首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang J  Fan YY  Wang SJ  Liang PF  Wang JL  Qiu JH 《PloS one》2011,6(9):e24000

Background

Mutations in OTOF and PJVK genes cause DFNB9 and DFNB59 types of hearing loss, respectively. The patients carrying pathogenic mutations in either of these genes may show the typical phenotype of auditory neuropathy spectrum disorder (ANSD). The aim of the present study was to identify OTOF and PJVK mutations in sporadic ANSD patients.

Methods and Findings

A total of 76 unrelated Chinese non-syndromic ANSD patients were sequenced on the gene OTOF and PJVK exon by exon. Variants were valued in 105 controls with normal hearing to verify the carrying rate. We identified one pathogenic mutation (c.1194T>A) and three novel, possibly pathogenic, variants (c.3570+2T>C, c.4023+1 G>A, and c.1102G>A) in the OTOF gene, and one novel, possibly pathogenic, variant (c.548G>A) in PJVK. Moreover, we found three novel missense mutations within the exons of OTOF.

Conclusions

As we identified 4 and 1 possible pathogenic variants of the OTOF gene and the PJVK gene, respectively, we believe that screening in these genes are important in sporadic ANSD patients. The pathogenicity of these novel mutations needs further study because of their single heterozygous nature. Knowledge on the mutation spectra of these genes in Chinese would be beneficial in understanding the genetic character of this worldwide disease.  相似文献   

2.

Background

Peroxisome proliferator-activated receptor delta (PPARD) is nuclear hormone receptor involved in colorectal cancer (CRC) differentiation and progression. The purpose of this study was to determine prevalence and spectrum of variants in the PPARD gene in CRC, and their contribution to clinicopathological endpoints.

Methods and Findings

Direct sequencing of the PPARD gene was performed in 303 primary tumors, in blood samples from 50 patients with ≥3 affected first-degree relatives, 50 patients with 2 affected first-degree relatives, 50 sporadic patients, 360 healthy controls, and in 6 colon cancer cell lines. Mutation analysis revealed 22 different transversions, 7 of them were novel. Three of all variants were somatic (c.548A>G, p.Y183C, c.425-9C>T, and c.628-16G>A). Two missense mutations (p.Y183C and p.R258Q) were pathogenic using in silico predictive program. Five recurrent variants were detected in/adjacent to the exons 4 (c.1-87T>C, c.1-67G>A, c.130+3G>A, and c.1-101-8C>T) and exon 7 (c.489T>C). Variant c.489C/C detected in tumors was correlated to worse differentiation (P = 0.0397).

Conclusions

We found 7 novel variants among 22 inherited or acquired PPARD variants. Somatic and/or missense variants detected in CRC patients are rare but indicate the clinical importance of the PPARD gene.  相似文献   

3.
Acephalic spermatozoa syndrome is a rare and severe form of teratozoospermia characterized by a predominance of headless spermatozoa in the ejaculate. Family clustering and consanguinity suggest a genetic origin; however, causative mutations have yet to be identified. We performed whole-exome sequencing in two unrelated infertile men and subsequent variant filtering identified one homozygous (c.824C>T [p.Thr275Met]) and one compound heterozygous (c.1006C>T [p.Arg356Cys] and c.485T>A [p.Met162Lys]) SUN5 (also named TSARG4) variants. Sanger sequencing of SUN5 in 15 additional unrelated infertile men revealed four compound heterozygous (c.381delA [p.Val128Serfs7] and c.824C>T [p.Thr275Met]; c.381delA [p.Val128Serfs7] and c.781G>A [p.Val261Met]; c.216G>A [p.Trp72] and c.1043A>T [p.Asn348Ile]; c.425+1G>A/c.1043A>T [p.Asn348Ile]) and two homozygous (c.851C>G [p.Ser284]; c.350G>A [p.Gly114Arg]) variants in six individuals. These 10 SUN5 variants were found in 8 of 17 unrelated men, explaining the genetic defect in 47.06% of the affected individuals in our cohort. These variants were absent in 100 fertile population-matched control individuals. SUN5 variants lead to absent, significantly reduced, or truncated SUN5, and certain variants altered SUN5 distribution in the head-tail junction of the sperm. In summary, these results demonstrate that biallelic SUN5 mutations cause male infertility due to autosomal-recessive acephalic spermatozoa syndrome.  相似文献   

4.
5.
The human beta defensin 1 (hBD-1) antimicrobial peptide is a member of the innate immune system known to act in the first line of defence against microorganisms, including viruses such as human papillomavirus (HPV). In this study, five functional polymorphisms (namely g-52G>A, g-44C>G and g-20G>A in the 5’UTR and c.*5G>A and c.*87A>G in the 3’UTR) in the DEFB1 gene encoding for hBD-1 were analysed to investigate the possible involvement of these genetic variants in susceptibility to HPV infection and in the development of HPV-associated lesions in a population of Brazilian women. The DEFB1 g-52G>A and c.*5G>A single-nucleotide polymorphisms (SNPs) and the GCAAA haplotype showed associations with HPV-negative status; in particular, the c.*5G>A SNP was significantly associated after multiple test corrections. These findings suggest a possible role for the constitutively expressed beta defensin-1 peptide as a natural defence against HPV in the genital tract mucosa.  相似文献   

6.
Hearing loss (HL) is a congenital disease with a high prevalence, and patients with hearing loss need early diagnosis for treatment and prevention. The GJB2, MT-RNR1, and SLC26A4 genes have been reported as common causative genes of hearing loss in the Korean population and some mutations of these genes are the most common mutations associated with hearing loss. Accordingly, we developed a method for the simultaneous detection of seven mutations (c.235delC of GJB2, c.439A>G, c.919-2A>G, c.1149+3A>G, c.1229C>T, c.2168A>G of SLC26A4, and m.1555A>G of the MT-RNR1 gene) using multiplex SNaPshot minisequencing to enable rapid diagnosis of hereditary hearing loss. This method was confirmed in patients with hearing loss and used for genetic diagnosis of controls with normal hearing and neonates. We found that 4.06% of individuals with normal hearing and 4.32% of neonates were heterozygous carriers. In addition, we detected that an individual is heterozygous for two different mutations of GJB2 and SLC26A4 gene, respectively and one normal hearing showing the heteroplasmy of m.1555A>G. These genotypes corresponded to those determined by direct sequencing. Overall, we successfully developed a robust and cost-effective diagnosis method that detects common causative mutations of hearing loss in the Korean population. This method will be possible to detect up to 40% causative mutations associated with prelingual HL in the Korean population and serve as a useful genetic technique for diagnosis of hearing loss for patients, carriers, neonates, and fetuses.  相似文献   

7.
8.
Mitochondrial complex I (CI) deficiency is the most common oxidative phosphorylation disorder described. It shows a wide range of phenotypes with poor correlation within genotypes. Herein we expand the clinics and genetics of CI deficiency in the brazilian population by reporting three patients with pathogenic (c.640G>A, c.1268C>T, c.1207dupG) and likely pathogenic (c.766C>T) variants in the NDUFV1 gene. We show the mutation c.766C>T associated with a childhood onset phenotype of hypotonia, muscle weakness, psychomotor regression, lethargy, dysphagia, and strabismus. Additionally, this mutation was found to be associated with headaches and exercise intolerance in adulthood. We also review reported pathogenic variants in NDUFV1 highlighting the wide phenotypic heterogeneity in CI deficiency.  相似文献   

9.

Purpose

Retinal dystrophies are genetically heterogeneous, resulting from mutations in over 200 genes. Prior to the development of massively parallel sequencing, comprehensive genetic screening was unobtainable for most patients. Identifying the causative genetic mutation facilitates genetic counselling, carrier testing and prenatal/pre-implantation diagnosis, and often leads to a clearer prognosis. In addition, in a proportion of cases, when the mutation is known treatment can be optimised and patients are eligible for enrolment into clinical trials for gene-specific therapies.

Methods

Patient genomic DNA was sheared, tagged and pooled in batches of four samples, prior to targeted capture and next generation sequencing. The enrichment reagent was designed against genes listed on the RetNet database (July 2010). Sequence data were aligned to the human genome and variants were filtered to identify potential pathogenic mutations. These were confirmed by Sanger sequencing.

Results

Molecular analysis of 20 DNAs from retinal dystrophy patients identified likely pathogenic mutations in 12 cases, many of them known and/or confirmed by segregation. These included previously described mutations in ABCA4 (c.6088C>T,p.R2030*; c.5882G>A,p.G1961E), BBS2 (c.1895G>C,p.R632P), GUCY2D (c.2512C>T,p.R838C), PROM1 (c.1117C>T,p.R373C), RDH12 (c.601T>C,p.C201R; c.506G>A,p.R169Q), RPGRIP1 (c.3565C>T,p.R1189*) and SPATA7 (c.253C>T,p.R85*) and new mutations in ABCA4 (c.3328+1G>C), CRB1 (c.2832_2842+23del), RP2 (c.884-1G>T) and USH2A (c.12874A>G,p.N4292D).

Conclusions

Tagging and pooling DNA prior to targeted capture of known retinal dystrophy genes identified mutations in 60% of cases. This relatively high success rate may reflect enrichment for consanguineous cases in the local Yorkshire population, and the use of multiplex families. Nevertheless this is a promising high throughput approach to retinal dystrophy diagnostics.  相似文献   

10.
Pelvic organ prolapse (POP) is a common gynecological disorder; however, the genetic components remain largely unidentified. Exome sequencing has been widely used to identify pathogenic gene mutations of several diseases because of its high chromosomal coverage and accuracy. In this study, we performed whole exome sequencing (WES), for the first time, on 8 peripheral blood DNA samples from representative POP cases. After filtering the sequencing data from the dbSNP database (build 138) and the 1000 Genomes Project, 2 missense variants in WNK1, c.2668G > A (p.G890R) and c.6761C> T (p.P2254L), were identified and further validated via Sanger sequencing. In validation stage, the c.2668G > A (p.G890R) variant and 8 additional variants were detected in 11 out of 161 POP patients. All these variants were absent in 231 healthy controls. Functional experiments showed that fibroblasts from the utero-sacral ligaments of POP with WNK1 mutations exhibited loose and irregular alignment compared with fibroblasts from healthy controls. In sum, our study identified a novel gene, WNK1, for POP susceptibility, expanded the causal mutation spectrums of POP, and provided evidence for the genetic diagnosis and medical management of POP in the future.  相似文献   

11.
Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions.  相似文献   

12.
Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering.  相似文献   

13.
Carnitine palmitoyltransferase II (CPT II) deficiency is one of the most common causes of fatty acid oxidation metabolism disorders. However, the molecular mechanism between CPT2 gene polymorphisms and metabolic stress has not been fully clarified. We previously reported that a number of patients show a thermal instable phenotype of compound hetero/homozygous variants of CPT II. To understand the mechanism of the metabolic disorder resulting from CPT II deficiency, the present study investigated CPT II variants in patient fibroblasts, [c.1102 G>A (p.V368I)] (heterozygous), [c.1102 G>A (p.V368I)] (homozygous), and [c.1055 T>G (p.F352C)] (heterozygous) + [c.1102 G>A (p.V368I)] (homozygous) compared with fibroblasts from healthy controls. CPT II variants exerted an effect of dominant negative on the homotetrameric proteins that showed thermal instability, reduced residual enzyme activities and a short half-life. Moreover, CPT II variant fibroblasts showed a significant decrease in fatty acid β-oxidation and adenosine triphosphate generation, combined with a reduced mitochondrial membrane potential, resulting in cellular apoptosis. Collectively, our data indicate that the CPT II deficiency induces an energy crisis of the fatty acid metabolic pathway. These findings may contribute to the elucidation of the genetic factors involved in metabolic disorder encephalopathy caused by the CPT II deficiency.  相似文献   

14.
Notch signaling determines and reinforces cell fate in bilaterally symmetric multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5′ region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743−1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway.  相似文献   

15.
Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease primarily caused by mutations in genes coding for sarcomeric proteins. A molecular-genetic etiology can be established in ~60% of cases. Evolutionarily conserved mitochondrial DNA (mtDNA) haplogroups are susceptibility factors for HCM. Several polymorphic mtDNA variants are associated with a variety of late-onset degenerative diseases and affect mitochondrial function. We examined the role of private, non-haplogroup associated, mitochondrial variants in the etiology of HCM. In 87 Danish HCM patients, full mtDNA sequencing revealed 446 variants. After elimination of 312 (69.9%) non-coding and synonymous variants, a further 109 (24.4%) with a global prevalence > 0.1%, three (0.7%) haplogroup associated and 19 (2.0%) variants with a low predicted in silico likelihood of pathogenicity, three variants: MT-TC: m.5772G>A, MT-TF: m.644A>G, and MT-CYB: m.15024G>A, p.C93Y remained. A detailed analysis of these variants indicated that none of them are likely to cause HCM. In conclusion, private mtDNA mutations are frequent, but they are rarely, if ever, associated with HCM.  相似文献   

16.
A number of genetic variants have been linked to increased risk of breast cancer. Little is, however, known about the prognostic significance of hereditary factors. Here, we investigated the frequency and prognostic significance of two ERBB4 promoter region variants, −782G>T (rs62626348) and −815A>T (rs62626347), in a cohort of 1010 breast cancer patients. The frequency of nine previously described somatic ERBB4 kinase domain mutations was also analyzed. Clinical material used in the study consisted of samples from the phase III, adjuvant, FinHer breast cancer trial involving 1010 women. Tumor DNA samples were genotyped for ERBB4 variants and somatic mutations using matrix-assisted laser desorption ionization/time of flight mass spectrometry. Paraffin-embedded tumor sections from all patients were immunohistochemically stained for ErbB4 expression. Association of ERBB4 genotype to distant disease-free survival (DDFS) was assessed using Kaplan-Meier and Cox regression analyses. Genotyping was successful for 91–93% of the 1010 samples. Frequencies observed for the ERBB4 variants were 2.5% and 1.3% for −782G>T and −815A>T, respectively. Variant −815A>T was significantly associated with poor survival (HR  = 2.86 [95% CI 1.15–6.67], P = 0.017). In contrast, variant −782G>T was associated with well-differentiated cancer (P = 0.019). Two (0.2%) ERBB4 kinase domain mutations were found, both of which have previously been shown to be functional and promote cancer cell growth in vitro. These data present the germ-line ERBB4 variant −815A>T as a novel prognostic marker in high-risk early breast cancer and indicate the presence of rare but potentially oncogenic somatic ERBB4 mutations in breast cancer.  相似文献   

17.

Background

To investigate the association between the single nucleotide polymorphism (SNP) of hypoxia-inducible factor1 α (HIF-1α) and the susceptibility to cervical spondylotic myelopathy (CSM) and its outcome after surgical treatment.

Method

A total of 230 CSM patients and 284 healthy controls were recruited. All patients received anterior cervical corpectomy and fusion (ACF) and were followed for 12 months. The genotypes for two HIF-1α variants (1772C>T and 1790G>A) were determined.

Results

In the present study, we found that the HIF-1α polymorphism at 1790G>A significantly affects the susceptibility to CSM and its clinical features, including severity and onset age. In addition, the 1790A>G polymorphism also determines the prognosis of CSM patients after ACF treatment. The GG genotype of 1790G>A polymorphism is associated with a higher risk to develop CSM, higher severity and earlier onset age. More importantly, we found that the 1790G>A polymorphism determines the clinical outcome in CSM patients who underwent ACF treatment.

Conclusion

Our findings suggest that the HIF-1α 1790G>A polymorphism is associated with the susceptibility to CSM and can be used as predictor for the clinical outcome in CSM patients receiving ACF treatment.  相似文献   

18.

Background and Objective

Conflicting data have been reported on the association between tumor necrosis factor (TNF) –308G>A and nitric oxide synthase 3 (NOS3) +894G>T polymorphisms and migraine. We performed a meta-analysis of case-control studies to evaluate whether the TNF –308G>A and NOS3 +894G>T polymorphisms confer genetic susceptibility to migraine.

Method

We performed an updated meta-analysis for TNF –308G>A and a meta-analysis for NOS3 +894G>T based on studies published up to July 2014. We calculated study specific odds ratios (OR) and 95% confidence intervals (95% CI) assuming allele contrast, dominant model, recessive model, and co-dominant model as pooled effect estimates.

Results

Eleven studies in 6682 migraineurs and 22591 controls for TNF –308G>A and six studies in 1055 migraineurs and 877 controls for NOS3 +894G>T were included in the analysis. Neither indicated overall associations between gene polymorphisms and migraine risk. Subgroup analyses suggested that the “A” allele of the TNF –308G>A variant increases the risk of migraine among non-Caucasians (dominant model: pooled OR = 1.82; 95% CI 1.15 – 2.87). The risk of migraine with aura (MA) was increased among both Caucasians and non-Caucasians. Subgroup analyses suggested that the “T” allele of the NOS3 +894G>T variant increases the risk of migraine among non-Caucasians (co-dominant model: pooled OR = 2.10; 95% CI 1.14 – 3.88).

Conclusions

Our findings appear to support the hypothesis that the TNF –308G>A polymorphism may act as a genetic susceptibility factor for migraine among non-Caucasians and that the NOS3 +894G>T polymorphism may modulate the risk of migraine among non-Caucasians.  相似文献   

19.

Background

Mitochondrial DNA polymerase gamma (POLG1) mutations were associated with levodopa-responsive Parkinsonism. POLG1 gene contains a number of common nonsynonymous SNPs and intronic regulatory SNPs which may have functional consequences. It is of great interest to discover polymorphisms variants associated with Parkinson''s disease (PD), both in isolation and in combination with specific SNPs.

Materials and Methods

We conducted a case-control study and genotyped twenty SNPs and poly-Q polymorphisms of POLG1 gene including in 344 Chinese sporadic PD patients and 154 healthy controls. All the polymorphisms of POLG1 we found in this study were sequenced by PCR products with dye terminator methods using an ABI-3100 sequencer. Hardy-Weinberg equilibrium and linkage disequilibrium (LD) for association between twenty POLG1 SNPs and PD were calculated using the program Haploview.

Principal Results

We provided evidence for strong association of four intronic SNPs of the POLG1 gene (new report: c.2070-12T>A and rs2307439: c.2070-64G>A in intron 11, P = 0.00011, OR = 1.727; rs2302084: c.3105-11T>C and rs2246900: c.3105-36A>G in intron 19, P = 0.00031, OR = 1.648) with PD. However, we did not identify any significant association between ten exonic SNPs of POLG1 and PD. Linkage disequilibrium analysis indicated that c.2070-12T>A and c.2070-64G>A could be parsed into one block as Haplotype 1 as well as c.3105-11T>C and c.3105-36A>G in Haplotype 2. In addition, case and control study on association of POLG1 CAG repeat (poly-Q) alleles with PD showed a significant association (P = 0.03, OR = 2.16) of the non-10/11Q variants with PD. Although intronic SNPs associated with PD didn''t influence POLG1 mRNA alternative splicing, there was a strong association of c.2070-12T>A and c.2070-64G>A with decreased POLG1 mRNA level and protein levels.

Conclusions

Our findings indicate that POLG1 may play a role in the pathogenesis of PD in Chinese populations.  相似文献   

20.
Multiple Sclerosis (MS) is a complex multifactorial autoimmune disease, whose sex- and age-adjusted prevalence in Sardinia (Italy) is among the highest worldwide. To date, 233 loci were associated with MS and almost 20% of risk heritability is attributable to common genetic variants, but many low-frequency and rare variants remain to be discovered. Here, we aimed to contribute to the understanding of the genetic basis of MS by investigating potentially functional rare variants. To this end, we analyzed thirteen multiplex Sardinian families with Immunochip genotyping data. For five families, Whole Exome Sequencing (WES) data were also available. Firstly, we performed a non-parametric Homozygosity Haplotype analysis for identifying the Region from Common Ancestor (RCA). Then, on these potential disease-linked RCA, we searched for the presence of rare variants shared by the affected individuals by analyzing WES data. We found: (i) a variant (43181034 T > G) in the splicing region on exon 27 of CUL9; (ii) a variant (50245517 A > C) in the splicing region on exon 16 of ATP9A; (iii) a non-synonymous variant (43223539 A > C), on exon 9 of TTBK1; (iv) a non-synonymous variant (42976917 A > C) on exon 9 of PPP2R5D; and v) a variant (109859349-109859354) in 3′UTR of MYO16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号