首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transforming growth factor-beta (TGFbeta) regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways. Activin receptor-like kinase-1 (ALK1) induces Smad1/5 phosphorylation, leading to an increase in endothelial cell proliferation and migration, while ALK5 promotes Smad2/3 activation and inhibits both processes. Here, we report that ALK5 is important for TGFbeta/ALK1 signaling; endothelial cells lacking ALK5 are deficient in TGFbeta/ALK1-induced responses. More specifically, we show that ALK5 mediates a TGFbeta-dependent recruitment of ALK1 into a TGFbeta receptor complex and that the ALK5 kinase activity is required for optimal ALK1 activation. TGFbeta type II receptor is also required for ALK1 activation by TGFbeta. Interestingly, ALK1 not only induces a biological response opposite to that of ALK5 but also directly antagonizes ALK5/Smad signaling.  相似文献   

3.
4.
Endoglin is a transmembrane accessory receptor for transforming growth factor-beta (TGF-beta) that is predominantly expressed on proliferating endothelial cells in culture and on angiogenic blood vessels in vivo. Endoglin, as well as other TGF-beta signalling components, is essential during angiogenesis. Mutations in endoglin and activin receptor-like kinase 1 (ALK1), an endothelial specific TGF-beta type I receptor, have been linked to the vascular disorder, hereditary haemorrhagic telangiectasia. However, the function of endoglin in TGF-beta/ALK signalling has remained unclear. Here we report that endoglin is required for efficient TGF-beta/ALK1 signalling, which indirectly inhibits TGF-beta/ALK5 signalling. Endothelial cells lacking endoglin do not grow because TGF-beta/ALK1 signalling is reduced and TGF-beta/ALK5 signalling is increased. Surviving cells adapt to this imbalance by downregulating ALK5 expression in order to proliferate. The ability of endoglin to promote ALK1 signalling also explains why ectopic endoglin expression in endothelial cells promotes proliferation and blocks TGF-beta-induced growth arrest by indirectly reducing TGF-beta/ALK5 signalling. Our results indicate a pivotal role for endoglin in the balance of ALK1 and ALK5 signalling to regulate endothelial cell proliferation.  相似文献   

5.
6.
In endothelial cells, two type I receptors of the transforming growth factor β (TGF-β) family, ALK1 and ALK5, coordinate to regulate embryonic angiogenesis in response to BMP9/10 and TGF-β. Whereas TGF-β binds to and activates ALK5, leading to Smad2/3 phosphorylation and inhibition of endothelial cell proliferation and migration, BMP9/10 and TGF-β also bind to ALK1, resulting in the activation of Smad1/5. SnoN is a negative regulator of ALK5 signaling through the binding and repression of Smad2/3. Here we uncover a positive role of SnoN in enhancing Smad1/5 activation in endothelial cells to promote angiogenesis. Upon ligand binding, SnoN directly bound to ALK1 on the plasma membrane and facilitated the interaction between ALK1 and Smad1/5, enhancing Smad1/5 phosphorylation. Disruption of this SnoN–Smad interaction impaired Smad1/5 activation and up-regulated Smad2/3 activity. This resulted in defective angiogenesis and arteriovenous malformations, leading to embryonic lethality at E12.5. Thus, SnoN is essential for TGF-β/BMP9-dependent biological processes by its ability to both positively and negatively modulate the activities of Smad-dependent pathways.  相似文献   

7.
The ability of inflammatory cytokine TGF-beta1 to alter endothelial cell phenotype suggests its role in the regulation of vascular endothelial cell permeability. We demonstrate that depletion of TGF-beta1 receptor ALK5 and regulatory protein Smad4, but not ALK1 receptor attenuates TGF-beta1-induced permeability increase and significantly inhibits TGF-beta1-induced EC contraction manifested by actin stress fiber formation and increased MLC and MYPT1 phosphorylation. Consistent with these results, EC treatment with SB 431542, an inhibitor of ALK5 but not ALK1 receptor, significantly attenuates TGF-beta1-induced permeability. Thus, our data demonstrate for the first time direct link between TGF-beta1-mediated activation of ALK5/Smad and EC barrier dysfunction.  相似文献   

8.
We have recently shown that induction of biglycan (BGN) expression by transforming growth factor-beta1 (TGF-beta1) required sequential activation of both Smad and p38 mitogen-activated protein kinase signaling (Ungefroren, H., Lenschow, W., Chen, W.-B., and Kalthoff, H. (2003) J. Biol. Chem. 278, 11041-11049). Here, we have analyzed the receptors through which TGF-beta1 controls expression of BGN and GADD45beta, the latter of which is postulated to link early Smad signaling to delayed activation of p38. Ectopic expression of a dominant-negative mutant of the TGF-beta type II receptor in PANC-1 cells abrogated TGF-beta-induced BGN up-regulation. Similarly, inhibition of the TGF-beta type I receptor/ALK5 with either SB431542 or by enforced stable expression of a kinase-dead mutant greatly attenuated the TGF-beta effect on both BGN and GADD45beta expression in PANC-1 and MG-63 cells. The enhancing effect of ALK5 on TGF-beta-mediated GADD45beta and BGN expression and on GADD45beta promoter activity was also dependent on its ability to activate Smad signaling, because an ALK5 mutant defective in Smad activation (TbetaRImL45) but with an otherwise functional kinase domain failed to mediate these responses. The TGF-beta/ALK5 effect on p38 activation and BGN expression was mimicked by overexpression of GADD45beta alone (in the absence of TGF-beta stimulation) and suppressed upon antisense inhibition of GADD45beta expression. These results show that TGF-beta induces BGN expression through (the Smad-activating function of) ALK5 and GADD45beta and suggest that the sensitivity of MyD118 to activation by TGF-beta, which varies between tissues, ultimately determines the strength of the TGF-beta effect on BGN.  相似文献   

9.
10.
11.
Advanced malignancies often exhibit increased concentrations of transforming growth factor-beta (TGF beta), which has been suggested to promote invasion and metastasis. While inhibition of epithelial cell proliferation in response to TGF beta is mainly mediated by the well-characterised Smad pathway, the molecular mechanism leading to TGF beta-induced invasiveness and metastasis are largely unknown. To elucidate these mechanisms, we compared TGF beta1 signalling in MCF-7 and the Smad4-negative MDA-MB-468 breast cancer cells. Both cell lines react to TGF beta1 treatment with decreased subcortical actin and increased numbers of focal contacts. TGF beta1-induced cell migration was strongly dependent on the activation of extracellular signal-regulated kinase (ERK) and Jun N-terminal kinase (JNK). These mitogen-activated protein kinases were phosphorylated in response to TGF beta and subsequently translocated into focal contacts. Inhibition of the TGF beta type I receptor ALK5 slightly reduced phosphorylation of ERK in MCF-7 cells, but neither inhibited phosphorylation of ERK in MDA-MB-468 cells nor TGF beta1-induced migration of both cell lines. In contrast, ALK5 inhibition effectively blocked Smad2 phosphorylation. In addition to ERK and JNK, the monomeric GTPase RhoA was activated by TGF beta1 and necessary for TGF beta-induced migration. Taken together, our study identifies a role of ERK and JNK activation and association of activated MAPKs with focal complexes in TGF beta1-induced cell migration in epithelial cells. These TGF beta-dependent processes were mediated independently of Smad4.  相似文献   

12.
In endothelial cells, transforming growth factor beta (TGF-beta) signals through two distinct pathways to regulate endothelial cell proliferation and migration, the ALK-1/Smads 1/5/8 pathway and the ALK-5/Smads 2/3 pathway. TGF-beta signaling through these pathways is further regulated in endothelial cells by the endothelial specific TGF-beta superfamily co-receptor, endoglin. The importance of endoglin, ALK-1, and ALK-5 in endothelial biology is underscored by the embryonic lethal phenotypes of knock-outs in mice due to defects in angiogenesis, and by the presence of disease-causing mutations in these genes in human vascular diseases. However, the mechanism of action of endoglin is not well defined. Here we define a novel interaction between endoglin and the scaffolding protein beta-arrestin2. Both co-immunoprecipitation and fluorescence confocal studies demonstrate the specific interaction between endoglin and beta-arrestin2 in endothelial cells, enhanced by ALK-1 and to a lesser extent by the type II TGF-beta receptor. The endoglin/beta-arrestin2 interaction results in endoglin internalization and co-accumulation of endoglin and beta-arrestin2 in endocytic vesicles. Whereas endoglin did not have a direct impact on either Smad 2/3 or Smad 1/5/8 activation, endoglin antagonized TGF-beta-mediated ERK signaling, altered the subcellular distribution of activated ERK, and inhibited endothelial cell migration in a manner dependent on the ability of endoglin to interact with beta-arrestin2. Reciprocally, small interfering RNA-mediated silencing of endogenous beta-arrestin2 expression restored TGF-beta-mediated ERK activation and increased endothelial cell migration in an endoglin-dependent manner. These studies define a novel function for endoglin, and further expand the roles mediated by the ubiquitous scaffolding protein beta-arrestin2.  相似文献   

13.
Transforming growth factor-beta (TGF-beta) is a pleiotropic growth factor that plays a critical role in modulating cell growth, differentiation, and plasticity. There is increasing evidence that after cells lose their sensitivity to TGF-beta-mediated growth inhibition, autocrine TGF-beta signaling may potentially promote tumor cell motility and invasiveness. To understand the molecular mechanisms by which autocrine TGF-beta may selectively contribute to tumor cell motility, we have generated MDA-MB-231 breast cancer cells stably expressing a kinase-inactive type II TGF-beta receptor (T beta RII-K277R). Our data indicate that T beta RII-K277R is expressed, can associate with the type I TGF-beta receptor, and block both Smad-dependent and -independent signaling pathways activated by TGF-beta. In addition, wound closure and transwell migration assays indicated that the basal migratory potential of T beta RII-K277R expressing cells was impaired. The impaired motility of T beta RII-K277R cells could be restored by reconstituting TGF-beta signaling with a constitutively active TGF-beta type I receptor (ALK5(TD)) but not by reconstituting Smad signaling with Smad2/4 or Smad3/4 expression. In addition, the levels of ALK5(TD) expression sufficient to restore motility in the cells expressing T beta RII-K277R were associated with an increase in phosphorylation of Akt and extracellular signal-regulated kinase 1/2 but not Smad2. These data indicate that different signaling pathways require different thresholds of TGF-beta activation and suggest that TGF-beta promotes motility through mechanisms independent of Smad signaling, possibly involving activation of the phosphatidylinositol 3-kinase/Akt and/or mitogen-activated protein kinase pathways.  相似文献   

14.
15.
Transforming growth factor (TGF)-beta1 has been reported to cause endothelial cell apoptosis. However, conflicting data have also demonstrated that TGF-beta1 promotes endothelial cell survival. In this study, the effect of TGF-beta1 on apoptosis of cultured bovine pulmonary artery endothelial cells (PAEC) induced by multiple stimuli was investigated. TGF-beta1 protected against apoptosis of bovine PAEC induced by serum deprivation or the VEGF receptor inhibitor SU-5416, but not by UV light exposure or TNFalpha. Neither caspase-8 nor caspase-12 was activated by serum deprivation or the VEGF receptor blocker. However, blockade of VEGF receptors activated caspase-9, an effect that was abolished by TGF-beta1. Furthermore, serum deprivation and inhibition of VEGF receptors significantly decreased the protein level of Bcl-2, an effect that was also abrogated by TGF-beta1. In addition, the baseline level of Bcl-2 was enhanced by TGF-beta1 and reduced by inhibition of activin receptor-like kinase 5 (ALK5), a TGF-beta1 type I receptor. Furthermore, inhibition of ALK5 caused apoptosis of bovine PAEC. These results suggest that TGF-beta1 signaling is critical for maintenance of bovine PAEC survival. Finally, the protective effects of TGF-beta1 on bovine PAEC apoptosis and Bcl-2 reduction were abolished by ALK5 inhibition, but not by inhibition of non-SMAD signaling pathways. Also, TGF-beta1 activated SMAD2 and SMAD1/5, an effect that was abolished by ALK5 inhibition. The results of this study suggest that TGF-beta1 protects against bovine PAEC apoptosis, possibly through ALK5-mediated Bcl-2 induction and subsequent inhibition of the mitochondria-mediated intrinsic pathway of apoptosis. Understanding the mechanism by which TGF-beta1 promotes endothelial cell survival may provide a better treatment for apoptosis-dependent vascular diseases, such as emphysema.  相似文献   

16.
We and others have recently described the antagonistic role of Bone morphogenetic protein-7 (BMP-7) in TGF-β signalling and myogenic differentiation. To specify the underlying mechanism(s), we here analysed the expression and function of the individual components mediating TGF-β1 and BMP-7 responses. We found that BMP-7 at a concentration of 25 ng/ml induces signalling exclusively via ALK2 and ALK3 leading to the activation of Smad1 and Smad5 and subsequent expression of Id proteins. In contrast, low doses of TGF-β1 (0.1 ng/ml) lead to an exclusive activation of ALK5 and phosphorylation of Smad2 and Smad3 that regulate specific target genes including connective tissue growth factor (CTGF). CTGF is rapidly induced by TGF-β1 already 1h after stimulation and reduced by BMP-7 application. Smad1/Smad5 or Id1/2 overexpression reduced the TGF-β1-mediated expression of CTGF. However, although siRNA-mediated knock down of Alk2/3 or Smad1/5 counteracts the BMP-7 effect on basal CTGF expression there was no consistent reversion of the observed BMP-7 effect on TGF-β1-mediated CTGF expression. Moreover, ALK5 inhibition using the SB431542 inhibitor significantly affected CTGF expression only at later time points whereas ERK1/2 inhibition completely abrogated CTGF expression. These findings point towards a regulatory role of BMP-7 that relies on modulation of Mitogen-activated protein kinases rather than mechanisms that are exclusively driven by differential Smad activation.  相似文献   

17.
18.

Background

TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT).

Methods

The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis.

Results

After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed.

Conclusion

Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling.  相似文献   

19.
Transforming growth factor-beta (TGF-beta) isoforms regulate numerous cellular functions through binding to receptors with intrinsic serine/threonine kinase activity that transduce the intracellular signals via activation of Smad proteins. In this study, we examined the signalling pathways involved in TGF-beta1-mediated growth inhibition and migration in a human mast cell line, HMC-1. TGF-beta1 evoked optimal migration at 40 fM, whereas maximal growth inhibition was obtained at 400 pM. Protein tyrosine kinase inhibitors completely inhibited TGF-beta1-mediated migration, without affecting the antimitogenic response. Smad2 was phosphorylated upon TGF-beta1 treatment, both in the absence and presence of genistein. The mitogen-induced extracellular kinase (MEK) inhibitor, PD98059, blocked the migratory response without affecting growth inhibition. In contrast, the p38 MAP kinase inhibitor, SB203580, had no significant effect on either migration or growth inhibition. These results indicate that different signalling pathways mediate TGF-beta1-induced migration and growth inhibition in HMC-1 cells, where the migration involves MEK activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号