首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The aim of this study was to explore the possible participation of cardiac renin-angiotensin system (RAS) in the ischemia-reperfusion induced changes in heart function as well as Ca2+-handling activities and gene expression of cardiac sarcoplasmic reticulum (SR) proteins. The isolated rat hearts, treated for 10 min without and with 30 M captopril or 100 M losartan, were subjected to 30 min ischemia followed by reperfusion for 60 min and processed for the measurement of SR function and gene expression. Attenuated recovery of the left ventricular developed pressure (LVDP) upon reperfusion of the ischemic heart was accompanied by a marked reduction in SR Ca2+-pump ATPase, Ca2+-uptake and Ca2+-release activities. Northern blot analysis revealed that mRNA levels for SR Ca2+-handling proteins such as Ca2+-pump ATPase (SERCA2a), ryanodine receptor, calsequestrin and phospholamban were decreased in the ischemia-reperfused heart as compared with the non-ischemic control. Treatment with captopril improved the recovery of LVDP as well as SR Ca2+-pump ATPase and Ca2+-uptake activities in the postischemic hearts but had no effect on changes in Ca2+-release activity due to ischemic-reperfusion. Losartan neither affected the changes in contractile function nor modified alterations in SR Ca2+-handling activities. The ischemia-reperfusion induced decrease in mRNA levels for SR Ca2+-handling proteins were not affected by treatment with captopril or losartan. The results suggest that the improvement of cardiac function in the ischemic-reperfused heart by captopril is associated with the preservation of SR Ca2+-pump activities; however, it is unlikely that this action of captopril is mediated through the modification of cardiac RAS. Furthermore, cardiac RAS does not appear to contribute towards the ischemia-reperfusion induced changes in gene expression for SR Ca2+-handling proteins.  相似文献   

2.
Although activation of the renin-angiotensin system (RAS) is known to produce ventricular remodeling and congestive heart failure (CHF), its role in inducing changes in the sarcoplasmic reticulum (SR) protein and gene expression in CHF is not fully understood. In this study, CHF was induced in rats by ligation of the left coronary artery for 3 weeks and then the animals were treated orally with or without an angiotensin converting enzyme inhibitor, enalapril (10 mg/kg/day) or an angiotensin II receptor antagonist, losartan (20 mg/kg/day) for 4 weeks. Sham-operated animals were used as control. The animals were hemodynamically assessed and protein content as well as gene expression of SR Ca2+-release channel (ryanodine receptor, RYR), Ca2+-pump ATPase (SERCA2), phospholamban (PLB) and calsequestrin (CQS) were determined in the left ventricle (LV). The infarcted animals showed cardiac hypertrophy, lung congestion, depression in LV +dP/dt and –dP/dt, as well as increase in LV end diastolic pressure. Both protein content and mRNA levels for RYR, SERCA2 and PLB were decreased without any changes in CQS in the failing heart. These alterations in LV function as well as SR protein and gene expression in CHF were partially prevented by treatment with enalapril or losartan. The results suggest that partial improvement in LV function by enalapril and losartan treatments may be due to partial prevention of changes in SR protein and gene expression in CHF and that these effects may be due to blockade of the RAS.  相似文献   

3.
In order to examine the relationship between heart dysfunction and subcellular abnormalities as well as molecular mechanisms during the development of diabetes, we studied changes in cardiac performance, myofibrillar as well as sarcoplasmic reticular (SR) activities, and cardiac gene expression at different time intervals upon inducing diabetes in rats by an injection of alloxan (65 mg/kg; i.v.). Cardiac dysfunction was associated with a depression in myofibrillar Ca2+-stimulated ATPase and changes in myosin isozyme composition at 2-12 weeks of inducing diabetes. A reduction in SR Ca2+-uptake and Ca2+-pump (SERCA2) activities was evident at 10 days to 12 weeks of inducing diabetes. Alterations in cardiac function during 2-12 weeks of diabetes show a linear relationship with changes in myofibrils and SR membranes. Furthermore, alterations in cardiac function as well as myofibrillar and SR activities in 4 week diabetic animals were normalized upon treatment with insulin for 4 weeks. The steady-state mRNA abundance for -myosin heavy chain in the heart was decreased at 2 and 3 weeks but was unchanged at 5 and 6 weeks, whereas mRNA levels for -myosin heavy chain remained elevated during 2-6 weeks after inducing diabetes. SERCA2 mRNA abundance in diabetic heart was significantly increased at 3 and 5 weeks but was unaltered at 2 and 6 weeks. These results support the view that heart dysfunction in diabetes may be a consequence of myofibrillar and SR abnormalities; however, defects in myofibrillar proteins, unlike those in the SR membranes, appear to be due to changes in their gene expression.  相似文献   

4.
This study tested the reversal of subcellular remodelling in heart failure due to myocardial infarction (MI) upon treatment with losartan, an angiotensin II receptor antagonist. Twelve weeks after inducing MI, rats were treated with or without losartan (20 mg/kg; daily) for 8 weeks and assessed for cardiac function, cardiac remodelling, subcellular alterations and plasma catecholamines. Cardiac hypertrophy and lung congestion in 20 weeks MI‐induced heart failure were associated with increases in plasma catecholamine levels. Haemodynamic examination revealed depressed cardiac function, whereas echocardiographic analysis showed impaired cardiac performance and marked increases in left ventricle wall thickness and chamber dilatation at 20 weeks of inducing MI. These changes in cardiac function, cardiac remodelling and plasma dopamine levels in heart failure were partially or fully reversed by losartan. Sarcoplasmic reticular (SR) Ca2+‐pump activity and protein expression, protein and gene expression for phospholamban, as well as myofibrillar (MF) Ca2+‐stimulated ATPase activity and α‐myosin heavy chain mRNA levels were depressed, whereas β‐myosin heavy chain expression was increased in failing hearts; these alterations were partially reversed by losartan. Although SR Ca2+‐release activity and mRNA levels for SR Ca2+‐pump were decreased in failing heart, these changes were not reversed upon losartan treatment; no changes in mRNA levels for SR Ca2+‐release channels were observed in untreated or treated heart failure. These results suggest that the partial improvement of cardiac performance in heart failure due to MI by losartan treatment is associated with partial reversal of cardiac remodelling as well as partial recovery of SR and MF functions.  相似文献   

5.
Although in vitro studies have shown that oxygen free radicals depress the sarcolemmal Ca2+-pump activity and thereby may cause the occurrence of intracellular Ca2+ overload for the genesis of contractile failure, the exact relationship between changes in sarcolemmal Ca2+-pump activity and cardiac function due to these radicals is not clear. In this study we examined the effects of oxygen radicals on sarcolemmal Ca2+ uptake and Ca2+-stimulated ATPase activities as well as contractile force development by employing isolated rat heart preparations. When hearts were perfused with medium containing xanthine plus xanthine oxidase, the sarcolemmal Ca2+-stimulated ATPase activity and ATP-dependent Ca2+ accumulation were depressed within 1 min whereas the developed contractile force, rate of contraction and rate of relaxation were increased at 1 min and decreased over 3–20 min of perfusion. The resting tension started increasing at 2 min of perfusion with xanthine plus xanthine oxidase. Catalase showed protective effects against these alterations in heart function and sarcolemmal Ca2+-pump activities upon perfusion with xanthine plus xanthine oxidase whereas superoxide dismutase did not exert such effects. The combination of catalase and superoxide dismutase did not produce greater effects in comparison to catalase alone. These results are consistent with the view that the depression of heart sarcolemmal Ca2+ pump activities may result in myocardial dysfunction due to the formation of hydrogen peroxide and/or hydroxyl radicals upon perfusing the hearts with xanthine plus xanthine oxidase.  相似文献   

6.
Cardiomyocytes from failing hearts exhibit spatially nonuniform or dyssynchronous sarcoplasmic reticulum (SR) Ca2+ release. We investigated the contribution of action potential (AP) prolongation in mice with congestive heart failure (CHF) after myocardial infarction. AP recordings from CHF and control myocytes were included in a computational model of the dyad, which predicted more dyssynchronous ryanodine receptor opening during stimulation with the CHF AP. This prediction was confirmed in cardiomyocyte experiments, when cells were alternately stimulated by control and CHF AP voltage-clamp waveforms. However, when a train of like APs was used as the voltage stimulus, the control and CHF AP produced a similar Ca2+ release pattern. In this steady-state condition, greater integrated Ca2+ entry during the CHF AP lead to increased SR Ca2+ content. A resulting increase in ryanodine receptor sensitivity synchronized SR Ca2+ release in the mathematical model, thus offsetting the desynchronizing effects of reduced driving force for Ca2+ entry. A modest nondyssynchronous prolongation of Ca2+ release was nevertheless observed during the steady-state CHF AP, which contributed to increased time-to-peak measurements for Ca2+ transients in failing cells. Thus, dyssynchronous Ca2+ release in failing mouse myocytes does not result from electrical remodeling, but rather other alterations such as T-tubule reorganization.  相似文献   

7.
Heart failure is one of the leading causes of sudden death in developed countries. While current therapies are mostly aimed at mitigating associated symptoms, novel therapies targeting the subcellular mechanisms underlying heart failure are emerging. Failing hearts are characterized by reduced contractile properties caused by impaired Ca2+ cycling between the sarcoplasm and sarcoplasmic reticulum (SR). Sarcoplasmic/endoplasmic reticulum Ca2+ATPase 2a (SERCA2a) mediates Ca2+ reuptake into the SR in cardiomyocytes. Of note, the expression level and/or activity of SERCA2a, translating to the quantity of SR Ca2+ uptake, are significantly reduced in failing hearts. Normalization of the SERCA2a expression level by gene delivery has been shown to restore hampered cardiac functions and ameliorate associated symptoms in pre-clinical as well as clinical studies. SERCA2a activity can be regulated at multiple levels of a signaling cascade comprised of phospholamban, protein phosphatase 1, inhibitor-1, and PKCα. SERCA2 activity is also regulated by post-translational modifications including SUMOylation and acetylation. In this review, we will highlight the molecular mechanisms underlying the regulation of SERCA2a activity and the potential therapeutic modalities for the treatment of heart failure. [BMB Reports 2013; 46(5): 237-243]  相似文献   

8.
Although it is generally accepted that the efficacy of imidapril, an angiotensin-converting enzyme inhibitor, in congestive heart failure (CHF) is due to improvement of hemodynamic parameters, the significance of its effect on gene expression for sarcolemma (SL) and sarcoplasmic reticulum (SR) proteins has not been fully understood. In this study, we examined the effects of long-term treatment of imidapril on mortality, cardiac function, and gene expression for SL Na+/K+ ATPase and Na+ -Ca2+ exchanger as well as SR Ca2+ pump ATPase, Ca2+ release channel (ryanodine receptor), phospholamban, and calsequestrin in CHF due to myocardial infarction. Heart failure subsequent to myocardial infarction was induced by occluding the left coronary artery in rats, and treatment with imidapril (1 mg.kg(-1).day(-1)) was started orally at the end of 3 weeks after surgery and continued for 37 weeks. The animals were assessed hemodynamically and the heart and lung were examined morphologically. Some hearts were immediately frozen at -70 degrees C for the isolation of RNA as well as SL and SR membranes. The mortality of imidapril-treated animals due to heart failure was 31% whereas that of the untreated heart failure group was 64%. Imidapril treatment improved cardiac performance, attenuated cardiac remodeling, and reduced morphological changes in the heart and lung. The depressed SL Na+/K+ ATPase and increased SL Na+-Ca2+ exchange activities as well as reduced SR Ca2+ pump and SR Ca2+ release activities in the failing hearts were partially prevented by imidapril. Although changes in gene expression for SL Na+/K+ ATPase isoforms as well as Na+-Ca2+ exchanger and SR phospholamban were attenuated by treatments with imidapril, no alterations in mRNA levels for SR Ca2+ pump proteins and Ca2+ release channels were seen in the untreated or treated rats with heart failure. These results suggest that the beneficial effects of imidapril in CHF may be due to improvements in cardiac performance and changes in SL gene expression.  相似文献   

9.
To determine the sequence of alterations in cardiac sarcolemmal (SL) Na+-Ca2+ exchange, Na+-K+ ATPase and Ca2+-transport activities during the development of diabetes, rats were made diabetic by an intravenous injection of 65 mg/kg alloxan. SL membranes were prepared from control and experimental hearts 1-12 weeks after induction of diabetes. A separate group of 4 week diabetic animals were injected with insulin (3 U/day) for an additional 4 weeks. Both Na+-K+ ATPase and Ca2+-stimulated ATPase activities were depressed as early as 10 days after alloxan administration; Mg2+ ATPase activity was not depressed throughout the experimental periods. Both Na+-Ca2+ exchange and ATP-dependent Ca2+-uptake activities were depressed in diabetic hearts 2 weeks after diabetes induction. These defects in SL Na+-K+ ATPase and Ca-transport activities were normalized upon treatment of diabetic animals with insulin. Northern blot analysis was employed to compare the relative mRNA abundances of --subunit of Na+-K+ ATPase and Na+-Ca2+ exchanger in diabetic ventricular tissue vs. control samples. At 6 weeks after alloxan administration, a significant depression of the Na+-K+ ATPase -- subunit mRNA was noted in diabetic heart. A significant increase in the Na+-Ca2+ exchanger mRNA abundance was observed at 3 weeks which returned to control by 5 weeks. The results from the alloxan-rat model of diabetes support the view that SL membrane abnormalities in Na+-K+ ATPase, Na+Ca2+ exchange and Ca2+-pump activities may lead to the occurrence of intracellular Ca2+ overload during the development of diabetic cardiomyopathy but these defects may not be the consequence of depressed expression of genes specific for those SL proteins.  相似文献   

10.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg–1 i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart. (Mol Cell Biochem 261: 245–249, 2004)  相似文献   

11.
Oxidized low density lipoprotein (oxLDL) has been identified as a potentially important atherogenic factor. Atherosclerosis is characterized by the accumulation of lipid and calcium in the vascular wall. OxLDL plays a significant role in altering calcium homeostasis within different cell types. In our previous study, chronic treatment of vascular smooth muscle cells (VSMC) with oxLDL depressed Ca2+ i homeostasis and altered two Ca2+ release mechanisms in these cells (IP3 and ryanodine sensitive channels). The purpose of the present study was to further define the effects of chronic treatment with oxLDL on the smooth muscle sarcoplasmic reticulum (SR) Ca2+ pump. One of the primary Ca2+ uptake mechanisms in VSMC is through the SERCA2 ATPase calcium pump in the sarcoplasmic reticulum. VSMC were chronically treated with 0.005-0.1 mg/ml oxLDL for up to 6 days in culture. Cells treated with oxLDL showed a significant increase in the total SERCA2 ATPase content. These changes were observed on both Western blot and immunocytochemical analysis. This increase in SERCA2 ATPase is in striking contrast to a significant decrease in the density of IP3 and ryanodine receptors in VSMC as the result of chronic treatment with oxLDL. This response may suggest a specific adaptive mechanism that the pump undergoes to attempt to maintain Ca2+ homeostasis in VSMC chronically exposed to atherogenic oxLDL.  相似文献   

12.
In order to identify defects in Na+-Ca2+ exchange and Ca2+-pump systems in cardiomyopathic hearts, the activities of sarcolemmal Na+-dependent Ca2+ uptake, Na+-induced Ca2+ release, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase were examined by employing cardiomyopathic hamsters (UM-X7.1) and catecholamine-induced cardiomyopathy produced by injecting isoproterenol into rats. The rates of Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase activities of sarcolemmal vesicles from genetically-linked cardiomyopathic as well as catecholamine-induced cardiomyopathic hearts were decreased without any changes in Na+-induced Ca2+-release. Similar results were obtained in Ca2+-paradox when isolated rat hearts were perfused for 5 min with a medium containing 1.25 mM Ca2+ following a 5 min perfusion with Ca2+-free medium. Although a 2 min reperfusion of the Ca2+-free perfused hearts depressed sarcolemmal Ca2+-pump activities without any changes in Na+-induced Ca2+-release, Na+-dependent Ca2+ uptake was increased. These results indicate that alterations in the sarcolemmal Ca2+-efflux mechanisms may play an important role in cardiomyopathies associated with the development of intracellular Ca2+ overload.  相似文献   

13.
Postinfarction left ventricular remodeling leads to the functional decline of the left ventricle (LV). Since dihydropyridine receptor (DHPR), ryanodine receptor (RyR2), and sarco-endoplasmic reticulum (SR) Ca2+-ATPase2 (SERCA2a) play a major role in the contractility of the heart, the aim of our study was to evaluate the time course of changes in the expression of these proteins 1 day, 2 weeks and 4 weeks after myocardial infarction (MI). Myocardial infarction was produced by ligation of left anterior descending coronary artery of the rat. Transthoracic echocardiography was performed to characterize structural and functional changes after MI. To evaluate protein mRNA levels and the relative amount of proteins, real-time quantitative RT-PCR and Western blotting were used. LV ejection fraction and fractional shortening decreased significantly during the 4-week follow-up period (P < 0.001). Typical features of LV remodeling after MI were seen, with a decrease in anterior wall thickness (P < 0.001) and dilatation of the LV (P < 0.001). Expression of DHPR and RyR2 mRNAs decreased and Serca2a mRNA tended to decrease 1 day after MI (P < 0.001, P < 0.01 and P = 0.06, respectively), followed by recovery of the expression during the next 4 weeks. In the infarcted hearts the quantities of SERCA2 proteins in the LV were significantly decreased at the time of 4 weeks. In conclusion, MI was associated with transient decrease in the expression of the DHPR and RyR2 mRNAs and a reduced quantity of SERCA2 proteins in the LV. Since they have a key role in the contraction of the heart, changes in the expression of these proteins may be important regulators of LV systolic function after MI.  相似文献   

14.
The Ca2+ content in the sarcoplasmic reticulum (SR) determines the amount of Ca2+ released, thereby regulating the magnitude of Ca2+ transient and contraction in cardiac muscle. The Ca2+ content in the SR is known to be regulated by two factors: the activity of the Ca2+ pump (SERCA) and Ca2+ leak through the ryanodine receptor (RyR). However, the direct relationship between the SERCA activity and Ca2+ leak has not been fully investigated in the heart. In the present study, we evaluated the role of the SERCA activity in Ca2+ leak from the SR using a novel saponin-skinned method combined with transgenic mouse models in which the SERCA activity was genetically modulated. In the SERCA overexpression mice, the Ca2+ uptake in the SR was significantly increased and the Ca2+ transient was markedly increased. However, Ca2+ leak from the SR did not change significantly. In mice with overexpression of a negative regulator of SERCA, sarcolipin, the Ca2+ uptake by the SR was significantly decreased and the Ca2+ transient was markedly decreased. Again, Ca2+ leak from the SR did not change significantly. In conclusion, the selective modulation of the SERCA activity modulates Ca2+ uptake, although it does not change Ca2+ leak from the SR.  相似文献   

15.
The Ca2+ transport ATPase (SERCA) of sarcoplasmic reticulum (SR) plays an important role in muscle cytosolic signaling, as it stores Ca2+ in intracellular membrane bound compartments, thereby lowering cytosolic Ca2+ to induce relaxation. The stored Ca2+ is in turn released upon membrane excitation to trigger muscle contraction. SERCA is activated by high affinity binding of cytosolic Ca2+, whereupon ATP is utilized by formation of a phosphoenzyme intermediate, which undergoes protein conformational transitions yielding reduced affinity and vectorial translocation of bound Ca2+. We review here biochemical and biophysical evidence demonstrating that release of bound Ca2+ into the lumen of SR requires Ca2+/H+ exchange at the low affinity Ca2+ sites. Rise of lumenal Ca2+ above its dissociation constant from low affinity sites, or reduction of the H+ concentration by high pH, prevent Ca2+/H+ exchange. Under these conditions Ca2+ release into the lumen of SR is bypassed, and hydrolytic cleavage of phosphoenzyme may yield uncoupled ATPase cycles. We clarify how such Ca2+pump slippage does not occur within the time length of muscle twitches, but under special conditions and in special cells may contribute to thermogenesis.  相似文献   

16.
17.
Heart failure is common among the elderly and an alteration in myocardial Ca2+ transport is believed to be involved in its depressed contractile performance. Although ATP-dependent sarcoplasmic reticular (SR) Ca2+ transport has been reported to decrease in old hearts, virtually nothing appears to be known about the Ca2+ pump activity of SR in aging myocardium in the presence of calmodulin, one of its endogenous activators. In this study, the activity of the Ca2+ pump of aging cardiac SR was assessed in the presence of this endogenous stimulator. This assessment was therefore designed to give additional information about the status of this enzyme in old hearts. Male Sprague-Dawley rats were used and were divided into 3 groups: young (4–6 months old); middle-aged (15–17 months old) and old age (24–25 months old). Purified SR membranes were isolated from ventricular tissues. ATP-dependent Ca2+ accumulation by membrane vesicles of middle-aged and old hearts was significantly depressed in comparison to young hearts at all Ca2+ concentrations employed in the absence and presence of calmodulin. The activity of this Ca2+ transporter was similar in middle-aged and old hearts even in the presence of calmodulin. These results suggest that the activity of the Ca2+ pump in SR of aging hearts is depressed even in the presence of calmodulin.C. E. Heyliger is a Scholar of the British Columbia Heart Foundation.  相似文献   

18.
The sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA 1) is able to handle the energy derived from ATP hydrolysis in such a way as to determine the parcel of energy that is used for Ca2+ transport and the fraction that is converted into heat. In this work we measured the heat production by SERCA 1 in the two sarcoplasmic reticulum (SR) fractions: the light fraction (LSR), which is enriched in SERCA and the heavy fraction (HSR), which contains both the SERCA and the ryanodine Ca2+ channel. We verified that although HSR cleaved ATP at faster rate than LSR, the amount of heat released during ATP hydrolysis by HSR was smaller than that measured by LSR. Consequently, the amount of heat released per mol of ATP cleaved (ΔHcal) by HSR was lower compared to LSR. In HSR, the addition of 5 mM Mg2+ or ruthenium red, conditions that close the ryanodine Ca2+ channel, promoted a decrease in the ATPase activity, but the amount of heat released during ATP hydrolysis remained practically the same. In this condition, the ΔHcal values of ATP hydrolysis increased significantly. Neither Mg2+ nor ruthenium red had effect on LSR. Thus, we conclude that heat production by SERCA 1 depends on the region of SR in which the enzyme is inserted and that in HSR, the ΔHcal of ATP hydrolysis by SERCA 1 depends on whether the ryanodine Ca2+ channel is opened or closed.  相似文献   

19.
We investigated the effects of two purported calcium sensitizing agents, MCI-154 and DPI 201–106, and a known calcium sensitizer caffeine on Mg-ATPase (myofibrillar ATPase) and myosin ATPase activity of left ventricular myofibrils isolated from non-failing, idiopathic (IDCM) and ischemic cardiomyopathic (ISCM) human hearts (i.e. failing hearts). The myofibrillar ATPase activity of non-failing myofibrils was higher than that of diseased myofibrils. MCI-154 increased myofibrillar ATPase Ca2+ sensitivity in myofibrils from non-failing and failing human hearts. Effects of caffeine similarly increased Ca2+ sensitivity. Effects of DPI 201–106 were, however, different. Only at the 10–6 M concentration was a significant increase in myofibrillar ATPase calcium sensitivity seen in myofibrils from non-failing human hearts. In contrast, in myofibrils from failing hearts, DPI 201–106 caused a concentration-dependent increase in myofibrillar ATPase Ca2+ sensitivity. Myosin ATPase activity in failing myocardium was also decreased. In the presence of MCI-154, myosin ATPase activity increased by 11, 19, and 24% for non-failing, IDCM, and ISCM hearts, respectively. DPI 201–106 caused an increase in the enzymatic activity of less than 5% for all preparations, and caffeine induced an increase of 4, 11, and 10% in non-failing, IDCM and ISCM hearts, respectively. The mechanism of restoring the myofibrillar Ca2+ sensitivity and myosin enzymatic activity in diseased human hearts is most likely due to enhancement of the Ca2+ activation of the contractile apparatus induced by these agents. We propose that myosin light chain-related regulation may play a complementary role to the troponin-related regulation of myocardial contractility.  相似文献   

20.
Sarcoplasmic reticulum contains the internal Ca2+ store in smooth muscle cells and its lumen appears to be a continuum that lacks diffusion barriers. Accordingly, the free luminal Ca2+ level is the same all throughout the SR; however, whether the Ca2+ buffer capacity is the same in all the SR is unknown. We have estimated indirectly the luminal Ca2+ buffer capacity of the SR by comparing the reduction in SR Ca2+ levels with the corresponding increase in [Ca2+]i during activation of either IP3Rs with carbachol or RyRs with caffeine, in smooth muscle cells from guinea pig urinary bladder. We have determined that carbachol-sensitive SR has a 2.4 times larger Ca2+ buffer capacity than caffeine-sensitive SR. Rapid inhibition of SERCA pumps with thapsigargin revealed that this pump activity accounts for 80% and 60% of the Ca2+ buffer capacities of carbachol- and caffeine-sensitive SR, respectively. Moreover, the Ca2+ buffer capacity of carbachol-sensitive SR was similar to caffeine-sensitive SR when SERCA pumps were inhibited. Similar rates of Ca2+ replenishments suggest similar levels of SERCA pump activities for either carbachol- or caffeine-sensitive SR. Paired pulses of caffeine, in conditions of low Ca2+ influx, indicate the relevance of luminal SR Ca2+ buffer capacity in the [Ca2+]i response. To further study the importance of luminal SR Ca2+ buffer capacity in the release process we used low levels of heparin to partially inhibit IP3Rs. This condition revealed carbachol-induced transient increase of luminal SR Ca2+ levels provided that SERCA pumps were active. It thus appears that SERCA pump activity keeps the luminal SR Ca2+-binding proteins in the high-capacity, low-affinity conformation, particularly for IP3R-mediated Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号