首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The role of substance P in the regulation of secretion from sustentacular cells, Bowman's glands and deep glands in the amphibian olfactory mucosa was investigated using immunohistochemical, electrophysiological, and pharmacological methods. Substance P-like immunoreactive varicose fibers extended through the olfactory epithelium, terminating at or near the surface. In addition, immunoreactive varicose fibers innervated Bowman's glands, deep glands, and blood vessels in the lamina propria. Innervation of Bowman's gland was sparse, with fibers terminating on basal acinar cell membranes; deep gland innervation was abundant, with fibers often extending between acinar cells almost to the lumen. Stimulation of the ophthalmic branch of the trigeminal nerve resulted in slow potentials recorded at the surface of the olfactory epithelium. When the olfactory mucosae from trigeminal-stimulated animals were examined histologically, morphological signs of secretory activity were observed, suggesting that substance P was released from the trigeminal nerve terminals. Topical application of 10-5 to 10-3 mol substance P resulted in morphological signs of secretion that were very similar to those seen as a result of trigeminal stimulation. Thus, substance P released from trigeminal fibers may modulate secretory activity within the olfactory mucosa.  相似文献   

2.
Summary An indirect gold-labeling method utilizing the lectin from Limax flavus was employed to characterize the subcellular distribution of sialic acid in glycoconjugages of the salamander olfactory mucosa. The highest density of lectin binding sites was in secretory vesicles of sustentacular cells. Significantly lower densities of lectin binding sites were found in secretory granules of acinar cells of both Bowman's and respiratory glands. Lectin binding in acinar cells of Bowman's glands was confined primarily to electron-lucent regions and membranes of secretory granules. In the olfactory mucus, the density of lectin binding sites was greater in the region of mucus closest to the nasal cavity than in that closest to the epithelial surface. At the epithelial surface, the density of lectin binding sites associated with olfactory cilia was 2.4-fold greater than that associated with microvilli of sustentacular cells or non-ciliary plasma membranes of olfactory receptor neurons, and 7.9-fold greater than non-microvillar sustentacular cell plasma membranes. Lectin binding sites were primarily associated with the glycocalyx of olfactory receptor cilia. The cilia on cells in the respiratory epithelium contained few lectin binding sites. Thus, sialylated glycoconjugates secreted by sustentacular cells are preferentially localized in the glycocalyx of the cilia of olfactory receptor neurons.  相似文献   

3.
The localization of -D-galactose, N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine sugar residues of glycoconjugates in the vomeronasal organ, olfactory mucosa, and septal organ in the nasal mucosae of rats was investigated using lectinohistochemical techniques combined with bright-field, epifluorescence, and confocal laser scanning microscopy. Glycoconjugates in the mucomicrovillar complex of the vomeronasal organ contained all the sugar residues investigated, whereas glycoconjugates in the mucociliary complex of the olfactory mucosa and septal organ contained only N-acetyl-D-glucosamine. Vomeronasal receptor neurons expressed glycoconjugates with terminal -D-galactose and -N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine residues, whereas olfactory and septal receptor neurons expressed glycoconjugates with only N-acetyl-D-glucosamine residues. Secretory granules of glands of the vomeronasal organ contained glycoconjugates with terminal -D-galactose and N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine, whereas those of the Bowman's glands and glands of septal organ contained glycoconjugates with only internal N-acetyl-D-glucosamine residues. The results demonstrate that the glycoconjugates expressed by vomeronasal receptor neurons and glands contain terminal -D-galactose and -N-acetyl-D-galactosamine sugar residues that are not expressed by analogous cells in the olfactory mucosa and septal organ.  相似文献   

4.
The role of nerve growth factor (NGF) in neurotrophic support for the extrinsic innervation of the nasal and oral mucosae was investigated in keratin 14 (K14)-NGF transgenic mice in which NGF was over-expressed in K14-synthesizing cells. K14 immunoreactivity was localized in the epithelial basal cells of the whisker pad skin, the hard palate, the floor of the ventral meatus, and the anterior tongue that are stratified squamous epithelia, and also in basal cells of the vomeronasal, olfactory, and respiratory epithelia that are non-stratified epithelia. In transgenic mice, NGF expression was identified and confined primarily to the basal cells of stratified epithelia. The nasal mucosae including the vomeronasal, olfactory, and respiratory mucosae, and the glands associated with the vomeronasal organ received a greater innervation of protein gene product 9.5-immunoreactive extrinsic fibers in transgenic animals than nontransgenic controls. An increased density of calcitonin gene-related peptide-immunoreactive extrinsic fibers was observed in the nonsensory epithelia of the vomeronasal organ, the olfactory sensory and respiratory epithelia in transgenic animals. Our results indicated that the hyperinnervation of the nasal and oral mucosae by extrinsic neurons is due at least partially to target-derived NGF synthesis and release by K14-expressing basal cells.This work was supported by NIH grants NIDCD-00159 (T.V.G.), NIDCO-01715 (M.L.G.), and NINDS-31826 (K.M.A.).  相似文献   

5.
Summary Components of the -glutamyl cycle, including thiols, glutathione (GSH) and -glutamyl transpeptidase (-GT), were localized in the nasal mucosae of rats using histochemical and immunohistochemical methods. In olfactory mucosa, thiols were widely distributed, with intense staining in the mucociliary complex (MC), basal cells, acinar cells of Bowman's glands (BG), and olfactory nerve bundles, and with moderate staining in olfactory receptor neurons (ORNs). GSH was localized in MC, BG acinar cells, nerve bundles and, to a lesser extent, in ORNs. -GT immunoreactivity was restricted to the MC and to basolateral and apical membranes of BG acinar and duct cells. The basolateral membrane of BG acinar cells, located in close association with blood vessels and connective tissue, showed granule-like immunoreactivity. Inrespiratory mucosa, all three compounds were localized in the MC and acinar cells of respiratory glands (RG). In the MC, -GT immunoreactivity was associated primarily with brush borders of ciliated cells. Granular immunoreactivity was also apparent in the supranuclear region of RG acinar cells. These results demonstrate that components of the -glutamyl cycle are localized in olfactory and respiratory glands, and that they are secreted into the mucus, where they may mediate perireceptor events such as detoxification and/or solubilization of air-borne xenobiotics, toxicants and odorants.  相似文献   

6.
Deposition of inhaled particulates onto the respiratory mucosa is relatively great in that portion of the nasal cavity unprotected by ciliated, goblet, or keratinized superficial cells. The cytochrome P-450 system is an important enzyme system involved in the biotransformation of xenobiotics into metabolites that are more readily absorbed. To examine the transitional region caudal to the nasal vestibule, nasal tissues of hamster and rat were prepared for immunocytochemistry. Blocks of tissue representing four levels along the long axis of the nasal cavity were examined. Paraffin sections were processed through the avidin-biotin peroxidase procedure, with diaminobenzidine tetrahydrochloride as the chromagen. Enzyme localization was accomplished through the use of antibodies for three rabbit cytochrome P-450 isozymes; 2, 5, and 6 (subfamilies IIB, IVB, and IA, respectively); and for rabbit NADPH-cytochrome P-450 reductase. Enzyme distribution was similar in both hamster and rat nasal tissues except in cells of striated and intercalated ducts of nasal glands and in cells of the nasolacrimal duct where immunoreactivity was greater in the hamster. Immunoreactivity for reductase and isozyme 2 was intense in nonciliated cells lining the nonolfactory epithelium, in sustentacular cells of the olfactory epithelium, and in acinar cells of olfactory glands. Distribution of reaction products to isozyme 5 and 6 were similar to but not so intense as those of reductase and isozyme 2. Reaction products for reductase and isozyme 2 occurred generally in the same cellular and intracellular regions with the following exceptions: isozyme 2 was more concentrated in cells of striated ducts and of the nasolacrimal duct, and reductase was more abundant in intercalated ducts of nasal glands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We performed a detailed analysis of mouse cytochrome P450 2A5 (CYP2A5) expression by in situ hybridization (ISH) and immunohistochemistry (IHC) in the respiratory tissues of mice. The CYP2A5 mRNA and the corresponding protein co-localized at most sites and were predominantly detected in the olfactory region, with an expression in sustentacular cells, Bowman's gland, and duct cells. In the respiratory and transitional epithelium there was no or only weak expression. The nasolacrimal duct and the excretory ducts of nasal and salivary glands displayed expression, whereas no expression occurred in the acini. There was decreasing expression along the epithelial linings of the trachea and lower respiratory tract, whereas no expression occurred in the alveoli. The hepatic CYP2A5 inducers pyrazole and phenobarbital neither changed the CYP2A5 expression pattern nor damaged the olfactory mucosa. In contrast, the olfactory toxicants dichlobenil and methimazole induced characteristic changes. The damaged Bowman's glands displayed no expression, whereas the damaged epithelium expressed the enzyme. The CYP2A5 expression pattern is in accordance with previously reported localization of protein and DNA adducts and the toxicity of some CYP2A5 substrates. This suggests that CYP2A5 is an important determinant for the susceptibility of the nasal and respiratory epithelia to protoxicants and procarcinogens.  相似文献   

8.
The mucosae of the nasal passages contain a large amount of glands which express secretory proteins as well as phase I and phase II biotransformation enzymes. In this review the metabolic activation, covalent binding and toxicity of chemicals in the Bowman's glands in the olfactory mucosa, in the sero-mucous glands in the nasal septum and in the lateral nasal glands and maxillary glands around the maxillary sinuses are discussed. Light microscopic autoradiographic studies have demonstrated a selective covalent binding of nasal toxicants and carcinogens such as halogenated hydrocarbons and N-nitrosamines, especially in the Bowman's glands following a single systemic exposure, suggesting a high rate of metabolic activation of chemicals in these glands. Special attention is put on the herbicide dichlobenil which induces necrosis in the olfactory mucosa following a cytochrome-P450-mediated metabolic activation and covalent binding in the Bowman's glands.  相似文献   

9.
S Katz  J Merzel 《Acta anatomica》1977,99(1):58-66
A histotopographic study of the nasal septum mucosa in rats was made using semi-serial sections stained with PAS-hematoxylin, reconstructed in form of maps representing the structure in a sagittal plane. The stratified squamous, respiratory and olfactory epithelia and Masera's organ cover 14.8, 43.6, 41.6 and 1.8%, respectively, of the septal surface (117.1 mm2). In the vestibular region, only ducts of PAS-negative glands of the respiratory region are found, and below the septum there is the infraseptal gland with PAS-negative acini. In the respiratory region, PAS-negative acinous glands form two groups: the superior and the inferior one occupying 10.5 and 1.5%, respectively, of the septal area. PAS-positive acinous glands are in the inferior half of the respiratory region and in a small anteroinferior portion of the olfactory region. Besides goblet cells broadly distributed, the respiratory epithelium presents scattered intraepithelial PAS-positive glands which are concentrated in the anterior portion and close to the nasopharyngeal duct. In the olfactory region prevail Bowman's PAS-positive glands which are also present in the mucosa of Masera's organ, but are not seen in the olfactory mucosa of Jacobson's organ. In the latter, PAS-positive glands are found in the respiratory mucosa. Globular leukocytes, cells of connective tissue origin, are constantly infiltrating the superior regions of the respiratory and olfactory epithelia, being more numerous in female rats.  相似文献   

10.
The luminal surface of the chemosensory epithelia of the main olfactory organ of terrestrial vertebrates is covered by a layer of fluid. The source of this fluid layer varies among vertebrates. Little is known regarding the relative development of the sources of fluid (sustentacular cells and Bowman's glands) in reptiles, especially in gekkotan lizards (despite recent assertions of olfactory speciality). This study examined the extent and morphology of the main olfactory organ in several Australian squamate reptiles, including three species of gekkotans, two species of skinks and one snake species. The olfactory mucosa of two gekkotan species (Christinus marmoratus and Strophurus intermedius) is spread over a large area of the nasal cavity. Additionally, the sustentacular cells of all three gekkotan species contained a comparatively reduced number of secretory granules, in relation to the skinks or snake examined. These observations imply that the gekkotan olfactory system may function differently from that of either skinks or snakes. Similar variation in secretory granule abundance was previously noted between mammalian and non-mammalian olfactory sustentacular cells. The observations in gekkotans suggests that the secretory capacity of the non-mammalian olfactory sustentacular cells show far more variation than initially thought.  相似文献   

11.
The hamster nasal cavity consists of vestibular, non-olfactory and olfactory portions. Much of the non-olfactory nasal cavity surface is lined by cuboidal, stratified cuboidal, and low columnar epithelia, devoid of cilia. Goblet cells and ciliated respiratory epithelium are present over only a small portion of the nasal cavity surface. The largest glandular masses in the hamster nose are the maxillary recess glands, the vomeronasal glands and the lateral nasal gland 1; these three glands contain neutral mucopolysaccharides (PAS-positive). Other nasal glands contain both acidic and neutral mucopolysaccharides; the staining reaction for acidic mucopolysaccharide is stronger in goblet cells and olfactory glands than in the other nasal glands. The ducts which open into the nasal vestibule are the excretory ducts of compound tubuloacinar serous glands. The one major PAS-positive gland whose duct opens into the nasal vestibule is the lateral nasal gland 1. The ducts of the compound tubuloacinar vomeronasal glands open into the lumen of the vomeronasal organ, which is connected to the ventral nasal meatus by means of the vomeronasal duct. The ducts of the branched tubuloacinar maxillary recess glands open into the maxillary recess. Few ducts open into the caudal half of the nasal cavity.  相似文献   

12.
Calcium-activated chloride channels are expressed in chemosensory neurons of the nose and contribute to secretory processes and sensory signal transduction. These channels are thought to be members of the family of anoctamins (alternative name: TMEM16 proteins), which are opened by micromolar concentrations of intracellular Ca2+. Two family members, ANO 1 (TMEM16A) and ANO 2 (TMEM16B), are expressed in the various sensory and respiratory tissues of the nose. We have examined the tissue specificity and sub-cellular localization of these channels in the nasal respiratory epithelium and in the five chemosensory organs of the nose: the main olfactory epithelium, the septal organ of Masera, the vomeronasal organ, the Grueneberg ganglion and the trigeminal system. We have found that the two channels show mutually exclusive expression patterns. ANO 1 is present in the apical membranes of various secretory epithelia in which it is co-localized with the water channel aquaporin 5. It has also been detected in acinar cells and duct cells of subepithelial glands and in the supporting cells of sensory epithelia. In contrast, ANO 2 expression is restricted to chemosensory neurons in which it has been detected in microvillar and ciliary surface structures. The different expression patterns of ANO 1 and ANO 2 have been observed in the olfactory, vomeronasal and respiratory epithelia. No expression has been detected in the Grueneberg ganglion or trigeminal sensory fibers. On the basis of this differential expression, we derive the main functional features of ANO 1 and ANO 2 chloride channels in the nose and suggest their significance for nasal physiology.  相似文献   

13.
14.
Purinoceptor subtypes were localised to various tissue types present within the nasal cavity of the rat, using immunohistochemical methods. P2X3 receptor immunoreactivity was localised in the primary olfactory neurones located both in the olfactory epithelium and vomeronasal organs (VNO) and also on subepithelial nerve fibres in the respiratory region. P2X5 receptor immunoreactivity was found in the squamous, respiratory and olfactory epithelial cells of the rat nasal mucosa. P2X7 receptor immunoreactivity was also expressed in epithelial cells and colocalised with caspase 9 (an apoptotic marker), suggesting an association with apoptosis and epithelial turnover. P2Y1 receptor immunoreactivity was found within the respiratory epithelium and submucosal glandular tissue. P2Y2 receptor immunoreactivity was localised to the mucus-secreting cells within the VNO. The possible functional roles of these receptors are discussed.  相似文献   

15.
The septal organ of Masera (SO) is a small, isolated patch of olfactory epithelium, located in the ventral part of the nasal septum. We investigated in this systematic study the postnatal development of the SO in histological sections of rats at various ages from the day of birth (P1) to P666. The SO-area increases to a maximum at P66-P105, just as the animals reach sexual maturity, and decreases thereafter, significantly however only in males, indicating a limited neurogenetic capacity for regeneration. In contrast, the main olfactory epithelium area continues to expand beyond P300. The modified respiratory epithelium ('zwischen epithelium') separating the SO and the main olfactory epithelium contains a few olfactory neurons up to age P66. Its length increases postnatally so that the SO becomes more ventral to the OE. Although the position of the SO relative to other anatomical landmarks changes with development it is consistently located just posterior to the opening of the nasopalatine duct (NPAL). Thus, a possible function of the SO is in sensing chemicals in fluids entering the mouth by licking and then delivered to the nasal cavity via the NPAL; therefore the SO may be involved in social/sexual behavior as is the vomeronasal organ (VNO). We suggest that the SO is a separate accessory olfactory organ with properties somewhat different from both OE and VNO and may exist only in species where the NPAL does not open into the VNO.  相似文献   

16.
Summary Immunohistochemical examination for neuronspecific enolase (NSE), neurofilament protein (NFP), and S-100 protein was performed in the olfactory mucosa of human fetuses. NSE and NFP immunoreactivities were found in the olfactory receptor cells, while no S-100 immunoreactive cells were recognized within the olfactory epithelium. The anti-NSE serum stained various types of nerve bundles in the lamina propria mucosae; a population of the NSE-positive nerve bundles was also immunoreactive for NFP. The anti-S-100 serum clearly demonstrated Schwann cells associated with the nerve fibers in the lamina propria mucosae. These findings 1) suggest a possibility of NSE and NFP as new marker substances for olfactory cells and 2) indicate that immunohistochemistry is a useful tool to analyse the cellular components of the olfactory organs in normal and pathological conditions.  相似文献   

17.
Binding sites of Griffonia simplicifolia I-B4 isolectin (GS-I-B4), which recognizes terminal α-galactose residues of glycoconjugates, were examined in the juxtaluminal region of the rat vomeronasal sensory epithelium and its associated glands of the vomeronasal organ, using a lectin cytochemical technique. Lowicryl K4M-embedded ultra-thin sections, which were treated successively with biotinylated GS-I-B4 and streptavidin-conjugated 10 nm colloidal gold particles, were observed under a transmission electron microscope. Colloidal gold particles, which reflect the presence of terminal α-galactose-containing glycoconjugates, were present in vomeronasal receptor neurons in the sensory epithelium and secretory granules of acinar cells of associated glands of the epithelium. Quantitative analysis demonstrated that the density of colloidal gold particles associated with sensory cell microvilli that projected from dendritic endings of vomeronasal neurons was considerably higher than that of microvilli that projected from neighboring sustentacular cells. The same was true for the apical cytoplasms of these cells just below the microvilli. These results suggest that of the sensory microvilli and dendritic endings contained a much larger amount of the α-galactose-containing glycoconjugates, compared with those in sustentacular microvilli. Further, biochemical analyses demonstrated several vomeronasal organ-specific glycoproteins with terminal α-galactose.  相似文献   

18.
Topical application of the odorants guaiacol (10(-3) mol/l, 1-30 min) and 2-isobutyl-3-methoxypyrazine (IBMP, 10(-5)-10(-3) mol/l, 15 min) caused time- and concentration-dependent reductions in the secretory granule content of acinar cells of the superficial Bowman's glands (sBG) and moderate to extensive vacuolation in acinar cells of sBG and deep olfactory glands (dG). Topical application of 9.8 mg/ml scopolamine 10 min before 10(-4) mol/l IBMP significantly reduced the amount of secretory granule depletion from sBG compared to that seen with IBMP alone and resulted in less extensive vacuolation in sBG and dG acinar cells. The i.p. injection of 42 mg/kg propranolol 10 min before topical application of 10(-4) mol/l IBMP had no effect on the action of IBMP. Guaiacol and IBMP also had time- and concentration-dependent effects on the secretory activity of sustentacular cells in the olfactory epithelium. The protrusion of secretory material into the mucociliary matrix that covers the epithelial surface and vacuolation within the secretory material resulted from odorant application. Scopolamine and propranolol had no effects on the action of IBMP on sustentacular cell secretory activity. When applied in the vapor phase, guaiacol elicited action potentials recorded from individual olfactory receptor neurons; the impulse frequency was concentration-dependent and showed tonic and phasic components when the duration of stimulation was varied. Low to moderate concentrations of IBMP delivered in the vapor phase evoked monophasic negative slow voltage transients recorded from the surface of the olfactory mucosa. The amplitudes of these transients increased with increasing stimulus concentrations. Higher concentrations or longer stimulus durations evoked longer-latency positive-voltage generating processes and negative afterpotentials. The properties of the electrophysiological responses to both odorants were characteristic of responses evoked by a wide variety of 'typical' odorants.  相似文献   

19.
The vomeronasal cavity in adult humans   总被引:3,自引:0,他引:3  
We observed the surface of the anterior part of the nasal septum of living subjects using an endoscope. In approximately 13% of 1842 patients without pathology of the septum, the vomeronasal pit was clearly observed on each side of the septum, and in 26% it was observed only on one side. The remaining observations indicated either the presence of putative pits or no visible evidence of a pit. However, repetitive observations on 764 subjects depicted changes over time, from nothing visible to well-defined pits and vice versa. Based on 130 subjects observed at least four times, we estimate that approximately 73% of the population exhibits at least one clearly defined pit on some days. By computer tomography, the vomeronasal cavities were located at the base of the most anterior part of the nasal septum. Histological studies indicated that the vomeronasal cavities consisted of a pit generally connected to a duct extending in a posterior direction under the nasal mucosa. Many glands were present around the duct, which contained mucus. There was no sign of the pumping elements found in other mammalian species. Most cells in the vomeronasal epithelium expressed keratin, a protein not expressed by olfactory neurons. Vomeronasal epithelial cells were not stained by an antibody against the olfactory marker protein, a protein expressed in vomeronasal receptor neurons of other mammals. Moreover, an antibody against protein S100, expressed in Schwann cells, failed to reveal the existence of vomeronasal nerve bundles that would indicate a neural connection with the brain. Positive staining was obtained with the same antibodies on specimens of human olfactory epithelium. The lack of neurons and vomeronasal nerve bundles, together with the results of other studies, suggests that the vomeronasal epithelium, unlike in other mammals, is not a sensory organ in adult humans.  相似文献   

20.
The drug-metabolizing enzymes of olfactory and respiratory epithelium of cattle were determined. The data of nasal tissues were compared to those of bovine liver. Both oxidative and nonoxidative enzyme activities were investigated. Many compounds including testosterone were used as substrates for the P450-dependent monooxygenase activities. The results demonstrated that the P450 content and all the activities assayed including reduced nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase were much higher in the olfactory than in the respiratory mucosa and for some activities (hexamethyl-phosphoramide and dimethylnitrosamine N-demethylase, aniline hydroxylase, and ethoxycoumarin O-deethylase) the values in the olfactory tissue were even markedly higher than those of liver. Also the activities of some nonoxidative enzymes such as glutathione S-transferase, uridine 5'-diphosphate (UDP)-glucuronyl-transferase, and epoxide hydrolase were higher in the olfactory than in the respiratory mucosa but lower than in liver. The results taken together suggest that the olfactory and respiratory epithelium of cattle, which contain in addition to a wide array of nonoxidative enzymes multiple forms of P450, can be useful and easily available tissues to study the biotransformation processes of odorants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号