首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
肝星状细胞是肝脏中重要的间质细胞,是肝细胞外基质的主要来源.表皮形态发生素(epimorphin、EPM、syntaxin2)在肝脏发育、再生及癌变过程中发挥了重要的作用,目前其表达变化的调控机制及对肝星状细胞的作用还未有报道.通过对肝组织标本进行检测,发现肝纤维化过程中肝星状细胞表达EPM上调.从表观遗传学的角度对EPM表达变化调控机制进行研究,发现DNA去甲基化促进了EPM的表达.为了研究EPM对肝星状细胞的可能的调节作用,将EPM表达质粒转染肝星状细胞,之后检测了EPM对肝星状细胞增殖及迁移能力的变化.结果证明EPM能够促进肝星状细胞的增殖与迁移.本研究发现,激活的肝星状细胞高表达EPM可能是由于DNA去甲基化引起的,同时,高表达的EPM能够促进肝星状细胞的增殖与迁移,进而促进肝纤维化进展.  相似文献   

2.
目的:研究Bub1基因在肝癌中的表达以及对肝癌细胞系MHCC97-H增殖、周期和凋亡的影响。方法:利用RNA干扰技术下调肝癌细胞系MHCC97-H中Bub1的表达;qRT-PCR和Western Blot分别检测Bub1在mRNA和蛋白水平表达的变化;CCK-8实验检测肿瘤细胞增殖能力的改变;流式细胞术检测细胞周期和凋亡的变化。结果:qRT-PCR和Western Blot结果显示si-Bub1能够成功下调Bub1的表达;下调Bub1后肝癌MHCC97-H细胞的增殖能力下降(P0.05),细胞的凋亡比例升高(P0.05),细胞发生S期阻滞。结论:Bub1基因在肝癌中高表达,下调Bub1的表达后能够降低肝癌细胞的增殖能力,促进细胞凋亡,诱导细胞发生S期阻滞。  相似文献   

3.
目的:探究Smad7对肝癌细胞增殖和迁移的影响及其临床意义。方法:通过转染pcDNA3.1(+)-Smad7质粒或Smad7的小干扰RNA使得Smad7在肝癌细胞系HepG2和Huh7中过表达或敲减,应用MTT法检测Smad7对肝癌细胞增殖的影响,采用细胞划痕实验以及Transwell实验探讨Smad7对肝癌细胞迁移的影响。采用qRT-PCR检测9例肝癌癌患者手术切除的组织样本中Smad7的表达。结果:过表达Smad7的肝癌细胞增殖能力与对照组相比有明显的下降,而敲减smad7能够促进肝癌细胞的增殖。过表达smad7的肝癌细胞穿过Transwell小室底膜的能力显著下降,而敲减Smad7能够促进这种能力。Smad7在肝癌癌旁组织中的表达显著高于癌组织。结论:Smad7能够在肝细胞肝癌的进展中发挥负向调控作用。  相似文献   

4.
目的:骨桥蛋白(Osteopontin,OPN)在肝癌细胞侵袭中的作用机制。方法:采用siRNA干涉的方法处理人肝癌细胞,用PCR和Western-blot法检测OPN的表达;用transwell小室检测不同处理后的HepG2和MHCC97H细胞的侵袭能力;采用Western.b1.ot和ELISA方法检测基质金属蛋白酶-2(matrixmetalloproteinase-2,MMP-2)和血管内皮生长因子(vascularendothelialgrowthfactor,VEGF)蛋白表达和活力的变化情况。结果:在不同肝癌细胞系中,随着肝癌细胞系侵袭能力的增强,OPN的表达逐渐增高。siRNA可以降低HepG2和MHCC97H细胞中OPN的表达,并且能够降低HepG2和MHCC97H细胞的侵袭能力;抑制OPN的表达能够降低MMP-2和VEGF蛋白表达和蛋白活性。结论:OPN在肝癌侵袭过程中起着重要作用,其作用机制可能是通过调控MMP-2和VEGF蛋白表达和活性来参与肝癌的侵袭,OPN可作为肝癌侵袭转移治疗的新靶点。  相似文献   

5.
目的:探讨OIP5对肝癌细胞SMMC-7721增殖和侵袭迁移能力的影响。方法:采用RNA干扰技术沉默肝癌细胞中OIP5的表达后,通过qRT-PCR和Western-blot技术检测OIP5的下调效率,CCK-8和平板克隆法检测肝癌细胞的增殖能力,Transwell法检测肝癌细胞的侵袭和迁移能力。结果:转染OIP5-siRNA后,肝癌细胞SMMC-7721中OIP5 mRNA和蛋白的表达水平均明显降低(P0.05);同时,与对照组相比,OIP5-siRNA组肝癌细胞SMMC-7721的CCK-8实验的OD值、平板克隆法测得的克隆球个数、Transwell法测得的迁移细胞数与侵袭细胞数均明显低于对照组(P0.05)。结论:OIP5能够促进肝癌细胞的增殖和侵袭迁移,可能作为肝癌治疗的潜在靶点。  相似文献   

6.
李一鸣  陈博  郭云山  蒋建利  唐娟 《生物磁学》2013,(27):5247-5250
目的:肝细胞癌(HCC)是一类常见的恶性肿瘤,主要表现为进展迅速、易复发及预后不良。侵袭转移作为肝癌的最主要的恶性表型,是造成较高致死率的主要原因。Calpain是钙激活中性蛋白酶,广泛参与了细胞多种生命过程。其中Calpainl和Calpain2是Calpain家族主要成员,对于维持肿瘤细胞恶性表型有重要作用。本研究通过RNA干涉技术下调人肝癌Huh7细胞中Calpain2基因的表达,检测下调Calpain2对人肝癌Huh7细胞黏附,侵袭和迁移能力的影响,明确Calpain2在人肝癌细胞浸润和转移过程中的作用。方法:合成Calpain2的RNAi片段,瞬时转染人肝癌细胞Huh7,降低Hull7细胞中Calpain2的表达,运用细胞黏附实验,细胞侵袭实验及划痕愈合实验检测干涉Calpain2对肝癌细胞的黏附,侵袭和迁移能力的影响。结果:合成Calpain2的RNAi片段。瞬时转染人肝癌细胞Huh73,36小时后,细胞中Calpain2的蛋白水平明显下降,干涉Calpain2后人肝癌细胞Huh7的黏附率,侵袭率及划痕修复率的显著下降。结论:以上实验结果表明Calpain2能够促进肝癌细胞黏附,侵袭及划痕修复能力,Calpain2能够促进肝癌细胞的浸润和转移的作用,是肝癌发生发展过程中的肿瘤促进因子。因此,Calpain2可以作为抑制肝癌侵袭和转移的潜在靶点,靶向Call'ain2的药物可能成为治疗肝癌侵袭转移的新方法。  相似文献   

7.
目的:明确表皮形态发生素(EPM)对盱细胞癌SK-HEP-1细胞生物学行为的影响。方法:构建高表达EPM的SK-HEP-1细胞,real-timePCR和Westem印迹检测EPM在肿瘤细胞内的表达,CCK8分析和克隆形成实验检测细胞的增殖能力,Matrigel-transwell实验检测细胞的浸润能力。结果:EPM在肿瘤细胞内的高表达不影响细胞的增殖能力,怛明显增强肿瘤细胞的浸润能力。结论:肝癌肿瘤微环境有可能通过EPM影响肿瘤细胞的生物学活性,对其作用机制的进一步明确,将有助于阐明肝癌发生发展的病理机制,发现新的恶性肿瘤诊断和治疗手段。  相似文献   

8.
克隆人基质金属蛋白酶-2基因(Mmp2)编码区并构建重组真核表达载体pEYFP-Mmp2,研究其在肝癌细胞中的作用。以肝癌细胞Hep G2的总RNA为模板,通过RT-PCR获得cDNA,并通过PCR获得Mmp2基因编码区。经TA克隆和测序鉴定将无任何突变的Mmp2基因编码区插入到真核表达载体pEYFPN1中,构建p EYFP-Mmp2重组真核表达载体并进行酶切鉴定和测序鉴定。pEYFP-Mmp2稳定性转染肝癌细胞,经G418筛选获得Mmp2稳转单克隆细胞株,并用Western blotting分析鉴定。用实时无标记细胞增殖分析技术(RTCA)分析Mmp2基因对肝癌细胞生长增殖的作用,细胞划痕愈合实验分析Mmp2基因对肝癌细胞迁移的作用。结果证明成功构建重组真核表达载体pEYFP-Mmp2,Western Blotting证实稳转株中高表达外源融合蛋白MMP2-YFP。细胞增殖和迁移结果表明,Mmp2基因可以抑制肝癌细胞增殖但能够促进肝癌细胞迁移。以上研究表明,Mmp2基因能够促进肝癌细胞迁移。  相似文献   

9.
目的:分离肝癌细胞系MHCC97中肝癌干细胞并分析肝癌细胞高表达miR-221在肝癌干细胞和非干细胞亚群中的表达差异情况,探讨miR-221表达水平与肝癌干细胞分化之间的关系。方法:利用流式细胞荧光激活分选法从肝癌细胞系MHCC97中分选出肝癌干细胞(hepatocareinoma stem cells,HSCs)和非干细胞(non-hepatocareinoma stem cells,non-HSCs)两个亚群。采用实时荧光定量RT-PCR(Real-time RT-PCR)检测miR-221在两个不同肝癌细胞亚群中的表达。结果:HSC亚群肝癌细胞仅占细胞总体的2.59%;HSC亚群细胞中miR-221的表达明显高于non-HSC亚群(P〈0.01)。结论:miR-221在HSC亚群肝癌细胞中的明显高表达,提示miR-221可能在维持HSC亚群肝癌细胞的干细胞特性方面具有重要意义。通过调控肝癌干细胞中miR-221的表达,可以促进其分化成熟,从而为肝癌治疗提供新的思路。  相似文献   

10.
目的探讨慢病毒介导的靶向SIRTlshRNA对肝癌细胞生长和凋亡的影响。方法Western印迹分析SIRT1在多个肝癌细胞系中的表达;通过慢病毒介导的shRNA干扰技术靶向沉默SIRT1的表达,并通过Western印迹验证SIRTl基因的沉默效果。台盼蓝排斥实验分析SIRT1基因沉默对肝癌细胞生长的影响;流式细胞术和Western印迹检测PARP蛋白的剪切物观察细胞凋亡状态。结果SIRT1在多个肝癌细胞系中表达水平明显上调;慢病毒介导的shRNA能显著抑制细胞中SIRT1的表达。流式细胞术及Western印迹结果均显示SIRT1表达沉默显著诱导了肝癌细胞的凋亡。结论慢病毒介导的靶向SIRT1shRNA显著地抑制SIRT1的表达;SIRT1基因沉默抑制肝癌细胞生长并促进了细胞凋亡。  相似文献   

11.
4',5,7-Trihydroxy-3',5'-dimethoxyflavone (Tricin), a naturally occurring flavone, has anti-inflammatory potential and exhibits diverse biological activities including antigrowth activity in several human cancer cell lines and cancer chemopreventive effects in the gastrointestinal tract of mice. The present study aimed to investigate the biological actions of tricin on hepatic stellate cells (HSCs) in vitro, exploring its potential as a treatment of liver fibrosis, since HSC proliferation is closely related to the progression of hepatic fibrogenesis in chronic liver diseases leading to irreversible liver cirrhosis and hepatocellular carcinoma. Tricin inhibited platelet-derived growth factor (PDGF)-BB-induced cell proliferation by blocking cell cycle progression and cell migration in the human HSC line LI90 and culture-activated HSCs. It also reduced the phosphorylation of PDGF receptor β and the downstream signaling molecules ERK1/2 and Akt, which might be due to its tyrosine kinase inhibitor properties rather than inhibition of the direct binding between PDGF-BB and its receptor. Our findings suggest that tricin might be beneficial in HSC-targeting therapeutic or chemopreventive applications for hepatic fibrosis.  相似文献   

12.
Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced α-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.  相似文献   

13.
Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis.  相似文献   

14.
Activated hepatic stellate cells promote hepatocellular carcinoma (HCC) progression. Hepatic stellate cells play a key role in retinoid metabolism, and activation of stellate cells increases retinoic acid (RA) in the liver. However, the role of RA in HCC proliferation remains unclear. We aimed to analyse the mechanism of RA in HCC proliferation. Thirty-eight patients who had undergone hepatic resection for HCCs were recruited. Paired non-tumour tissues, adjacent and distal to HCCs, were collected, and the RA levels in the tissues were analysed. The mechanisms of RA and HCC proliferation were assessed in liver cancer cell lines by protein and gene expression analyses. Early recurrence of HCC was significantly higher in patients with a higher RA concentration than in those with a lower RA concentration in tissues adjacent to HCCs (61.1% vs. 20%, p = .010). RA promoted HCC cell proliferation and activated the expression of Amphiregulin, a growth factor in hepatocarcinogenesis. The promoter of Amphiregulin contained the binding sites of the RA receptor, RXRα. Wnt signalling also activated the expression of Amphiregulin, and the RA and Wnt pathways acted synergistically to increase the expression of Amphiregulin. Furthermore, RXRα interacted with β-catenin and then translocated to the nucleus to activate Amphiregulin. An increased RA concentration in the tissues adjacent to the tumour was associated with an early recurrence of HCC. RA activated the expression of Amphiregulin, and then promoted HCC proliferation, which might partly contribute to early recurrence of HCC after hepatic resection.  相似文献   

15.
In the healthy adult liver, quiescent hepatic stellate cells (HSCs) present the major site for vitamin A storage in cytoplasmic lipid droplets. During liver injury due to viral infection or alcohol intoxication, HSCs get activated and produce high amounts of extracellular matrix components for tissue repair and fibrogenesis. Employing p19 ARF deficiency, we established a non-transformed murine HSC model to investigate their plasticity and the dynamics of HSC activation. Primary HSCs isolated from livers of adult p19 ARF null mice underwent spontaneous activation through long-term passaging without an obvious replicative limit. The immortalized cell line, referred to as M1-4HSC, showed stellate cell characteristics including the expression of desmin, glial fibrillary acidic protein, alpha-smooth muscle actin and pro-collagen I. Treatment of these non-tumorigenic M1-4HSC with pro-fibrogenic TGF-beta1 provoked a morphological transition to a myofibroblastoid cell type which was accompanied by enhanced cellular turnover and impaired migration. In addition, M1-4HSCs expressed constituents of cell adhesion complexes such as p120(ctn) and beta-catenin at cell borders, which dislocalized in the cytoplasm during stimulation to myofibroblasts, pointing to the epitheloid characteristics of HSCs. By virtue of its non-transformed phenotype and unlimited availability of cells, the p19(ARF) deficient model of activated HSCs and corresponding myofibroblasts render this system a highly valuable tool for studying the cellular and molecular basis of hepatic fibrogenesis.  相似文献   

16.
The biological behaviors of hepatocellular carcinoma (HCC) are complex mainly due to heterogeneity of progressive genetic and epigenetic mutations as well as tumor environment. Hepatocyte growth factor (HGF)/c-Met signaling pathway is regarded to be a prototypical example for stromal-epithelial interactions during developmental morphogenesis, wound healing, organ regeneration and cancer progression. And p53 plays as an important regulator of Met-dependent cell motility and invasion. Present study showed that 2 HCC cell lines, Hep3B and HepG2, displayed different invasive capacity when treated with HGF which was secreted by hepatic stellate cells (HSCs). We found that HGF promoted Hep3B cells invasion and migration as well as epithelial-mesenchymal transition (EMT) occurrence because Hep3B was p53 deficient, which leaded to the c-Met over-expression. Then we found that HGF/c-Met promoted Hep3B cells invasion and migration by upregulating Snail expression. In conclusion, HGF/c-Met signaling is enhanced by loss of p53 expression, resulting in increased ability of invasion and migration by upregulating the expression of Snail.  相似文献   

17.
Hepatic stellate cells (HSCs), a specialized stromal cytotype in the liver, have been demonstrated to actively contribute to hepatocellular carcinoma (HCC) development. However, the previous studies were performed using HSC cell lines, and the prognostic value of intratumoral HSCs (tHSCs) was unclear. Here we isolated tHSCs from fresh human HCC tissues, and analyzed the abilities of tHSCs to promote HCC progression by using in vitro assays for cell viability, migration and invasion as well as epithelial-mesenchymal transition (EMT) phenotype. 252 HCC patients who underwent hepatectomy were enrolled for analysis of tHSCs and E-cadherin expression in tumor tissues, and 55 HCC patients for analysis of tHSCs in tumor tissues and circulating tumor cells (CTCs) in blood. Prognostic factors were then identified. The results showed that coculture of tHSCs with HCC cells had a stronger effect on HCC cell viability, migration and invasion, accompanied with the acquisition of epithelial-mesenchymal transition (EMT) phenotype. In vivo cotransplantation of HCC cells with tHSCs into nude mice more efficiently promoted tumor formation and growth. Icaritin, a known apoptosis inducer of HSCs, was demonstrated to effectively inhibit tHSC proliferation in vitro and tHSC-induced HCC-promoting effects in vivo. Clinical evidence indicated that tHSCs were rich in 45% of the HCC specimens, tHSC-rich subtypes were negatively correlated either with E-cadherin expression in tumor tissues (r = -0.256, p < 0.001) or with preoperative CTCs in blood (r = -0.287, p = 0.033), and were significantly correlated with tumor size (p = 0.027), TNM staging (p = 0.018), and vascular invasion (p = 0.008). Overall and recurrence-free survival rates of tHSC-rich patients were significantly worse than those for tHSC-poor patients. Multivariate analysis revealed tHSC-rich as an independent factor for overall and recurrence-free survival. In conclusion, tHSCs provide a promising prognostic biomarker and a new treatment target for HCC.  相似文献   

18.
Hepatic stellate cells (HSCs) play a central role in the development of hepatic fibrosis. Recent evidence has revealed that HSCs also play a role in its resolution, where HSC apoptosis was determined. Moreover, induction of HSC apoptosis caused a reduction of experimental hepatic fibrosis in rats. Thus knowing the mechanism of HSC apoptosis might be important to clarify the pathophysiology and establish the therapeutic strategy for hepatic fibrosis. In HSCs, Rho and Rho kinase are known to regulate contraction, migration, and proliferation with modulation of cell morphology. Controversy exists as to the participation of Rho and Rho kinase on cell survival, and little is known regarding this matter in HSCs. In this study, we directed our focus on the role of the Rho pathway in the regulation of HSC survival. C3, an inhibitor of Rho, increased histone-associated DNA fragmentation and caspase 3 activity with enhanced condensation of nuclear chromatin in rat cultured HSCs. Moreover, Y-27632, an inhibitor of Rho kinase, had the same effects, suggesting that inhibition of the Rho/Rho kinase pathway causes HSC apoptosis. On the other hand, lysophosphatidic acid, which stimulates the Rho/Rho kinase pathway, decreased histone-associated DNA fragmentation in HSCs. Inhibition of the Rho/Rho kinase pathway did not affect p53, Bcl-2, or Bax levels in HSCs. Thus we concluded that the Rho/Rho kinase pathway may play a role in the regulation of HSC survival.  相似文献   

19.
Activation of hepatic stellate cells (HSCs) is the effector factor of hepatic fibrosis and hepatocellular carcinoma (HCC) development. Accumulating evidence suggests that retinoic acids (RAs), derivatives of vitamin A, contribute to prevention of liver fibrosis and carcinogenesis, however, regulatory mechanisms of RAs still remain exclusive. To elucidate RA signaling pathway, we previously performed a genome‐wide screening of RA‐responsive genes by in silico analysis of RA‐response elements, and identified 26 RA‐responsive genes. We found that thioredoxin interacting protein (TXNIP), which inhibits antioxidant activity of thioredoxin (TRX), was downregulated by all‐trans retinoic acid (ATRA). In the present study, we demonstrate that ATRA ameliorates activation of HSCs through TXNIP suppression. HSC activation was attenuated by TXNIP downregulation, whereas potentiated by TXNIP upregulation, indicating that TXNIP plays a crucial role in activation of HSCs. Notably, we showed that TXNIP‐mediated HSC activation was suppressed by antioxidant N‐acetylcysteine. In addition, ATRA treatment or downregulation of TXNIP clearly declined oxidative stress levels in activated HSCs. These data suggest that ATRA plays a key role in inhibition of HSC activation via suppressing TXNIP expression, which reduces oxidative stress levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号