首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The glutathione (GSH) status and heavy metal tolerance were investigated in four Paxillus involutus strains isolated from different heavy-metal-polluted and non-polluted regions of Europe. The heavy metal burden in the habitats did not affect significantly either the heavy metal (Cr2O72−, Cd2+, Hg2+, Pb2+, Zn2+, Cu2+) tolerance and accumulation or the GSH production of the strains tested. Exposures to heavy metals increased the intracellular GSH concentrations in 12 from 24 experimental arrangements (four strains exposed to six heavy metals) independently of the habitats of the strains. The importance of GSH in heavy metal tolerance (high MIC values, ability to accumulate heavy metals and to grow in the presence of heavy metals) was thus demonstrated in this ectomycorrhizal fungus.  相似文献   

2.
Seed is a developmental stage that is highly protective against external stresses in the plant life cycle. In this study, we analyzed toxicity of essential (Cu2+ and Zn2+) and non-essential heavy metals (Hg2+, Pb2+ and Cd2+) on seed germination and seedling growth in the model species Arabidopsis. Our results show that seedling growth is more sensitive to heavy metals (Hg2+, Pb2+, Cu2+ and Zn2+) in comparison to seed germination, while Cd2+ is the exception that inhibited both of these processes at similar concentrations. To examine if toxicity of heavy metals is altered developmentally during germination, we incubated seeds with Hg2+ or Cd2+ only for a restricted period during germination. Hg2+ displayed relatively strong toxicity at period II (12–24 h after imbibition), while Cd2+ was more effective to inhibit germination at period I (0–12 h after imbibition) rather than at period II. The observed differences are likely to be due in part to selective uptake of different ions by the intact seed, because isolated embryos (without seed coat and endosperm) are more sensitive to both Hg2+ and Cd2+ at period I. We assessed interactive toxicity between heavy metals and non-toxic cations, and found that Ca2+ was able to partially restore the inhibition of seedling growth by Pb2+ and Zn2+.  相似文献   

3.
河流、湖泊等水生环境中普遍存在的重金属污染破坏水生生态系统并间接威胁人类健康。为探究重金属胁迫下水生昆虫花翅摇蚊(Chironomus kiiensis)生态毒理,测定了重金属Cd2+和Pb2+胁迫对花翅摇蚊化蛹率和羽化率的影响,检测了摇蚊的口器致畸与富集效应。研究结果表明,Cd2+和Pb2+影响摇蚊幼虫化蛹和羽化过程,单一重金属离子处理14 d Pb2+处理组的化蛹率和羽化率分别为22.22%和8.89%,低于Cd2+的化蛹率(25.56%)和羽化率(11.11%),表现出更强的抑制效应。混合离子1:2和2:1配比处理组化蛹率和羽化率均为11.11%和4.44%,显著低于单一重金属离子胁迫下的化蛹率和羽化率。单一重金属离子及混合离子处理均能导致花翅摇蚊幼虫口器致畸,表现为上颚前齿断裂,中齿和基齿磨损、缺失,下唇板齿部不规则,下唇板边缘齿与中央齿磨损、断裂、增生、缺失。不同重金属离子处理下幼虫口器致畸率不同,并与暴露时间呈正相关,其中1:2配比处理14 d致畸率达到40.61%。重金属离子在摇蚊幼虫体内产生生物富集效应,单一重金属离子处理下的Pb2+富集含量7 d至14 d由11.46 mg/kg上升至31.32 mg/kg,不同配比混合离子处理下Pb2+富集含量均呈增加趋势,其中1:2配比处理组由15.48 mg/kg上升至42.50 mg/kg,而Cd2+在单一重金属与1:1混合离子处理组7 d至14 d的富集含量无显著性变化,2:1配比处理组由14.20 mg/kg下降至9.52 mg/kg,1:2配比由5.85 mg/kg上升至20.99 mg/kg。这些研究结果表明Cd2+和Pb2+胁迫影响花翅摇蚊幼虫生长发育且口器出现畸型,与重金属在幼虫体内的富集密切相关,为研究重金属对水生生态系统多重效应提供了理论依据。  相似文献   

4.
The influence of cadmium, zinc and lead on fungal emulsifier synthesis and on the growth of filamentous fungus Curvularia lunata has been studied. Tolerance to heavy metals established for C. lunata was additionally compared with the sensitivity exhibited by strains of Curvularia tuberculata and Paecilomyces marquandii—fungi which do not secrete compounds of emulsifying activity. Although C. lunata, as the only one out of all studied fungi, exhibited the lowest tolerance to heavy metals when grown on a solid medium (in conditions preventing emulsifier synthesis), it manifested the highest tolerance in liquid culture - in conditions allowing exopolymer production. Cadmium, zinc and lead presented in liquid medium up to a concentration of 15 mM had no negative effect on C. lunata growth and stimulated emulsifier synthesis. In the presence of 15 mM of heavy metals, both the emulsifier and 24-h-old growing mycelium exhibited maximum sorption capacities, which were determined as 18.2 ± 2.67, 156.1 ± 10.32 mg g−1 for Cd2+, 22.2 ± 3.40, 95.2 ± 14.21 mg g−1 for Zn2+ and 51.1 ± 1.85, 230.0 ± 28.47 mg g−1 for Pb2+ respectively. The results obtained by us in this work indicate that the emulsifier acts as a protective compound increasing the ability of C. lunata to survive in heavy metal polluted environment. Enhancement of exopolymer synthesis in the presence of Cd2+, Zn2+ and Pb2+ may also suggest, at least to some extent, a metal-specific nature of emulsifier production in C. lunata. Due to accumulation capability and tolerance to heavy metals, C. lunata mycelium surrounded by the emulsifier could be applied for toxic metal removal.  相似文献   

5.
Waste biomass Sargassum sp. biosorbed 100% of Cd2+ and 99.4% of Zn2+ from a 3 and 98 mg l–1 solution (pH 4.5), respectively, at the end of four serial experiments. Of the five desorbents studied in consecutive adsorption/desorption cycles, CaCl2 0.05 M eluted nearly 40% of both metals and decreased the biosorption in only 8% and 17% of Cd2+ and Zn2+, respectively. Although NaOH desorbent improved the heavy metal uptake from the second cycle onwards, it did not elute metals from the pre-loaded biomass.  相似文献   

6.
Summary 1. The effects of heavy metals (Pb2+, Hg2+, and Zn2+) on synaptic transmission in the identified neural network ofHelix pomatia L. andLymnaea stagnalis L. (Gastropoda, Mollusca) were studied, with investigation of effects on inputs and outputs as wells as on interneuronal connections.2. The sensory input running from the cardiorenal system to the central nervous system and the synaptic connections between central neurons were affected by heavy metals.3. Lead and mercury (10–5–10–3 M) eliminated first the inhibitory, then the excitatory inputs running from the heart to central neurons. At the onset of action lead increased the amplitude of the excitatory postsynaptic potentials, but blockade of sensory information transfer occurred after 10–20 min of treatment.4. The monosynaptic connections between identified interneurons were inhibited by lead and mercury but not by zinc. Motoneurons were found to be less sensitive to heavy metal treatment than interneurons or sensory pathways.5. The treatment with Pb2+ and Hg2+ often elicited pacemaker and bursting-type firing in central neurons, accompanied by disconnection of synaptic pathways, manifested by insensitivity to sensory synaptic influences.6. Zn2+ treatment also sometimes induced pacemaker activity and burst firing but did not cause disconnection of the synaptic transmission between interneurons.7. A network analysis of heavy metal effects can be a useful tool in understanding the connection between their cellular and their behavioral modulatory influences.  相似文献   

7.
The aim of the present study was to investigate the effects of environmental pollutants, such as heavy metals and pesticides on ion transport across the skin of the leech (Hirudo medicinalis). We wanted to examine the suitability of this epithelium as a model system for studies concerning the mechanisms of toxic action caused by environmental pollutants. For this purpose we performed Ussing chamber experiments to test three representative heavy metals and pesticides, respectively, for their effects on current flow across leech dorsal integument. Two representatives of each substance class showed distinct effects on ion transport across this epithelium. The heavy metal ions Pb2+ and Hg2+ produced a significant inhibition of amiloride-sensitive Na+ transport across leech skin in concentrations below or close to their limiting values in waste water. Therefore, it seems feasible to use leech skin for future investigations of the toxic actions of these heavy metals. The fact that Pb2+ and Hg2+ exerted their effects only when applied apically points to a specific action of these divalent cations on ion channels in the apical membrane. However, this inhibition does not seem to be a general feature of divalent cations because Cd2+ did not influence ion transport across leech skin at all. Since current flow through amiloride-sensitive Na+ channels in typical vertebrate tight epithelia is stimulated by numerous divalent cations, the pronounced inhibition of amiloride-sensitive Na+ channels in leech skin by Pb2+ and Hg2+ might lead to a further differentiation of amiloride-sensitive Na+ channels. The two widespread pesticides lindane and promecarb exerted their effects only at comparativ high concentrations. This low sensitivity restricts the usefulness of leech skin as a subject for further analysis of toxicity mechanisms, at least for these two pesticides.  相似文献   

8.
In order to evaluate the effect of microwave radiation on immobilization of heavy metals (Cu 2 + , Cr 6 + , Zn 2 + and Pb 2 + ) in sediment sludge, leaching tests were run under different test conditions to compare microwave radiation with conventional blast heating and drying process for their effectiveness in immobilizing heavy metals within sediment sludge. Experimental results indicate that microwave radiation can decrease the concentration of heavy metals in leachate by 63% ~ 70% more than conventional blast heating and drying process in an aclinic shake leaching test. Under the same simulated natural water conditions, the concentration of heavy metals in the leachate using microwave radiation is well below the concentration of heavy metals in leachate using conventional blast heating and drying process. It is therefore concluded that microwave radiation is much more effective than conventional blast heating and drying process in immobilizing heavy metals in sediment sludge.  相似文献   

9.
Living organisms are subject to stress, and among these stressors, heavy metals exposure triggers accumulation of sulfur metabolites. Among these metabolites, glutathione and phytochelatins are found in several organisms, such as Euglena gracilis. Pre-exposing E. gracilis to low concentrations of Hg2+ generates a population with resistance to even 0.2 mM Cd2+, and this resistance relies partly on phytochelatins. p38 MAPK is stimulated by stress and is involved in apoptotic as well as survival mechanisms. In this study, we explored its participation in heavy metal-induced stress and its possible role in sulfur metabolite accumulation. We found that about 51% of the E. gracilis pretreated with Hg2+ becomes resistant to Cd2+ and proliferates despite the presence of this metal. The accumulation of the sulfur metabolites γ-glu-cys, glutathione and phytochelatin 2 displayed cyclic patterns that were disturbed by a challenge with Cd2+. We observed a p38 MAPK-like activity that was stimulated by acute or chronic heavy metal exposure, and its inhibition by SB203580 slightly diminished the accumulation of sulfur compounds. p38 MAPK inhibition also affected basal levels of glutathione in either pretreated or control cells. Thus, it appears that p38 MAPK mediates redox stress component of the signal pathway induced by heavy metals.  相似文献   

10.
Cohen CK  Garvin DF  Kochian LV 《Planta》2004,218(5):784-792
Fe uptake in dicotyledonous plants is mediated by a root plasma membrane-bound ferric reductase that reduces extracellular Fe(III)-chelates, releasing Fe2+ ions, which are then absorbed via a metal ion transporter. We previously showed that Fe deficiency induces an increased capacity to absorb Fe and other micronutrient and heavy metals such as Zn2+ and Cd2+ into pea (Pisum sativum L.) roots [Cohen et al. (1998) Plant Physiol 116:1063–1072). To investigate the molecular basis for this phenomenon, an Fe-regulated transporter that is a homologue of the Arabidopsis IRT1 micronutrient transporter was isolated from pea seedlings. This cDNA clone, designated RIT1 for root iron transporter, encodes a 348 amino acid polypeptide with eight putative membrane-spanning domains that is induced under Fe deficiency and can functionally complement yeast mutants defective in high- and low-affinity Fe transport. Chelate buffer techniques were used to control Fe2+ in the uptake solution at nanomolar activities representative of those found in the rhizosphere, and radiotracer methodologies were employed to show that RIT1 is a very high-affinity 59Fe2+ uptake system (K m =54–93 nM). Additionally, radiotracer (65Zn, 109Cd) flux techniques were used to show that RIT can also mediate a lower affinity Zn and Cd influx (K m of 4 and 100 M, for Zn2+ and Cd2+, respectively). These findings suggest that, in typical agricultural soils, RIT1 functions primarily as a high-affinity Fe2+ transporter that mediates root Fe acquisition. This is consistent with recent findings with Arabidopsis IRT1 knockout mutants that strongly suggest that this transporter plays a key role in root Fe uptake and nutrition. However, the ability of RIT1 to facilitate Zn and Cd uptake when these metals are present at elevated concentrations suggests that RIT1 may be one pathway for the entry of toxic metals into the food chain. Furthermore, the finding that plant Fe deficiency status may promote heavy metal uptake via increased expression of this transporter could have implications both for human nutrition and also for phytoremediation, the use of terrestrial plants to sequester toxic metals from contaminated soil.  相似文献   

11.
Alcaligenes eutrophus CH34 DNA fragments encoding resistance to Cd2+, Co2+, Zn2+ (czc), or Hg2+ (merA) were cloned and used as probes in colony hybridization procedures with bacteria isolated from polluted environments such as a zinc factory area (desertified because of the toxic effects of zinc contamination) and from sediments from factories of nonferrous metallurgy in Belgium and mine areas in Zaire. From the different soil samples, strains could be isolated and hybridized with the czc probe (resistance to Cd2+, Co2+, and Zn2+ from plasmid pMOL30). Percentages of CFU isolated on nonselective plates which hybridized with the czc and the mercury resistance probes were, respectively, 25 and 0% for the zinc desert, 15 to 20 and 10 to 20% for the two Belgian factories, and 40 and 40% for the Likasi mine area. Most of these strains also carried two large plasmids of about the same size as those of A. eutrophus CH34 and shared many phenotypic traits with this strain. These findings indicated a certain correlation between the heavy-metal content in contaminated soils and the presence of heavy-metal-resistant megaplasmid-bearing A. eutrophus strains.  相似文献   

12.
Light induced proton efflux in intact cells ofAnabaena flos-aquae is inhibited by the heavy metals Hg2+ and Cd2+. Furthermore, Hg2+ and Cd2+ reduced the14CO2 fixation, oxygen evolution and carbonic anhydrase activity responsible for H+ efflux.  相似文献   

13.
Pollution of soil with heavy metals, herbicides, antibiotics and other chemicals is known to have a negative effect on microbial activities. Therefore, the aim of this study was to isolate cultures of Azotobacter sp. from polluted and unpolluted soils and to study the effect of these pollutants on their growth. A total of 120 Azotobacter sp. were isolated from soils irrigated with wastewater (contaminated soils) and groundwater (uncontaminated soils). These isolates were screened for resistance to heavy metals, herbicide and antibiotics. Also, the soils from which the cultures were isolated were analyzed for the concentrations of Zn2+, Cd2+, Cu2+, Pb2+ and Mn2+ they contained. Contaminated soil showed high levels of heavy metals as compared to uncontaminated soil. The size of the Azotobacter population in contaminated soil was lower than that in uncontaminated soil. Of the Azotobacter isolates, 64 that were recovered from contaminated soil exhibited high resistance to heavy metals (Hg2+, Cd2+, Cu2+, Cr3+, Co2+, Ni2+, Zn2+ and Pb2+) and herbicide 2,4-D compared to 56 isolates from uncontaminated soil. Also, isolates from contaminated soil showed high resistance to chloramphenicol, nitrofurantoin and co-trimoxazole compared to those isolated from uncontaminated soil. The majority of Azotobacter isolates from contaminated soil showed multiple-resistance to different metal ions and antibiotics. All isolates failed to grow at pH less than 6. Salt concentration (5%) was found to be inhibitory to all isolates. The most potent isolates from contaminated soil that showed multiresistance to all substances tested were identified on the basis of morphological and biochemical characteristics, and 16S rRNA as A. chroococcum. These resistant isolates could be employed in contaminated soils and/or bioremediation.  相似文献   

14.
Environmental pollution with toxic heavy metals is increasing throughout the world alongside industrial development. Microorganisms and microbial products can be highly efficient bioaccumulators of soluble and particulate forms of metals, especially dilute external solutions. Microbe related technologies (Biotechnology) may provide an alternative or additive conventional method for metal removal or metal recovery. This study dealt with isolation, identification and characterization of heavy metal-resistant (Pb2+, Cd2+, Al3+, Cu2+, Ag2+ and Sn2+) bacteria from sewage wastewater at Taif Province, Saudi Arabia. Nine bacterial isolates were selected by using an enrichment isolation procedure based on high level of heavy metal resistance. All the isolates showed high resistance to heavy metals with Minimum Inhibitor Concentration (MIC) ranging from 800 μg/ml to 1400 μg/ml. All nine resistant isolates showed multiple tolerances to heavy metals. On the basis of morphological, biochemical and 16S rRNA characterization, the most potent isolates (Cd1-1, Ag1-1, Ag1-3 and Sn1-1) were identified as Alcaligenes faecalis. Scanning electron microscope analysis showed that the morphology of Alcaligenes faecalis Ag1-1 was unchanged after growth in medium without and with addition of Ag2+ indicative Ag2+ is not toxic to the isolate under the conditions tested. The ability of Alcaligenes faecalis Ag1-1 to synthesize sliver nanoparticles was examined. The heavy metal-resistant bacteria obtained could be useful for the bioremediation of heavy metal-contaminated environment.  相似文献   

15.
The heavy metal resistant ciliate, Stylonychia mytilus, isolated from industrial wastewater has been shown to be potential bioremediator of contaminated wastewater. The ciliate showed tolerance against Zn2+ (30 μg/mL), Hg2+ (16 μg/mL) and Ni2+ (16 μg/mL). The metal ions slowed down the growth of the ciliate as compared with the culture grown without metal stress. The reduction in cell population was 46% for Cd2+, 38% for Hg2+, 23% for Zn2+, 39% for Cu2+ and 51% for Ni2+ after 8 days of metal stress. S. mytilus reduced 91% of Cd2+, 90% of Hg2+ and 98% of Zn2+ from the medium after 96 h of incubation in a culture medium containing 10 μg/mL of the respective metal ions. Besides this, the ciliate could also remove 88% of Cu2+ and 73% Ni2+ from the medium containing 5 μg/mL of each metal after 96 h. The ability of Stylonychia to take up variety of heavy metals from the medium could be exploited for metal detoxification and environmental clean-up operations.  相似文献   

16.
Elongation growth rate of stem cells of Impatiens balsamina was inhibited by the heavy metals Pb2+, Cd2+ and Zn2+ due to their suppression on cell wall extensibility. Effective turgor was also inhibited by Pb2+ and Cd2+ but it played a secondary role in reducing the stem cell elongation growth rate. The major rate-limiting factor for cell elongation growth was the cell wall extensibility. Furthermore, Cd2+ was found to be more toxic than Pb2+, while Pb2+ was more toxic than Zn2+.  相似文献   

17.
Plasmid profiles were studied in 27 Acidithiobacillus ferrooxidans strains isolated from different geographic zones and substrates differing in composition of the main sulfide minerals, and also in experimentally obtained strains with acquired enhanced resistance to the ions of heavy metals (Fe, Ni, Cu, Zn, As). In 16 out of 20 strains isolated from different substrates, one to four 2- to 20-kb and larger plasmids were revealed. Plasmids were found in all five strains isolated from gold-containing pyrite–arsenopyrite ores and concentrates, in nine of 11 strains isolated from the ores and concentrates containing nonferrous metals, and in two of four strains isolated from the oxidation substrates of simple composition (mine waters, pyritized coals, active sludge). Changes in the plasmid profiles in some A. ferrooxidans strains (TFZ, TFI-Fe, TFV-1-Cu) with experimentally enhanced resistance to Zn2+, Fe3+, and Cu2+, respectively, were noted as compared with the initial strains. After 30 passages on a S0-containing medium, strain TFBk showed changes in the copy number of plasmids. The role of plasmids in the processes of oxidation of energy substrates and in the acquired enhanced resistance to heavy metal ions is discussed.  相似文献   

18.
One key step of the bioremediation processes designed to clean up heavy metal contaminated environments is growing resistant cells that accumulate the heavy metals to ensure better removal through a combination of biosorption and continuous metabolic uptake after physical adsorption. Saccharomyces cerevisiae cells can easily act as cation biosorbents, but isolation of mutants that are both hyperaccumulating and tolerant to heavy metals proved extremely difficult. Instead, mutants that are hypersensitive to heavy metals due to increased and continuous uptake from the environment were considered, aiming to use such mutants to reduce the heavy metal content of contaminated waters. In this study, the heavy metal hypersensitive yeast strain pmr1∆ was investigated for the ability to remove Mn2+, Cu2+, Co2+, or Cd2+ from synthetic effluents. Due to increased metal accumulation, the mutant strain was more efficient than the wild-type in removing Mn2+, Cu2+, or Co2+ from synthetic effluents containing 1–2 mM cations, with a selectivity $ {\text{Mn}}^{{{\text{2}} + }} > {\text{Co}}^{{{\text{2}} + }} ~ > {\text{Cu}}^{{{\text{2}} + }} $ {\text{Mn}}^{{{\text{2}} + }} > {\text{Co}}^{{{\text{2}} + }} ~ > {\text{Cu}}^{{{\text{2}} + }} and also in removing Mn2+ and Cd2+ from synthetic effluents containing 20–50 μM cations, with a selectivity Mn2+ > Cd2+.  相似文献   

19.
The production of biosurfactants was evaluated for seven bacterial strains isolated from different oil contaminated sites by the Emulsification Index using diesel oil as the hydrocarbon source. Minimum Inhibitory Concentrations of Mg2+, Cr3+ and Cu2+ were determined to identify the less sensitive bacteria in order to select the best strains for bioremediation. Plasmid extraction was also performed in order to search for gene sequences involved with biosurfactant synthesis. All strains were able to emulsify diesel oil. Rhodococcus ruber AC239 presented the best index (58%), followed by other Rhodococcus strains. Pseudomonas aeruginosa, R. ruber AC239, AC87 and R. erytropolis AC272 presented smallest sensitivities to heavy metals used, being suitable for use in sites contaminated with high concentrations of them. No plasmid DNA was detected showing that biosurfactant coding genes should be in the chromosomal DNA.  相似文献   

20.
Superficial (0 to 2 cm) sediments were sampled from 62 sites in Kattegat and Skagerrak during autumn 1989 and spring 1990, tested for toxicity to Daphnia magna and Nitocra spinipes (Crustacea) and analyzed for heavy metals (Cd, Cr, Cu, Hg, N, Pb, Zn), nutrients (N and P) and organic carbon. Whole sediment toxicity to Nitocra spinipes, expressed as 96-h LC50, ranged from 1.8 to > > 32 percent sediment (wet wt), which is equivalent to 0.63 to 53 percent dry wt. Sediment total metal concentrations (mg kg-1 dry wt) ranged from 0.01 to 0.32 for Cd, 8 to 57 for Cr, 3 to 40 for Cu, 0.03 to 0.86 for Hg, 3 to 43 for Ni, 6 to 37 for Pb and 21 to 156 for Zn. Analyzed concentrations of heavy metals were tested for correlation with whole sediment toxicity normalized to dry wt, and significant correlations (Spearman p<0.05) were found for Cd, Cr, Cu, Hg, and Ni. However, the analyzed concentrations of these metals were below the spiked sediment toxicity of these heavy metals to N. spinipes, except for Cr and Zn for which analyzed maximum concentrations approached the 96-h spiked sediment LC50s. There was no improvement in correlation between the sum of heavy metal concentrations normalized to their spiked toxic concentrations (Toxic Unit approach) and the whole sediment toxicity. Calculated heavy-metal-derived toxicity based on toxic units and whole sediment toxicity ranged from 0.1 to 24 (mean value 2.3 and SD 4.2). Theoretically, a value of 1.0 would explain whole sediment toxicity from measured metal concentrations using this approach. Thus, in spite of the fact that the total concentrations of the heavy metals were sufficient to cause toxicity based on an additive model for most of these sediments, the observed toxicity of the sediments from Kattegat and Skagerrak could not exclusively be explained by the concentrations of heavy metals, except for Cr and Zn at their maximum concentrations. Therefore, other pollutants than these heavy metals must also be considered as possible sediment toxicants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号