首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈小勇 《生态学报》2000,20(5):884-892
生境片断化是指大而连续的生境变成空间隔离的小种群的现象。生境片断化对植物种群遗传效应包括生境片断化过程中的取样效应及其后的小种群效应(遗传漂变、近交等)。理论研究表明,生境片断化后,植物种群的遗传变异程度将降低,而残留的小种群间的遗传分化程度将升高。然而对一些植物的研究表明,生境片断化对植物种群的遗传效应要受其他一些因素的影响,如世代长度、片断化时间、片断种群的大小、基因流的改变等。最后,针对生境  相似文献   

2.
Spatial configuration of habitats influences genetic structure and population fitness whereas it affects mainly species with limited dispersal ability. To reveal how habitat fragmentation determines dispersal and dispersal-related morphology in a ground-dispersing insect species we used a bush-cricket (Pholidoptera griseoaptera) which is associated with forest-edge habitat. We analysed spatial genetic patterns together with variability of the phenotype in two forested landscapes with different levels of fragmentation. While spatial configuration of forest habitats did not negatively affect genetic characteristics related to the fitness of sampled populations, genetic differentiation was found higher among populations from an extensive forest. Compared to an agricultural matrix between forest patches, the matrix of extensive forest had lower permeability and posed barriers for the dispersal of this species. Landscape configuration significantly affected also morphological traits that are supposed to account for species dispersal potential; individuals from fragmented forest patches had longer hind femurs and a higher femur to pronotum ratio. This result suggests that selection pressure act differently on populations from both landscape types since dispersal-related morphology was related to the level of habitat fragmentation. Thus observed patterns may be explained as plastic according to the level of landscape configuration; while anthropogenic fragmentation of habitats for this species can lead to homogenization of spatial genetic structure.  相似文献   

3.
It is difficult to assess the relative influence of anthropogenic processes (e.g., habitat fragmentation) versus species’ biology on the level of genetic differentiation among populations when species are restricted in their distribution to fragmented habitats. This issue is particularly problematic for Australian rock-wallabies (Petrogale sp.), where most previous studies have examined threatened species in anthropogenically fragmented habitats. The short-eared rock-wallaby (Petrogale brachyotis) provides an opportunity to assess natural population structure and gene flow in relatively continuous habitat across north-western Australia. This region has reported widespread declines in small-to-medium sized mammals, making data regarding the influence of habitat connectivity on genetic diversity important for broad-scale management. Using non-invasive and standard methods, 12 microsatellite loci and mitochondrial DNA were compared to examine patterns of population structure and dispersal among populations of P. brachyotis in the Kimberley, Western Australia. Low genetic differentiation was detected between populations separated by up to 67?km. The inferred genetic connectivity of these populations suggests that in suitable habitat P. brachyotis can potentially disperse far greater distances than previously reported for rock-wallabies in more fragmented habitat. Like other Petrogale species male-biased dispersal was detected. These findings suggest that a complete understanding of population biology may not be achieved solely by the study of fragmented populations in disturbed environments and that management strategies may need to draw on studies of populations (or related species) in undisturbed areas of contiguous habitat.  相似文献   

4.
Because patchiness of food sources or nesting opportunities frequently limits gene flow, specialists often exhibit distinct population structures in fragmented habitats. We studied the influence of habitat fragmentation on population structure in the solitary bee Andrena vaga, an early spring species that nests exclusively in sandy soil and feeds strictly on willows (Salix spp.). Because the homogenous habitat of the German floodplains, where the species was studied previously, resulted in the species’ weak population structure, we expected more structured populations in central Europe, where the sandy soils essential for nesting are highly fragmented. We analysed 387 females from 21 localities in the Czech Republic and Slovakia using nine microsatellite loci, and we inferred population structure using landscape genetics and Bayesian clustering methods. Contrary to our expectations, habitat fragmentation did not result in increased genetic isolation at the localities; however, two differentiated groups of localities, separated by a wide clinal zone of admixture, were detected within the study area. The observed pattern suggests that dispersive ability of A. vaga compensates the species dependence on unstable fragmented habitats. We propose that the population structure may mirror a secondary contact formed by the expansion of two populations that had been separated in the past. We emphasise the necessity of knowing the studied species’ population history before making conclusions concerning correlations between habitat and population structure, especially in areas of known suture zones created by the secondary contact of populations expanding from separate refugia.  相似文献   

5.
Wang R  Compton SG  Chen XY 《Molecular ecology》2011,20(21):4421-4432
Fragmentation reduces population sizes, increases isolation between habitats and can result in restricted dispersal of pollen and seeds. Given that diploid seed dispersal contributes more to shaping fine-scale spatial genetic structure (SGS) than haploid pollen flow, we tested whether fine-scale SGS can be sensitive to fragmentation even if extensive pollen dispersal is maintained. Castanopsis sclerophylla (Lindley & Paxton) Schottky (Fagaceae), a wind-pollinated and gravity seed-dispersed tree, was studied in an area of southeast China where its populations have been fragmented to varying extents by human activity. Using different age classes of trees in areas subject to varying extents of fragmentation, we found no significant difference in genetic diversity between prefragmentation vs. postfragmentation C. sclerophylla subpopulations. Genetic differentiation among postfragmentation subpopulations was also only slightly lower than among prefragmentation subpopulations. In the most fragmented habitat, selfing rates were significantly higher than zero in prefragmentation, but not postfragmentation, cohorts. These results suggest that fragmentation had not decreased gene flow among these populations and that pollen flow remains extensive. However, significantly greater fine-scale SGS was found in postfragmentation subpopulations in the most fragmented habitat, but not in less fragmented habitats. This alteration in SGS reflected more restricted seed dispersal, induced by changes in the physical environments and the prevention of secondary seed dispersal by rodents. An increase in SGS can therefore result from more restricted seed dispersal, even in the face of extensive pollen flow, making it a sensitive indicator of the negative consequences of population fragmentation.  相似文献   

6.
Habitat fragmentation has often been implicated in the decline of many species. For habitat specialists and/or sedentary species, loss of habitat can result in population isolation and lead to negative genetic effects. However, factors other than fragmentation can often be important and also need to be considered when assessing the genetic structure of a species. We genotyped individuals from 13 populations of the cooperatively breeding Brown‐headed Nuthatch Sitta pusilla in Florida to test three alternative hypotheses regarding the effects that habitat fragmentation might have on genetic structure. A map of potential habitat developed from recent satellite imagery suggested that Brown‐headed Nuthatch populations in southern Florida occupied smaller and more isolated habitat patches (i.e. were more fragmented) than populations in northern Florida. We also genotyped individuals from a small, isolated Brown‐headed Nuthatch population on Grand Bahama Island. We found that populations associated with more fragmented habitat in southern Florida had lower allelic richness than populations in northern Florida (P = 0.02), although there were no differences in heterozygosity. Although pairwise estimates of FST were low overall, values among southern populations were generally higher than northern populations. Population assignment tests identified K = 3 clusters corresponding to a northern cluster, a southern cluster and a unique population in southeast Florida; using sampling localities as prior information revealed K = 7 clusters, with greater structure only among southern Florida populations. The Bahamas population showed moderate to high differentiation compared with Florida populations. Overall, our results suggest that fragmentation could affect gene flow in Brown‐headed Nuthatch populations and is likely to become more pronounced over time.  相似文献   

7.
Conservation plans can be greatly improved when information on the evolutionary and demographic consequences of habitat fragmentation is available for several codistributed species. Here, we study spatial patterns of phenotypic and genetic variation among five grasshopper species that are codistributed across a network of microreserves but show remarkable differences in dispersal‐related morphology (body size and wing length), degree of habitat specialization and extent of fragmentation of their respective habitats in the study region. In particular, we tested the hypothesis that species with preferences for highly fragmented microhabitats show stronger genetic and phenotypic structure than codistributed generalist taxa inhabiting a continuous matrix of suitable habitat. We also hypothesized a higher resemblance of spatial patterns of genetic and phenotypic variability among species that have experienced a higher degree of habitat fragmentation due to their more similar responses to the parallel large‐scale destruction of their natural habitats. In partial agreement with our first hypothesis, we found that genetic structure, but not phenotypic differentiation, was higher in species linked to highly fragmented habitats. We did not find support for congruent patterns of phenotypic and genetic variability among any studied species, indicating that they show idiosyncratic evolutionary trajectories and distinctive demographic responses to habitat fragmentation across a common landscape. This suggests that conservation practices in networks of protected areas require detailed ecological and evolutionary information on target species to focus management efforts on those taxa that are more sensitive to the effects of habitat fragmentation.  相似文献   

8.
Habitat fragmentation is known to cause genetic differentiation between small populations of rare species and decrease genetic variation within such populations. However, common species with recently fragmented populations have rarely been studied in this context. We investigated genetic variation and its relationship to population size and geographical isolation of populations of the common plant species, Lychnis flos-cuculi L., in fragmented fen grasslands. We analysed 467 plants from 28 L. flos-cuculi populations of different sizes (60 000-54 000 flowering individuals) in northeastern Switzerland using seven polymorphic microsatellite loci. Genetic differentiation between populations is small (F(ST) = 0.022; amova; P < 0.001), suggesting that gene flow among populations is still high or that habitat fragmentation is too recent to result in pronounced differentiation. Observed heterozygosity (H(O) = 0.44) significantly deviates from Hardy-Weinberg equilibrium, and within-population inbreeding coefficient F(IS) is high (0.30-0.59), indicating a mixed mating breeding system with substantial inbreeding in L. flos-cuculi. Gene diversity is the only measure of genetic variation which decreased with decreasing population size (R = 0.42; P < 0.05). While our results do not indicate pronounced effects of habitat fragmentation on genetic variation in the still common L. flos-cuculi, the lower gene diversity of smaller populations suggests that the species is not entirely unaffected.  相似文献   

9.
Expected consequences of global warming include habitat reduction in many cool climate species. Rock ptarmigan is a Holarctic grouse that inhabits arctic and alpine tundra. In Europe, the Pyrenean ptarmigan inhabits the southern edge of the species' range and since the last glacial maximum its habitat has been severely fragmented and is restricted to high-alpine zones or 'sky islands'. A recent study of rock ptarmigan population genetic in Europe found that the Pyrenean ptarmigan had very low genetic diversity compared with that found in the Alps and Scandinavia. Habitat fragmentation and reduced genetic diversity raises concerns about the viability of ptarmigan populations in the Pyrenees. However, information on population structuring and gene flow across the Pyrenees, which is essential for designing a sound management plan, is absent. In this study, we use seven microsatellites and mitochondrial control region sequences to investigate genetic variation and differentiation among five localities across the Pyrenees. Our analyses reveal the presence of genetic differentiation among all five localities and a significant isolation-by-distance effect that is likely the result of short dispersal distances and high natal and breeding philopatry of Pyrenean ptarmigan coupled with severe habitat fragmentation. Furthermore, analysis of molecular variance, principal component analysis and Bayesian analysis of genetic structuring identified the greatest amount of differentiation between the eastern and main parts of the Pyrenean chain separated by the Sègre Valley. Our data also show that the Canigou massif may host an isolated population and requires special conservation attention. We propose a management plan which includes the translocation of birds. If a sky island structure affects genetic divergence in rock ptarmigan, it may also affect the genetic structure of other sky island species having low dispersal abilities.  相似文献   

10.
Many plants live in habitats that are becoming increasingly rare and fragmented due to human disturbance. Studies of genetic diversity are necessary for understanding and evaluating the impact of habitat fragmentation, and land-use change on the dynamics of rare species to help in setting priorities for their management. We used AFLP markers to study variation in genetic structure within and among three border populations of the orchidHimantoglossum hircinum. Study sites were located in central Germany, which represents the north-eastern border of distribution, and they were separated from each other by a maximum distance of 10 km. Landscape between the populations was characterized by man-made habitat features including agricultural fields, major roads and settlements. We compared pairs of populations to evaluate genetic variation, genetic differentiation, and the current level of gene flow between them. Genetic diversity was high within the populations and higher within than between the populations. Population genetic differentiation was relatively high compared to other orchid species (G st=0.20). Gene flow between pairs of the populations varied and appeared to be influenced by landscape characteristics separating the localities. Recommendations for conservation ofH. hircinum are provided. Management activities should concentrate on maintenance or enlargement of habitat size to prevent loss of genetic diversity due to genetic drift. Sites are genetically relatively isolated, but using stepping stones to improve gene exchange would be problematic because of the intense land-use in the area.  相似文献   

11.
1. Reservoirs modify riverine ecosystems worldwide, and often with deleterious impacts on native biota. The immediate effects of reservoirs on native fish species below dams and in impounded reaches have received considerable attention, but it is unclear how reservoirs may affect fish species at larger spatial and temporal scales. Documented declines of stream fish populations in direct tributaries of reservoirs suggest reservoir pools may reduce gene flow among historically connected populations. 2. Because of increased predator densities in reservoirs and the extent of habitat alteration in impounded reaches, I predicted reservoir habitats would reduce gene flow among small‐bodied fish populations separated by reservoir habitat. I used microsatellite markers to assess the spatial genetic structure of populations of the red shiner (Cyprinella lutrensis), in a reservoir‐fragmented stream network (Lake Texoma, U.S.A.). I also tested the prediction that populations in two direct tributaries that have experienced population declines would have low genetic diversity. Individuals were collected from six sites upstream of the reservoir, three sites in the reservoir and three sites in direct tributaries of the reservoir during 2008 and 2009. 3. Results indicate that most populations were isolated by distance with little divergence among populations. In one direct tributary population, however, there was substantial genetic divergence, and genetic diversity was significantly lower than in other populations. Gene flow also seemed to be lower in reservoir habitats than in intact stream habitats, suggesting reservoir habitats may be reducing gene flow among the reservoir‐separated populations. These results indicate that reservoirs may reduce gene flow among reservoir‐fragmented stream fish populations, altering the evolutionary trajectories of fragmented populations.  相似文献   

12.
In order to devise adequate conservation and management strategies for endangered species, it is important to incorporate a reliable understanding of its spatial population structure, detecting the existence of demographic partitions throughout its geographical range and characterizing the distribution of its genetic diversity. Moreover, in species that occupy fragmented habitats it is essential to know how landscape characteristics may affect the genetic connectivity among populations. In this study we use eight microsatellite markers to analyze population structure and gene flow patterns in the complete geographic range of the endangered rodent Ctenomys porteousi. Also, we use landscape genetics approaches to evaluate the effects of landscape configuration on the genetic connectivity among populations. In spite of geographical proximity of the sampling sites (8–27 km between the nearest sites) and the absence of marked barriers to individual movement, strong population structure and low values of gene flow were observed. Genetic differentiation among sampling sites was consistent with a simple model of isolation by distance, where peripheral areas showed higher population differentiation than those sites located in the central area of the species’ distribution. Landscape genetics analysis suggested that habitat fragmentation at regional level has affected the distribution of genetic variation among populations. The distance of sampling sites to areas of the landscape having higher habitat connectivity was the environmental factor most strongly related to population genetic structure. In general, our results indicate strong genetic structure in C. porteousi, even at a small spatial scale, and suggest that habitat fragmentation could increase the population differentiation.  相似文献   

13.
Detection of the genetic effects of recent habitat fragmentation in natural populations can be a difficult task, especially for high gene flow species. Previous analyses of mitochondrial DNA data from across the current range of Speyeria idalia indicated that the species exhibited high levels of gene flow among populations, with the exception of an isolated population in the eastern portion of its range. However, some populations are found on isolated habitat patches, which were recently separated from one another by large expanses of uninhabitable terrain, in the form of row crop agriculture. The goal of this study was to compare levels of genetic differentiation and diversity among populations found in relatively continuous habitat to populations in both recently and historically isolated habitat. Four microsatellite loci were used to genotype over 300 individuals from five populations in continuous habitat, five populations in recently fragmented habitat, and one historically isolated population. Results from the historically isolated population were concordant with previous analyses and suggest significant differentiation. Also, microsatellite data were consistent with the genetic effects of habitat fragmentation for the recently isolated populations, in the form of increased differentiation and decreased genetic diversity when compared to nonfragmented populations. These results suggest that given the appropriate control populations, microsatellite markers can be used to detect the effects of recent habitat fragmentation in natural populations, even at a large geographical scale in high gene flow species.  相似文献   

14.
The capercaillie inhabits a continuous range in large parts of the Palearctic boreal forest, but is patchily distributed in temperate Europe. An ongoing population decline, largely related to human land use changes, has been most pronounced in central and western Europe, where some local populations have become extinct. In this study, we document the genetic differentiation of capercaillie populations at different stages along a gradient of spatial structuring from high connectivity (continuous range in the boreal forest) to a metapopulation systems (Alps) and recent (central Europe) and historic (Pyrenees) isolation. Four hundred and sixty individuals from 14 sample sites were genotyped at 10 polymorphic microsatellite loci to assess genetic structure and variation of capercaillie populations across its European range. As expected, differentiation was least pronounced within the continuous range in the boreal forest. Within the metapopulation system of the Alps, differentiation was less than among the isolated populations of central Europe (Black Forest, Fichtelgebirge, Thuringia, Vosges). In the long-isolated population of the Pyrenees, and the recently isolated populations of central Europe, genetic diversity was significantly reduced compared with the Alps and boreal forest. Our results agree with the concept of a gradual increase in genetic differentiation from connectivity to isolation, and from recent to historic isolation. Anthropogenic habitat deterioration and fragmentation thus not only leads to range contractions and extinctions, but may also have significant genetic and evolutionary consequences for surviving populations. To maintain high levels of genetic variation in species in fragmented habitats, conservation should aim at securing connectivity between spatially distinct populations.  相似文献   

15.
Human-induced habitat fragmentation might seriously affect behavioural patterns and the survival of species whose ecological requirements strongly depend on specific environmental conditions. We compared the genetic structure and dispersal patterns of 2 populations of Alouatta caraya (Plathyrrhini, Atelidae) to understand how habitat reduction and fragmentation affect gene flow in this species. We sampled individuals from 7 groups living in continuous forest (CF, n = 46, 22 males and 24 females), and 11 groups that inhabit a fragmented forest (FF, n = 50, 24 males and 26 females). FST values based on 11 microsatellite loci showed a recent genetic differentiation among groups in the FF. In contrast, the CF showed no differentiation among groups. Further, FST values between sexes, as well as kinship relationships, also exhibited differences between habitats. In the CF, both males and females disperse, leading to nondifferentiated groups composed of adults that are not close relatives. Conversely, in the FF, some groups are differentiated, males disperse more than females, and groups are composed of closely related adult females. Our results suggest that habitat fragmentation modifies the dispersal patterns of black-and-gold howlers. These differences between habitats may reflect a reduced gene flow, providing genetic evidence that suggests that habitat fragmentation severely limits the howler’s ability to disperse. An increasing level of isolation due to uncontrolled deforestation may cause similar loss of genetic diversity on other arboreal primates, and nonprimates that depend on forest continuity to disperse, reducing their abilities to cope with environmental changes.  相似文献   

16.
Although the adder (Vipera berus) has a large distribution area, this species is particularly threatened in Western Europe due to high habitat fragmentation and human persecution. We developed 13 new microsatellite markers in order to evaluate population structure and genetic diversity in the Swiss and French Jura Mountains, where the species is limited to only a few scattered populations. We found that V. berus exhibits a considerable genetic differentiation among populations (global FST = 0.269), even if these are not geographically isolated. Moreover, the genetic diversity within populations in the Jura Mountains and in the less perturbed Swiss Alps is significantly lower than in other French populations, possibly due to post-glacial recolonisation processes. Finally, in order to minimize losses of genetic diversities within isolated populations, suggestions for the conservation of this species in fragmented habitats are proposed.  相似文献   

17.
The assessment of population structure and genetic diversity is crucial for the management and conservation of threatened species. Natural and artificial barriers to dispersal (i.e., gene flow) increase populations’ differentiation and isolation by reducing genetic exchange and diversity. Freshwater ecosystems are highly fragmented because of human activities. Threatened species with small population sizes are more sensitive to habitat fragmentation effects. Here, we investigate the genetic population structure and gene flow among seven populations of Aphanius sophiae in the Kor Basin by using sequences of the complete Cyt b gene and otolith morphometry. The Cyt b gene showed low level of genetic variation, only 4.12% of the identified sites were variable, and 2.42% were parsimony informative. Overall, haplotype diversity was low to moderate and nucleotide diversity was low to extremely low. Fish populations exhibited high levels of genetic differentiation, suggesting limited gene flow among them. These differences were obtained not only among geographically distant populations, but also among neighboring localities. Genetic population structure was supported by the AMOVA analysis and by the haplotype network (only one of 21 haplotypes were shared by two localities). Otolith morphometric analysis was in agreement with genetic results, the two most distant and isolated populations were clearly separated, and genetically close populations showed less differences in morphometry. A significant pattern of isolation by distance was also detected among A. sophiae populations, with genetic distance more correlated with hydrological distance than with geographic distance. Results suggested that limited gene flow due to habitat fragmentation is an important factor contributing to genetic structuring and to the loss of genetic variation of A. sophiae populations. Aphanius sophiae population structure seems to be the result of habitat fragmentation and water pollution, but other factors such as introduced species should be considered. Given the high degree of genetic structuring, the definition of conservation groups is of particular importance for A. sophiae, which should be considered endangered according to the IUCN criteria. Conservation plans must recognize the genetic independence of populations and manage separately preventing the loss of locally adapted genotypes.  相似文献   

18.
Red squirrels (Sciurus vulgaris) are widely distributed throughout Eurasia, occurring in many types of coniferous and mixed-deciduous forests. In fragmented landscapes, small and partly isolated populations with low immigration rates show reduced genetic diversity, but reforestation can increase gene flow and restore levels of genetic variation in a few decades. No studies have so far investigated the genetic structure of red squirrel in large, continuous forests. The Italian Alps are presently characterized by almost continuous, recently reconnected forest habitats, that were affected by deep landscape changes during last glaciations but remained mostly unchanged between 10 000 and 200 years bp, when forest cover was heavily reduced. In this study we analyse patterns of genetic variability of red squirrels in and between seven sites distributed over 250 km of Alpine habitat, using mitochondrial DNA (mtDNA) and microsatellites. We use isolation-by-distance (IBD) models to investigate the relative importance that past (Pleistocene glaciations) and recent (fragmentation, bottlenecks) events had on the present genetic situation. Both nuclear and mtDNA data indicate a significant differentiation among study sites and a significant correlation between genetic and geographical distance only over a large scale. No recent bottlenecks are recorded through microsatellites and demographic models strongly support equilibrium between gene flow and drift; however, mtDNA suggests that there may have been local demographic crashes, probably in correspondence with the 19th-century forest fragmentation. These findings indicate that local landscape factors other than geographical distance per se, such as barriers of unsuitable habitat, affect gene flow and determine differentiation.  相似文献   

19.
  • Alpine rivers are, despite anthropogenic water flow regulation, still often highly dynamic ecosystems. Plant species occurring along these rivers are subject to ecological disturbance, mainly caused by seasonal flooding. Gypsophila repens typically grows at higher altitudes in the Alps, but also occurs at lower altitudes on gravel banks directly along the river and in heath forests at larger distances from the river. Populations on gravel banks are considered non‐permanent and it is assumed that new individuals originate from seed periodically washed down from higher altitudes. Populations in heath forests are, in contrast, permanent and not regularly provided with seeds from higher altitudes through flooding. If the genetic structure of this plant species is strongly affected by gene flow via seed dispersal, then higher levels of genetic diversity in populations but less differentiation among populations on gravel banks than in heath forests can be expected.
  • In this study, we analysed genetic diversity within and differentiation among 15 populations of G. repens from gravel banks and heath forests along the alpine River Isar using amplified fragment length polymorphisms (AFLP).
  • Genetic diversity was, as assumed, slightly higher in gravel bank than in heath forest populations, but genetic differentiation was, in contrast to our expectations, comparable among populations in both habitat types.
  • Our study provides evidence for increased genetic diversity under conditions of higher ecological disturbance and increased seed dispersal on gravel banks. Similar levels of genetic differentiation among populations in both habitat types can be attributed to the species' long lifetime, a permanent soil seed bank and gene flow by pollinators among different habitats/locations.
  相似文献   

20.
Habitat fragmentation versus fragmented habitats   总被引:1,自引:0,他引:1  
Habitats often show similar present structuring, but contrasting histories: habitats occur naturally fragmented due to abiotic or biotic factors over long time periods, but may also have become fragmented only recently through transformation from interconnected to highly fragmented habitats within short time periods. Species and populations being faced with such contrasting habitat scenarios also show contrasting responses at species and intraspecific level. Organisms and populations from naturally fragmented habitats may show a reduction in their genetic load (purging) due to purifying selection in isolation. In contrast, sudden habitat transformations from interconnected to highly fragmented structures and the resulting transition from gene flow or panmixia to strong population differentiation often have negative effects on biota; while species occur in interconnected population networks (maintaining a high proportion of genetic diversity), a sudden breakdown of gene flow may lead to a severe loss of genetic diversity and the manifestation of weakly deleterious alleles. In consequence, fragmented habitats need not have a negative impact on species per se, but the history of habitat structures, particularly fast transformation processes, may severely affect the persistence and fitness of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号