首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
To demonstrate calpain involvement in neurodegeneration in rat spinal cord injury (SCI), we examined SCI segments for DNA fragmentation, neurons for calpain overexpression, neuronal death, and neuroprotection with calpain inhibitor (E-64-d). After the induction of SCI (40 g cm force) on T12, rats were treated within 15 min with vehicle (DMSO) or E-64-d. Sham animals underwent laminectomy only. Animals were sacrificed at 24 h, and five 1-cm long spinal cord segments were collected: two rostral (S1 and S2), one lesion (S3), and two caudal segments (S4 and S5). Agarose gel electrophoresis of DNA samples isolated from the SCI segments showed both random and internucleosomal DNA fragmentation indicating occurrence of necrosis as well as apoptosis mostly in the lesion, moderately in caudal, and slightly in rostral segments from SCI rats. Treatment of SCI rats with E-64-d (1 mg/kg) reduced DNA fragmentation in all segments. The lesion and adjacent caudal segments (S3 and S4) were further investigated by in situ double-immunofluorescent labelings that showed increase in calpain expression in neurons in SCI rats and decrease in calpain expression in SCI rats treated with E-64-d. In situ combined TUNEL and double-immunofluorescent labelings directly detected co-localization of neuronal death and calpain overexpressin in SCI rats treated with only vehicle while attenuation of neuronal death in SCI rats treated with E-64-d. Previous studies from our laboratory indirectly showed neuroprotective effect of E-64-d in SCI rats. Our current results provide direct in situ evidence for calpain involvement in neuronal death and neuroprotective efficacy of E-64-d in lesion and penumbra in SCI rats. Special issue in honor of Naren Banik.  相似文献   

2.
The aim of the present study was to investigate the effects of treatment with eicosapentaenoic acid (EPA) after spinal cord compression injury in adult rats. Saline or EPA (250 nmol/kg) was administered intravenously 30 min after compression injury. Locomotor recovery was assessed daily using the BBB open-field locomotor score. One week after injury, animals were sacrificed and the spinal cord tissue containing the compression epicenter, and the adjacent rostral and caudal segments, was immunostained using specific markers for neurons, oligodendrocytes, axonal injury, and macrophages/microglia. Administration of EPA resulted in decreased axonal injury and increased neuronal and oligodendrocyte survival, in the lesion epicenter and adjacent tissue. The behavioural assessment mirrored the neuroprotective effects and showed a significantly improved functional recovery in animals treated with EPA compared to the saline-treated controls over the 7-day period. These observations suggest that EPA has neuroprotective properties when administered after spinal cord trauma.  相似文献   

3.
Differential assembly of N-methyl-D-aspartate (NMDA) receptor subunits determines their functional characteristics. Using in situ hybridization, we found a selective increase of the subunits NR1 and NR2A mRNA at 24 h in ventral motor neurons (VMN) caudal to a standardized spinal cord contusion injury (SCI). Other neuronal cell populations and VMN rostral to the injury site appeared unaffected. Significant up-regulation of NR2A mRNA also was seen 1 month after SCI in thoracic and lumbar VMN. The selective effects on VMN caudal to the injury site suggest that the loss of descending innervation leads to increased NMDA receptor subunit expression in these cells after SCI, which may alter their responses to glutamate. In contrast, protein levels determined by western blot analysis show decreased levels of NR2A 1 month after SCI in whole thoracic segments of spinal cord that included the injury sites. No effects of injury were seen on subunit levels in cervical or lumbar segments. Taken together with our previous study showing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit down-regulation after injury, our data suggest that glutamate receptor composition is significantly altered after SCI. These changes need to be taken into account to properly understand the function of, and potential pharmacotherapy for, the chronically injured spinal cord.  相似文献   

4.
Mesenchymal stem cells have been intensively studied for their potential use in reparative strategies for neurodegenerative diseases and traumatic injuries. We used mesenchymal stem cells (rMSC) from rat bone marrow to evaluate the therapeutic potential after spinal cord injury (SCI). Immunohistochemistry confirmed a large number of apoptotic neurons and oligodendrocytes in caudal segments 2 mm away from the lesion site. Expression of caspase-3 on both neurons and oligodendrocytes after SCI was significantly downregulated by rMSC. Caspase-3 downregulation by rMSC involves increased expression of FLIP and XIAP in the cytosol and inhibition of PARP cleavage in the nucleus. Animals treated with rMSC had higher Basso, Beattie, Bresnahan (BBB) locomotor scoring and better recovery of hind limb sensitivity. Treatment with rMSC had a positive effect on behavioral outcome and histopathological assessment after SCI. The ability of rMSC to incorporate into the spinal cord, differentiate and to improve locomotor recovery hold promise for a potential cure after SCI. Special issue in honor of Naren Banik.  相似文献   

5.
6.
Zhao T  Li Y  Dai X  Wang J  Qi Y  Wang J  Xu K 《Molecular biology reports》2012,39(8):8045-8051
Recovery after spinal cord injury (SCI) is rare in humans and experimental animals. Following SCI in adults, changes in gene expression and the regulation of these genes are associated with the pathological development of the injury. High levels of brain-derived neurotrophic factor (BDNF) in the injury area during the post-injury period contribute to enhanced neuroprotection and axonal regeneration. Intervention at the level of gene regulation has the potential to promote SCI repair. In this study, the injection of adenovirus-mediated BDNF in the lesion area (rostral spinal cord) up-regulated the expression of BDNF in the injury zone of a compression model in rat, thereby protecting neurons and enhancing behavioral function.  相似文献   

7.
We have investigated the localization and regulation of a putative extracellular chaperone, clusterin, in the rat spinal cord after lesion. In control animals, clusterin is expressed in motoneurons, in meningeal and ependymal cells, and in astrocytes mainly located beneath the pial surface. Beginning at day 2 after hemisection at segmental level C6, clusterin levels increase in GFAP-positive astrocytes within the lesioned segment. Three weeks after trauma, clusterin mRNA and protein are elevated in neurons close to the lesion site and in glial elements within scar tissue and within degenerating fiber tracts rostral and caudal to the lesion. This study provides evidence for a role of clusterin in the subacute and late phase of spinal cord injury.  相似文献   

8.
Sun Y  Shi J  Fu SL  Lu PH  Xu XM 《生理学报》2003,55(3):349-354
将胚胎神经干细胞(neural stem cells,NSCs)移植至成年大鼠损伤的脊髓,观察移植后NSCs的存活、迁移以及损伤后的功能恢复。实验结果显示:动物NSCs移植4周后,斜板实验平均角度和运动评分结果比对照组均有明显增高(P<0.05),而脊髓损伤(spinal cord injury,SCI)处的空洞面积显著减小(P<0.05);在NSCs中加入胶质细胞源性的神经营养因子(glial cell line-derived neurotrophic factor,GDNF)后,上述改变更加显著。移植后的NSCs不仅能存活,而且向损伤的头端和尾端迁移达3mm之远。这些结果表明,移植的NSCs不仅可以存活、迁移,还可减小SCI空洞面积,促进动物神经功能的恢复;此外,我们的结果还表明GDNF对SCI功能恢复有促进作用。  相似文献   

9.
We previously showed that Nuclear Factor κB (NF-κB) inactivation in astrocytes leads to improved functional recovery following spinal cord injury (SCI). This correlated with reduced expression of pro-inflammatory mediators and chondroitin sulfate proteoglycans, and increased white matter preservation. Hence we hypothesized that inactivation of astrocytic NF-κB would create a more permissive environment for axonal sprouting and regeneration. We induced both contusive and complete transection SCI in GFAP-Inhibitor of κB-dominant negative (GFAP-IκBα-dn) and wild-type (WT) mice and performed retrograde [fluorogold (FG)] and anterograde [biotinylated dextran amine (BDA)] tracing 8 weeks after injury. Following contusive SCI, more FG-labeled cells were found in motor cortex, reticular formation, and raphe nuclei of transgenic mice. Spared and sprouting BDA-positive corticospinal axons were found caudal to the lesion in GFAP-IκBα-dn mice. Higher numbers of FG-labeled neurons were detected immediately rostral to the lesion in GFAP-IκBα-dn mice, accompanied by increased expression of synaptic and axonal growth-associated molecules. After transection, however, no FG-labeled neurons or BDA-filled axons were found rostral and caudal to the lesion, respectively, in either genotype. These data demonstrated that inhibiting astroglial NF-κB resulted in a growth-supporting terrain promoting sparing and sprouting, rather than regeneration, of supraspinal and propriospinal circuitries essential for locomotion, hence contributing to the improved functional recovery observed after SCI in GFAP-IκBα-dn mice.  相似文献   

10.
To determine if ciliary neurotrophic factor (CNTF) is involved in the response to spinal cord injury, we studied changes in the expression of CNTF and that of its receptor, CNTF-receptor α (CNTFRα), in the rat spinal cord after a unilateral spinal cord hemisection. Using in situ hybridization, we found that CNTFRα mRNA levels in spinal cord motoneurons increased dramatically by 1 day after hemisecting the spinal cord at T2. This increase in expression was present only in motoneurons caudal, but not rostral, to the lesion. In addition, we detected increased levels of CNTF mRNA in the spinal cord white matter, also by 1 day following injury. Unlike CNTFRα, however, the increase in CNTF mRNA was evident both rostral and caudal to the lesion. Levels of both CNTF and CNTFRα mRNA declined between 1 and 5 days, and by 10 days they were not significantly different from normal animals. These findings suggest that CNTF may play a local role in the response to spinal cord injury. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 251–261, 1997.  相似文献   

11.
Abstract: The time dependence of N -acetyl-aspartate (NAA) concentrations relative to lactate and pyruvate in the injured rat spinal cord was investigated. Segments of spinal cord from regions rostral, caudal, and at the epicenter of the injury were analyzed. NAA concentrations were determined by gas chromatography-mass spectrometry and lactate and pyruvate concentrations were determined by UV spectroscopy at 20 min, 60 min, 2 h, 8 h, 24 h, 3 days, and 1 week after injury. NAA levels fell most significantly at the epicenter of the injury, reaching 30% of basal levels within 24 h. In all segments, lactate levels increased significantly shortly after injury, peaking at two to five times normal basal levels between 20 and 60 min after injury. Rostral and caudal to the injury site, lactate elevations and NAA reductions were less dramatic. Pyruvate concentrations were not significantly altered in any of the sections after injury. The temporal and spatial relationships of NAA and lactate changes indicated that ischemic conditions due to injury in the upper thoracic rat spinal cord were distributed asymmetrically. Acute ischemia was more severe caudal to the injury site, and NAA concentrations were more severely impaired in the rostral direction. The results suggest that the extent of neuronal degeneration due to spinal cord injury does not correlate directly with acute ischemic severity as measured by the lactate/pyruvate ratio, and may be more closely related to secondary changes in the neuronal environment.  相似文献   

12.
Atrophy of upper motor neurons hampers axonal regeneration and functional recovery following spinal cord injury (SCI). Apart from the severity of primary injury, a series of secondary pathological damages including spinal cord edema and glial scar formation affect the fate of injured upper motor neurons. The aquaporin-4 (AQP4) water channel plays a critical role in water homeostasis and migration of astrocytes in the central nervous system, probably offering a new therapeutic target for protecting against upper motor neuron degeneration after SCI. To test this hypothesis, we examined the effect of AQP4 deficiency on atrophy of rubrospinal neurons after unilateral rubrospinal tract transection at the fourth cervical level in mice. AQP4 gene knockout (AQP4?/?) mice exhibited high extent of spinal cord edema at 72 h after lesion compared with wild-type littermates. AQP4?/? mice showed impairments in astrocyte migration toward the transected site with a greater lesion volume at 1 week after surgery and glial scar formation with a larger cyst volume at 6 weeks. More severe atrophy and loss of axotomized rubrospinal neurons as well as axonal degeneration in the rubrospinal tract rostral to the lesion were observed in AQP4?/? mice at 6 weeks after SCI. AQP4 expression was downregulated at the lesioned spinal segment at 3 days and 1 week after injury, but upregulated at 6 weeks. These results demonstrated that AQP4 not only mitigates spinal cord damage but also ameliorates retrograde degeneration of rubrospinal neurons by promoting edema clearance and glial scar formation after laceration SCI. This finding supports the notion that AQP4 may be a promising therapeutic target for SCI.  相似文献   

13.
Crossed facilitatory interactions in the corticospinal pathway are impaired in humans with chronic incomplete spinal cord injury (SCI). The extent to which crossed facilitation is affected in muscles above and below the injury remains unknown. To address this question we tested 51 patients with neurological injuries between C2-T12 and 17 age-matched healthy controls. Using transcranial magnetic stimulation we elicited motor evoked potentials (MEPs) in the resting first dorsal interosseous, biceps brachii, and tibialis anterior muscles when the contralateral side remained at rest or performed 70% of maximal voluntary contraction (MVC) into index finger abduction, elbow flexion, and ankle dorsiflexion, respectively. By testing MEPs in muscles with motoneurons located at different spinal cord segments we were able to relate the neurological level of injury to be above, at, or below the location of the motoneurons of the muscle tested. We demonstrate that in patients the size of MEPs was increased to a similar extent as in controls in muscles above the injury during 70% of MVC compared to rest. MEPs remained unchanged in muscles at and within 5 segments below the injury during 70% of MVC compared to rest. However, in muscles beyond 5 segments below the injury the size of MEPs increased similar to controls and was aberrantly high, 2-fold above controls, in muscles distant (>15 segments) from the injury. These aberrantly large MEPs were accompanied by larger F-wave amplitudes compared to controls. Thus, our findings support the view that corticospinal degeneration does not spread rostral to the lesion, and highlights the potential of caudal regions distant from an injury to facilitate residual corticospinal output after SCI.  相似文献   

14.
Background aimsBone marrow stromal cells (BMSC) have been shown to provide neuroprotection after transplantation into the injured central nervous system. The present study investigated whether adult rat BMSC differentiated along a Schwann cell lineage could increase production of trophic factors and support neuronal survival and axonal regeneration after transplantation into the injured spinal cord.MethodsAfter cervical C4 hemi-section, 5-bromo-2-deoxyuridine (BrdU)/green fluorescent protein (GFP)-labeled BMSC were injected into the lateral funiculus at 1 mm rostral and caudal to the lesion site. Spinal cords were analyzed 2–13 weeks after transplantation.Results and ConclusionsTreatment of native BMSC with Schwann cell-differentiating factors significantly increased production of brain-derived neurotrophic factor in vitro. Transplanted undifferentiated and differentiated BMSC remained at the injection sites, and in the trauma zone were often associated with neurofilament-positive fibers and increased levels of vascular endothelial growth factor. BMSC promoted extensive in-growth of serotonin-positive raphaespinal axons and calcitonin gene-related peptide (CGRP)-positive dorsal root sensory axons into the trauma zone, and significantly attenuated astroglial and microglial cell reactions, but induced aberrant sprouting of CGRP-immunoreactive axons in Rexed's lamina III. Differentiated BMSC provided neuroprotection for axotomized rubrospinal neurons and increased the density of rubrospinal axons in the dorsolateral funiculus rostral to the injury site. The present results suggest that BMSC induced along the Schwann cell lineage increase expression of trophic factors and have neuroprotective and growth-promoting effects after spinal cord injury.  相似文献   

15.
The oxidative mechanisms of injury-induced damage of neurons within the spinal cord are not very well understood. We used a model of T8-T9 spinal cord injury (SCI) in the rat to induce neuronal degeneration. In this spinal cord injury model, unilateral avulsion of the spinal cord causes oxidative stress of neurons. We tested the hypothesis that apurinic/apyrimidinic endonuclease (or redox effector factor-1, APE/Ref-1) regulates this neuronal oxidation mechanism in the spinal cord region caudal to the lesion, and that DNA damage is an early upstream signal. The embryonic neural stem cell therapy significantly decreased DNA-damage levels in both study groups - acutely (followed up to 7 days after SCI), and chronically (followed up to 28 days after SCI) injured animals. Meanwhile, mRNA levels of APE/Ref-1 significantly increased after embryonic neural stem cell therapy in acutely and chronically injured animals when compared to acute and chronic sham groups. Our data has demonstrated that an increase of APE/Ref-1 mRNA levels in the caudal region of spinal cord strongly correlated with DNA damage after traumatic spinal cord injury. We suggest that DNA damage can be observed both in lesional and caudal regions of the acutely and chronically injured groups, but DNA damage is reduced with embryonic neural stem cell therapy.  相似文献   

16.
Implanted neural stem cells (NSC) could improve neurological functions following spinal cord injury (SCI), but the optimal conditions for NSC transplantation are largely unknown, especially in transected spinal cord. This study investigated the effect and fate of NSC engrafted into spinal cords at different locations and time points following T9 spinal cord transection. Engrafted NSC could survive and migrate in host spinal cords. Significant improvement in hindlimb locomotor functions associated with NSC survival was found in rats receiving NSC transplantation in the spinal cords rostral to the transection site at the subacute stage (7 days post operation), compared with those caudal to the transection site at the acute stage (at the time of injury). At 4 weeks post operation, CD68 immunohistochemical staining confirmed that macrophages were less in rostrally transplanted sites and in subacute groups than seen in caudal and acute transplanted rats. The present findings indicated that NSC transplantation into spinal cords rostral to transection site at the subacute stage is an optimal strategy for engrafted NSC survival and host behavioral improvement. It therefore would be available to the usage of NSC for the treatment of SCI in the future clinic trial.  相似文献   

17.
Methylprednisolone (MP) has been widely used as a standard therapeutic agent for the treatment of spinal cord injury (SCI). Because of its controversial beneficial effects, the combination of MP and other pharmacological agents aimed at enhancing functional recovery is desirable. The phosphodiesterase 4 (PDE4) inhibitor rolipram has been implicated in promotion of regeneration due to elevating cAMP. In the present study, we sought to determine the effects of MP and rolipram, administered in combination, after spinal cord injury (SCI) in adult rats. Here we show that in vitro administration of rolipram and MP significantly increased neuron survival and promoted neurite outgrowth of neurons on the inhibitory substrate CSPGs by upregulation of MMP-2 expression; in vivo administration of rolipram and MP inhibited CSPG expression and increase CSPG digestion after rat SCI. Rolipram and MP combining treatment promoted significant neuroprotection through reduced motoneuron death, minimized lesion cavity, and increased regeneration of lesioned corticospinal tract (CST) axons beyond the lesion site after SCI. Enhanced functional recovery was also observed. Overall, our study strongly suggested that the combination treatment of MP and rolipram may represent a promising strategy for clinically applicable pharmacological therapy for rapid initiation of neuroprotection after SCI.  相似文献   

18.
Kynurenic acid (KYNA), a metabolite of the essential amino acid L-tryptophan, is a broad spectrum antagonist of excitatory amino acid receptors, which have also anticonvulsant and neuroprotective properties. After spinal cord injury (SCI), excitotoxicity is considered to play a significant role in the processes of secondary tissue destruction in both grey and white matter of the spinal cord. In this study, we have tested the potential therapeutic effect of glucosamine-kynurenic acid, administered after experimental compression-induced SCI in the rat. Spinal application of glucosamine-kynurenic acid continually for 24 hr after experimental SCI resulted in improved motor function recovery, beginning from the first week of evaluation and continuing until the end of the study (4 weeks). After 4 weeks?? survival, quantitative morphometric analysis of the spinal cord showed that glucosamine-kynurenic acid treatment was associated with improved tissue preservation at the lesion site. These findings indicate that spinal application of glucosaminekynurenic acid is neuroprotective and improves the outcome even when administered after spinal trauma. Our results suggest that the treatments initiated in early posttraumatic period can alleviate secondary injury and improve the final outcome after SCI.  相似文献   

19.
The spinal cord has an intrinsic, limited ability of spontaneous repair; the endogenous repair of damaged tissue starts a few days after spinal cord injury (SCI). To date, however, detailed observation in histology at the injury site has not been well documented. In the present study we analyzed the histological structure of the repaired tissue from injury site of rats 6 or 14 weeks after contusion injury (NYU impactor device, 25 mm height setting) on T10, and rats 8 weeks after transplantation of lamina propria (LP) or acellular lamina propria. We found that the initial repaired tissue can be histologically divided into three different zones, i.e., fibrotic, cellular and axonal. The fibrotic zone consists of invading connective tissue, while the cellular zone is composed of invading, densely compacted Schwann cells. Schwann cells migrate from dorsal roots laterally toward and merge underneath the fibrotic zone, forming the U-shape shell of the cellular zone. The major component of the axonal zone is regenerating axons. Schwann cells myelinate regenerating axons in all three zones. In rats with combination treatments including scar ablation and LP transplantation, both cellular and axonal zones significantly expand in size, resulting in the disappearance of the lesion cavity and the integration of repaired tissue with spared tissue. Olfactory ensheathing cells from transplanted LP may promote the expansion of the cellular and axonal zones through stimulating host Schwann cells, indirectly contributing to tissue repair and axonal regeneration. The ependyma-derived cells may be directly involved in tissue repair, but not contribute to the formation of myelin sheaths.  相似文献   

20.
Impact spinal cord injury (20 g-cm) was induced in rat by weight drop. The immunoreactivity of mcalpain was examined in the lesion and adjacent areas of the cord following trauma. Increased calpain immunoreactivity was evident in the lesion compared to control and the immunostaining intensity progressively increased after injury. The calpain immunoreactivity was also increased in tissue adjacent to the lesion. mCalpain immunoreactivity was significantly stronger in glial and endothelial cells, motor neurons and nerve fibers in the lesion. The calpain immunoreactivity also increased in astrocytes and microglial cells in the adjacent areas. Proliferation of microglia and astrocytes identified by GSA histochemical staining and GFAP immunostaining, respectively, was seen at one and three days after injury. Many motor neurons in the ventral horn showed increased calpain immunoreactivity and were shrunken in the lesion. These studies indicate a pivotal role for calpain and the involvement of glial cells in the tissue destruction in spinal cord injury. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号