiation and from within-population SGS resulted in similar values between 4.8 and 22.9 m. The results indicate that local-ranged pollen dispersal and inefficient long-distance seed dispersal, both affected by population density and species diversity, contributed to the genetic population structure of the species. We suggest that SGS in shrubs is more similar to that of herbs than to trees and that in communities with high species diversity gene flow is more restricted than at low species diversity. This may represent a process that retards the development of a positive species diversity–genetic diversity relationship.  相似文献   

4.
We examined spatio-temporal genetic variation at 53 single nucleotide polymorphisms in anadromous Arctic char populations from Western Greenland, a region experiencing pronounced climate change. The study was based on contemporary and historical samples, the latter represented by DNA extracted from otoliths and scales from the 1950s–1960s. We investigated whether genetic population structure was temporarily stable or unstable, the latter due to relatively small spawning and nursery areas combined with a harsh Arctic environment. Furthermore, in order to evaluate the potential for adaptive responses and local adaptation we estimated effective population size (Ne) and migration rate (m). Temporal stability of genetic population structure was suggested, based on a hierarchical analysis of genetic differentiation showing much higher differentiation among samples from different populations (FCT = 0.091) than among temporal samples from the same populations (FSC = 0.01). This was further supported by a neighbor-joining tree and assignment of individuals that showed high contingency between historical and contemporary samples. Estimates of Ne were high (>?500) in three out of four populations, with a lower estimate in one population potentially reflecting fishing pressure or suboptimal environmental conditions. Estimates of m were in most cases low, ≤ 0.01. Ne and m estimates suggest a potential for adaptive responses and local adaptation. However, long generation time may also cause adaptive responses by microevolution to be unable to track climate change, especially considering the low migration rates that reduce potential evolutionary rescue by gene flow from populations better adapted to the altered environments.  相似文献   

5.
We examined genetic differentiation among eight local populations of a metapopulation of Magnolia stellata using 10 nuclear and three chloroplast microsatellite (nSSR and cpSSR) markers and evaluated the influence of historical gene flow on population differentiation. The coefficient of genetic differentiation among populations for nSSR (F(ST) = 0.053) was less than half that for cpSSR (0.137). An isolation-by-distance pattern was detected for nSSRs, but not cpSSRs. These results suggest that pollen flow, as well as seed dispersal, has significantly reduced genetic differentiation among populations. We also examined patterns of contemporary pollen flow by paternity analysis of seeds from nine seed parents in one of the populations using the nSSR markers and found it to be greatly restricted by the distance between parents. Although most pollen flow occurred within the population, pollen flow from outside the population accounted for 2.5% of the total. When historical and contemporary pollen flows among populations were compared, the levels of pollen flow seem to have declined recently. We conclude that to conserve M. stellata, it is important to preserve the whole population by maintaining its metapopulation structure and the gene flow among its populations.  相似文献   

6.
Yao X  Ye Q  Kang M  Huang H 《The New phytologist》2007,176(2):472-480
Polymorphic simple sequence repeat (SSR) markers were used to investigate the impact of habitat fragmentation on the population structure and gene flow of Changiostyrax dolichocarpa, a critically endangered tree in central China. Intrapopulation genetic diversity, population structure and gene flow in the five extant populations of this species were analysed by eight SSR markers. Intrapopulation genetic diversity results suggest that C. dolichocarpa remnants maintained a relatively high degree of genetic diversity despite severe fragmentation. Low genetic differentiation among populations was found based on Wright's F(ST) and amova analysis. Both the F(ST)-based estimate and private allele method revealed high historical gene flow among the remnant populations. Recent immigrants, detected by assignment tests, tend to decrease from the grandparent generation to the current generation. The potentially highly restricted current gene flow among fragments may render the fragmented populations of C. dolichocarpa at a higher risk of local extinction several generations after fragmentation. Both in situ and ex situ conservation management for the remnant populations of C. dolichocarpa are therefore urgently needed to rescue remaining genetic diversity.  相似文献   

7.
王兴亚  许国庆 《昆虫学报》2014,57(9):1061-1074
【目的】为了明确我国甜菜夜蛾Spodoptera exigua地理种群间的遗传分化及基因流,阐明该种害虫在我国的种群历史动态。【方法】本研究对采自我国20个地理种群的529头甜菜夜蛾样品进行线粒体COI基因序列测定与分析,利用DnaSP 5.0和Arlequin 3.11软件分析种群间遗传多样性、遗传分化、基因流水平及分子变异,构建了单倍型系统发育树与单倍型网络图。【结果】在所分析的所有529个序列样本中,共检测出10个单倍型,其中Hap_1为所有种群所共享。总群体遗传多样性较低(Hd=0.257±0.025,Pi=0.0007±0.0001,Kxy=0.323),群体间遗传分化较小(FST=0.211),基因流水平较高(Nm=1.870)。AMOVA分析表明,甜菜夜蛾遗传变异主要来自种群内,种群间变异水平较低。各种群间遗传分化程度与地理距离无显著相关性(R2=0.005,P>0.05)。各单倍型相互散布在不同种群中,未形成明显系统地理结构。中性检验(Tajima’s D=-2.177, P<0.05; Fu’s FS=-8.629, P<0.05)与错配分布分析表明,我国甜菜夜蛾种群曾经历种群近期扩张。【结论】研究结果揭示,甜菜夜蛾各种群间的基因交流并未受到地理距离的影响,验证了甜菜夜蛾具有高度的迁飞能力。  相似文献   

8.
Estimates of interpopulational gene flow and the levels and distribution of genetic variation in Clarkia speciosa subsp. polyantha were obtained using enzyme electrophoresis. Eight enzymes encoded by 17 loci were analyzed. Nei's mean genetic identity was 0.96, indicating little genetic divergence among populations. Gene diversity statistics also suggest little heterogeneity among populations. Interpopulational gene flow, estimated according to Slatkin (1985), was fairly high, Nm = 3.9, probably accounting for the lack of differentiation among populations.  相似文献   

9.
Abstract: The populations of Sesleria albicans Kit. ex Schultes in central Europe are supposed to be glacial relicts. The genetic structure of these populations can provide evidence for the reliability of this hypothesis, since a distinct geographical clustering of populations and high levels of interpopulational genetic variation can be expected in the case of relict endemism. In the study presented here, we used Random Amplified Polymorphic DNA (RAPD) analysis to describe the genetic structure of 25 Sesleria albicans populations from west and central Germany, southwest Germany and the Alps. In the RAPD analysis 344 fragments could be amplified, of which 95.9 % were polymorphic. The percentage of polymorphic bands per population ranged from 29.7 % to 56.7 % and correlated significantly with population size, indicating a higher level of inbreeding in small and isolated populations. An analysis of molecular variance (AMOVA) revealed that 61.22 % of the variation resided within populations, whereas 34.25 % was found among populations within regions and only 4.53 % among regions. Genetic distance among populations (φST) varied between 0.63 and 0.13, and in a Neighbour-Joining dendrogram based on the genetic distances between the investigated individuals, all populations could be discriminated from each other. The populations from the northern and southern Alps were clearly separated from the central European populations. These, however, did not form geographic clusters. Considering these results, Sesleria albicans showed a high level of intra- but only a low level of interpopulational genetic variation and very weak regional differentiation. The genetic pattern detected in this study, therefore, gives no evidence for glacial relict endemism of Sesleria albicans in central Europe.  相似文献   

10.
1. Mitochondrial DNA sequence analysis was used to investigate the phylogeographic structure among populations of the amphipod Gammarus lacustris isolated in high altitude lakes from the Northern to the Southern Alps, and to investigate the historical and demographic events that may have accompanied this differentiation.
2. The comparison of a 376‐base segment of the mitochondrial cytochrome c oxidase I gene in fifty‐four specimens from nine different populations reveals no variation within populations. However, northern populations appear divergent from those from the Southern Alps. A particular population, located at the limit between the Northern and Southern Alps shows an intermediate haplotype related to the southern lineage.
3. Consideration of the different mitochondrial lineages, together with geographical differences among populations, suggests a scenario for the post‐glacial colonization of G. lacustris in the alpine lakes.  相似文献   

11.
Forest musk deer ( Moschus berezovskii ) were once distributed widely in China. However, wild populations have declined dramatically because of poaching and habitat loss. Captive breeding populations have been established for several decades, but the genetic backgrounds of most captive populations were unclear and the population sizes increased very slowly. To provide useful information for conservation and management of this species, we investigated the genetic diversity and population structure of forest musk deer by analysing a 582-bp fragment of the mitochondrial DNA (mtDNA) control region (CR) in three captive breeding populations in Sichuan Province, China. Ninety-four variable sites and 27 haplotypes were observed in 109 individuals, and the nucleotide and haplotype diversities were relatively high compared with those of other endangered mammals. Of the three investigated populations, the Maerkang population had the highest nucleotide diversity ( π  = 0.0568), haplotype diversity ( h  =   0.836) and average intra-population genetic distance (0.062). The analysis of molecular variance demonstrated that most variation occurred within samples and that there was significant differentiation of the three populations. Estimates of gene flow indicated that there were few genetic exchanges among the three populations. Building pedigree records and increasing gene flow between populations will be helpful for conserving these populations and this species.  相似文献   

12.
The morphological features of pollen and seed of Araucaria angustifolia have led to the proposal of limited gene dispersal for this species. We used nuclear microsatellite and AFLP markers to assess patterns of genetic variation in six natural populations at the intra- and inter-population level, and related our findings to gene dispersal in this species. Estimates of both fine-scale spatial genetic structure (SGS) and migration rate suggest relatively short-distance gene dispersal. However, gene dispersal differed among populations, and effects of more efficient dispersal within population were observed in at least one stand. In addition, even though some seed dispersal may be aggregated in this principally barochorous species, reasonable secondary seed dispersal, presumably facilitated by animals, and overlap of seed shadows within populations is suggested. Overall, no correlation was observed between levels of SGS and inbreeding, density or age structure, except that a higher level of SGS was revealed for the population with a higher number of juvenile individuals. A low estimate for the number of migrants per generation between two neighbouring populations implies limited gene flow. We expect that stepping-stone pollen flow may have contributed to low genetic differentiation among populations observed in a previous survey. Thus, strategies for maintenance of gene flow among remnant populations should be considered in order to avoid degrading effects of population fragmentation on the evolution of A. angustifolia.  相似文献   

13.
Quercus acutissima (Fagaceae), a deciduous broad-leaved tree, is an important forest element in hillsides of South Korea. We used allozyme loci, Wright's F statistics, and multilocus spatial autocorrelation statistics to examine the distribution of genetic diversity within and among three local populations and the spatial genetic structure at a landscape scale (15 ha, 250 × 600 m) on Oenaro Island, South Korea. Levels of genetic diversity in Q. acutissima populations were comparable to mean values for other oak species. A moderate but significant deficit of heterozygotes (mean F(IS) = 0.069) was detected within local populations and low but significant differentiation was observed among populations (F(ST) = 0.010). Spatial autocorrelation analyses revealed little evidence of significant genetic structure at spatial scales of 100-120 m. The failure to detect genetic structure within populations may be due to intraspecific competition or random mortality among saplings, resulting in extensive thinning within maternal half-sib groups. Alternatively, low genetic differentiation at the landscape scale indicates substantial gene flow among local populations. Although wind-borne pollen may be the primary source of gene flow in Q. acutissima, these results suggest that acorn movement by animals may be more extensive than previously anticipated. Comparison of these genetic data for Oenaro Island with a disturbed isolated inland population suggests that population-to-population differences in internal genetic structure may be influenced by local variation in regeneration environment (e.g., disturbance).  相似文献   

14.
Understanding patterns of genetic structure is fundamental for developing successful management programmes for isolated populations of threatened species. Trochulus caelatus is a small terrestrial snail endemic to calcareous rock cliffs in the Northwestern Swiss Jura Mountains. Eight microsatellite loci were used to assess the effect of habitat isolation on genetic population structure and gene flow among nine populations occurring on distinct cliffs. We found a high genetic differentiation among populations (mean F ST = 0.254) indicating that the populations are strongly isolated. Both allelic richness and effective population size were positively correlated with the size of the cliffs. Our findings support the hypothesis that T. caelatus survived on ice-free cliffs during the Pleistocene glacier advancements from the Alps. Due to the establishment of beech and pine forest under recent, temperate climate conditions, dispersal between cliffs is no longer possible for rock-dwelling snails such as T. caelatus. Our results provide basic data for developing a conservation action plan for this endangered gastropod species.  相似文献   

15.
Ips typographus populations were analysed by enzyme electrophoresis and by sequence analysis in order to quantify the degree of population differentiation. Enzyme electrophoresis showed a high gene flow among all European populations. Analysis of single loci showed that aspartate aminotransferase-2 ( Aat-2 ) clustered the Scandinavian populations apart from the other populations whereas other enzyme loci showed no significant pattern. Analysis of mitochondrial DNA revealed eight haplotypes. The populations from Italy, Croatia and Belgium were the most polymorphic. Two haplotypes (I and II) were found in the majority of Central European populations. In the northern populations only one haplotype (I) was found. The Russian and Lithuanian populations had a particular haplotype (IV) that was not found in any of the other populations. In view of these data it is suggested that the population structure of I. typographus has been influenced by events which took place during and after the last ice age. Populations were forced into refugial areas in the south and in the area north of Moscow along with the host tree, Picea abies . P. abies had four refugial areas: the Apennine Alps, the Dinaric Alps, the Carpathian Alps and Kostroma, an area north of Moscow. With amelioration of the temperature, beetles spread after P. abies . According to the data presented here, I. typographus migrated from the Apennine and/or Dinaric Alps to the north. Whilst there is evidence for high gene flow among populations, bottleneck effects can still be detected in the north and also in the east. Beetles from the refugial area north of Moscow did not spread to Scandinavia or to the west like the host tree.  相似文献   

16.
七筋菇自然居群的遗传结构分析   总被引:4,自引:0,他引:4  
采用ISSR分子标记,对七筋菇(Clintonia udensis)17个居群的遗传多样性与遗传结构进行了研究。结果表明:七筋菇不同居群的多态位点百分率PPB为11.90%~59.52%,总的多态位点百分率PPB为98.8%,具有高的遗传多样性。Shannon多样性指数(0.6903)和基因分化系数(GST=0.6944)均揭示出七筋菇居群间存在明显的遗传差异,AMOVA分析结果也显示遗传变异主要发生在居群之间(81.47%),而居群内部的遗传变异仅为18.53%。七筋菇居群间的遗传距离从0.1871~0.6632,平均为0.3838,大于同一物种居群间的平均遗传距离值(0.05),同样表明七筋菇居群间的遗传多样性存在较大差异。七筋菇居群间的基因流Nm=0.2200,远远低于一般广布种植物的基因流(Nm=1.881)。Mantel检测显示居群间的遗传距离与地理距离之间没有显著相关性(r=0.029,P=0.3196)。七筋菇分布范围广以及其进化历史是其具有高遗传多样性的原因;居群间存在较高遗传变异可能是由于七筋菇本身的生物学特性、有限的基因流以及遗传漂变等原因造成的。  相似文献   

17.
Eryngium alpinum L. is an endangered species found across the European Alps. In order to obtain base-line data for the conservation of this species, we investigated levels of genetic diversity within and among 14 populations from the French Alps. We used the amplified fragment length polymorphism (AFLP) technique with three primer pairs and scored a total of 62 unambiguous, polymorphic markers in 327 individuals. Because AFLP markers are dominant, within-population genetic structure (e.g. FIS) could not be assessed. Analyses based either on the assumption of random-mating or on complete selfing lead to very similar results. Diversity levels within populations were relatively high (mean Nei's expected heterozygosity = 0.198; mean Shannon index = 0.283), and a positive correlation was detected between both genetic diversity measurements and population size (Spearman rank correlation: P = 0. 005 and P = 0.002, respectively). Moreover, FST values and exact tests of differentiation revealed high differentiation among populations (mean pairwise FST = 0.40), which appeared to be independent of geographical distance (nonsignificant Mantel test). Founder events during postglacial colonizations and/or bottlenecks are proposed to explain this high but random genetic differentiation. By contrast, we detected a pattern of isolation by distance within populations and valleys. Predominant local gene flow by pollen or seed is probably responsible for this pattern. Concerning the management of E. alpinum, the high genetic differentiation leads us to recommend the conservation of a maximum number of populations. This study demonstrates that AFLP markers enable a quick and reliable assessment of intraspecific genetic variability in conservation genetics.  相似文献   

18.
Aim Carex atrofusca has an arctic–alpine distribution in the Northern Hemisphere, with only a few, disjunct localities known in the European Alps. These alpine populations are declining in number and size. In contrast, C. atrofusca has a wide circumpolar distribution range and is abundant in large parts of the Arctic. The degree of genetic differentiation of the alpine populations and their importance for the conservation of the intraspecific genetic variation of the species is unknown. Location Eurasia and Greenland, with emphasis on the European Alps. Methods We applied amplified fragment length polymorphism (AFLP) fingerprinting and sequences of chloroplast DNA to determine the position of the alpine populations in a circumpolar phylogeography of C. atrofusca and to unravel the patterns of genetic diversity and differentiation within the Alps. Results Two distinct major groups were detected in a neighbour‐joining analysis of AFLP data and in parsimony analysis of chloroplast DNA sequences: one consisting of the populations from Siberia and Greenland and one consisting of all European populations as sister to the populations from Central Asia. Within Europe, the populations from the Tatra Mountains and those from Scotland and Scandinavia formed two well‐supported groups, whereas the alpine populations did not constitute a group of their own. The genetic variation in the Alps was almost completely partitioned among the populations, and the populations were almost invariable. Main conclusions The alpine populations possibly originated due to immigration from Central Asia. The strong differentiation among them suggests that genetic drift has been strongly acting on the populations, either as a consequence of founder events during colonization or due to subsequent reduction of population sizes during warm stages of the Holocene.  相似文献   

19.
Genetic diversity within and among six subpopulations of Larix decidua Mill. from two altitudinal transects of Swiss Alps was investigated using 6 enzyme systems coding for 8 loci. Globally, the mean proportion of polymorphic loci was 22.9%, the average number of alleles per locus was 1.3, and the mean expected heterozygosity was 0.095. Only 5.8% of the genetic variation resided among populations. The mean genetic distance was 0.006. Several significant differences of gene frequencies were found between different age classes. Positive values of the species mean fixation index observed in this study suggested a considerable deficit of heterozygotes in the populations of L. decidua of Swiss Alps. At one of the sites (Arpette), the highest subpopulation in elevation gave the lowest level of genetic diversity (as evidenced by the lowest proportion of polymorphic loci and the lowest mean expected heterozygosity) and the largest value of genetic distance when compared to other subpopulations. The genetic differences between the highest subpopulation and the other ones suggest that the founder effect may be an important factor influencing genetic differentiation of L. decidua populations at Arpette transect.  相似文献   

20.
Microsatellites have proved to be useful for the detection of weak population structure in marine fishes and other species characterized by large populations and high gene flow. None the less, uncertainty remains about the net effects of the particular mutational properties of these markers, and the wide range of locus polymorphism they exhibit, on estimates of differentiation. We examined the effect of varying microsatellite polymorphism on the magnitude of observed differentiation in a population survey of walleye pollock, Theragra chalcogramma. Genetic differentiation at 14 microsatellite loci among six putative populations from across the North Pacific Ocean and Bering Sea was weak but significant on large geographical scales and conformed to an isolation-by-distance pattern. A negative relationship was found between locus variability and the magnitude of estimated population subdivision. Estimates of F(ST) declined with locus polymorphism, resulting in diminished power to discriminate among samples, and we attribute this loss to the effects of size homoplasy. This empirical result suggests that mutation rates of some microsatellite loci are sufficiently high to limit resolution of weak genetic structure typical of many marine fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号