首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alpha-chain of the IL-15R (IL-15Ralpha) serves as the specific, high-affinity receptor for IL-15. It is expressed by lymphoid and nonlymphoid cells, including B cell lymphoma lines. In this study, we have further explored IL-15Ralpha-mediated signaling in activated primary B cells and in Raji cells, a human B-lymphoblastoid cell line which expresses the IL-15Ralpha and IL-2Rgamma chains, but lacks the IL-2Rbeta chain. Stimulation of Raji cells with IL-15 induces their proliferation and rescues them from C2-ceramide-induced apoptosis. By immunoprecipitation and Western blotting, we show that treatment of Raji cells and activated primary B cells with IL-15 induces coprecipitation of Syk kinase with the IL-15Ralpha chain. Upon association, the activated Syk kinase phosphorylates the IL-15Ralpha chain as well as phospholipase Cgamma, which coprecipitates with Syk. Furthermore, transfection of Raji cells with stem-loop Syk antisense oligonucleotides prevents IL-15Ralpha and phospholipase Cgamma phosphorylation as well as the inhibition of apoptosis by IL-15. Mutation of a defined region of the intracellular signaling portion of IL-15Ralpha (Tyr227) abrogates both the IL-15Ralpha/Syk association and IL-15Ralpha phosphorylation. Taken together, this suggests that Syk kinase physically and functionally associates with the IL-15Ralpha chain in B cells and that Syk plays a key role in mediating IL-15-induced signal transduction, thus accounting for the distinct functional consequences of IL-15 vs IL-2 binding to B cells.  相似文献   

2.
3.
4.
E Bien  A Balcerska 《Biomarkers》2008,13(1):1-26
Cancer growth and development is associated with the stimulation of the innate immune system, including enhanced interleukin 2 receptor (IL-2R) expression in immune cells and its shedding into the circulation in a soluble form of sIL-2Ralpha. In most haematological malignancies, including different types of leukaemias and lymphomas, sIL-2Ralpha has been found to be released directly from the surface of neoplastic cells thus reflecting the tumour bulk, turnover and activity. Several studies have proved that not only lymphoid cancer cells, but also some non-lymphoid cancer cells, express IL-2R on their surface. They include malignant melanoma and carcinomas of the kidney, head and neck, oesophagus and lung. It is suggested that in most malignant solid tumours, elevated levels of sIL-2Ralpha are likely to be the product of normal peripheral mononuclear cells activated in response to the neoplasm's growth or that they are released from activated lymphoid cells infiltrating neoplastic tissues. This latter hypothesis has been proved by discovering the high expression of CD25 on the cell surface of most of these cells. Although the precise source and biological role of sIL-2Ralpha has not been clarified definitively, pretreatment serum levels of sIL-2Ralpha have been shown to reflect the activity, advancement and biological aggressiveness of many types of cancer in adults and children as well as to correlate with prognosis and overall survival. The possibility of enriching the diagnostic tools of oncologists with a new biochemical marker of activity of neoplasms resulted in numerous studies and reports concerning the clinical usefulness of sIL-2Ralpha measurements in adult and, less frequently, in paediatric malignancies. This article presents the actual knowledge concerning the structure, source and biological function of sIL-2Ralpha in patients with haematological and non-haematological malignancies. The authors review the published data on clinical applicability of soluble IL-2Ralpha determination in terms of diagnostics, prognosis and treatment monitoring of particular types of malignant disorders both in adults and in children. They also provide an insight into the clinical usefulness of sLL-2Ralpha-blocking antibodies in patients with cancer, and in those who reject organ transplants, develop graft-versus-host disease after allogeneic bone marrow transplantation and are affected with autoimmune disorders.  相似文献   

5.
IL-7 is critical for the development and survival of T cells. Recently, we found two subsets of human CD8+ T cells expressing IL-7Ralpha(high) and IL-7Ralpha(low) with different cell survival responses to IL-7. Although these CD8+ T cell subsets have differential IL-7Ralpha gene expression, the mechanism for this is unknown. DNA methylation is an important gene regulatory mechanism and is associated with the inactivation of gene expression. Thus, we investigated a role for DNA methylation in differentially regulating IL-7Ralpha gene expression in human CD8+ T cells and Jurkat T cells. IL-7Ralpha(high)CD8+ T cells had decreased methylation in the IL-7Ralpha gene promoter compared with IL-7Ralpha(low)CD8+ T cells and Jurkat T cells with low levels of IL-7Ralpha. Treating Jurkat T cells with 5-aza-2'-deoxycytidine, which reduced DNA methylation, increased IL-7Ralpha expression. Plus, the unmethylated IL-7Ralpha gene promoter construct had higher levels of promoter activity than the methylated one as measured by a luciferase reporter assay. These findings suggest that DNA methylation is involved in regulating IL-7Ralpha expression in T cells via affecting IL-7Ralpha gene promoter activity, and that the methylation of this gene promoter could be a potential target for modifying IL-7-mediated T cell development and survival.  相似文献   

6.
7.
Highly effective and attenuated dose schedules are good regimens for drug research and development. Combination chemotherapy is a good strategy in cancer therapy. We evaluated the antitumour effects of dihydroberberine combined with sunitinib (DCS) on the human non‐small cell lung cancer cell lines (NSCLC), A549, NCI‐H460, and NCI‐H1299 in vitro and in vivo. DCS showed synergic effects on NCI‐H460 cell proliferation, colony formation and transplantable tumour growth, which suggested dihydroberberine increases the sensitivity of lung carcinoma to sunitinib. Further studies indicated that DCS down‐regulated phosphorylation of JNK, p38, and NF‐κB in NCI‐H460 cells and tumours and suppressed the IκB and COX‐2 expression. In addition, DCS reduced the secretion of the pro‐inflammatory cytokine, interleukin‐1 (IL‐1), in tumours. Inhibition of p38 activation by DCS was a likely contributing factor in IL‐1 and COX‐2 down‐regulation. Consistent with these results, a genomewide microarray analysis found that DCS induced the expression of cell cycle signal molecules that are known to be affected by JNK and p38. The change of cell cycle, in turn, led to down‐regulation of JNK and p38, and further reduced IL‐1 secretion. Collectively, these findings highlight potential molecular mechanisms of DCS chemotherapeutic activity and suggest that DCS is an efficacious strategy in NSCLC therapy.  相似文献   

8.
A series of N'-1-[2-anilino-3-pyridyl]carbonyl-1-benzenesulfonohydrazide derivatives (7a-i) was synthesized and five of them were selected by the National Cancer Institute (NCI) and evaluated for their in vitro anticancer activity. Three of the investigated compounds 7d, 7f and 7g exhibited significant anticancer activity in the primary assay and further tested against a panel of 60 human tumour cell lines. Compound 7g showed 50% growth inhibitory activity in leukaemia, melanoma, lung cancer, colon cancer, renal cancer and breast cancer cells with GI(50) value of 3.2-9.6 microM. The synthesized compounds (7a-i) were also evaluated for their antibacterial activity against various Gram-positive and Gram-negative strains of bacteria. Most of these compounds showed better inhibitory activity in comparison to the standard drugs.  相似文献   

9.
10.
11.
12.
Relapse of childhood acute lymphoblastic leukaemia (ALL) comprises a leading challenge of investigation. Characterization of leukaemic cells regarding their potency to express growth factors and surface molecules can provide insight into their aberrant biology. Thus, we analyzed bone marrow blasts from 10 children with relapsed B cell precursor ALL. The gene and protein expression of essential haematopoietic growth factors (IL-2, IL-4, IL-7, IL-10, IL-15, IFN-gamma, G-CSFR), their corresponding receptors as well as the expression pattern of adhesion molecules (ICAM-1, CD58) and costimulatory proteins (CD40, CD40L, B7.1, B7.2, CD28, MHC-I and II) was analyzed by RT-PCR and flow cytometry. Constitutive gene expression was found for IL-7, IL-10, IL-15 and IFN-gamma and their corresponding receptors. Flow-cytometric analysis showed that IL-10R, IL-7Ralpha, IL-4Ralpha and the gamma(c)chain are constitutively expressed, and that some cells bear the G-CSFR. IL-10 and IL-15 protein-producing leukaemic cells were easily detectable. The neoplastic cells mainly lack B7.1, and ICAM-1 is mostly decreased. Furthermore, high CD40, and, surprisingly, CD40L expression could be found. These studies show that ALL cells are likely to be sensitive to many growth factors and some factors are produced by the neoplastic cell itself. The secretion of IL-10 by leukaemic cells, and the absence or downregulation of conventional adhesion and costimulatory molecules might represent an effective mechanism of escape of immune surveillance in relapsed ALL.  相似文献   

13.
IL-13 is a Th2-derived pleiotropic cytokine that recently was shown to be a key mediator of allergic asthma. IL-13 mediates its effects via a complex receptor system, which includes the IL-4R alpha-chain, IL-4Ralpha, and at least two other cell surface proteins, IL-13Ralpha1 and IL-13Ralpha2, which specifically bind IL-13. IL-13 has been reported to have very limited effects on mouse B cells. It was unclear whether this was due to a lack of receptor expression, a disproportionate relative expression of the receptor components, or an additional subunit requirement in B cells. To determine the requirements for IL-13 signaling in murine B cells, we examined IL-13-dependent Stat6 activation and CD23 induction in the murine B cell line, A201.1. A201.1 cells responded to murine IL-4 via the type I IL-4R, but were unresponsive to IL-13, and did not express IL-13 receptor. B220(+) splenocytes also failed to signal in response to IL-13 and did not express IL-13 receptor. We transfected A201.1 cells with human IL-4Ralpha, IL-13Ralpha1, or both. Transfectants expressing either human IL-4Ralpha or human IL-13Ralpha1 alone were unable to respond or signal to IL-13. Thus, human IL-13Ralpha1 could not combine with the endogenous murine IL-4Ralpha to generate a functional IL-13R. However, cells transfected with both human IL-4Ralpha and IL-13Ralpha1 responded to IL-13. Thus, the relative lack of IL-13 responsiveness in murine B cells is due to a lack of receptor expression. Furthermore, the heterodimeric interaction between IL-4Ralpha and IL-13Ralpha1 is species specific.  相似文献   

14.
Hua K  Deng J  Harp JB 《Cytokine》2004,25(2):61-67
Interleukin-4 (IL-4) activates STAT6 in 3T3-L1 preadipocytes but its functional role is not known. In this report, we first assessed interleukin-4 receptor alpha (IL-4Ralpha) expression during adipogenesis. IL-4Ralpha was highly expressed in proliferating 3T3-L1 preadipocytes. Receptor expression was down-regulated in post-confluent growth arrested preadipocytes. Induction of differentiation led to a transient 36-h increase in expression, but then levels decreased to undetectable amounts 3-8 days after induction of differentiation. Depending on the cell type, IL-4 either increases or decreases cell proliferation. In growth arrested preconfluent 3T3-L1 preadipocytes, IL-4 alone had no effect on preadipocyte proliferation. In contrast, IL-4 inhibited platelet-derived growth factor (PDGF-BB) induced preadipocyte proliferation. PDGF-BB, but not IL-4, induced STAT3 tyrosine and AKT serine phosphorylation. Both PDGF-BB and IL-4 induced STAT6 tyrosine phosphorylation, but the bands showed distinct electrophoretic migration patterns. IL-4 alone and IL-4 added to the differentiation cocktail had no effect on adipocyte formation or PPARgamma expression. Collectively, these studies demonstrate that IL-4 inhibits PDGF-BB-induced preadipocyte proliferation, possibly through STAT6 activation. The pattern of IL-4 receptor expression suggests that the effects of IL-4 are targeted primarily towards preadipocytes.  相似文献   

15.
16.
17.
Bronchial asthma is a complex disease characterized by airway inflammation involving Th2 cytokines. Among Th2 cytokines, the significance of IL-13 in the pathogenesis of bronchial asthma has recently emerged. Particularly, the direct action of IL-13 on bronchial epithelial cells (BECs) is critical for generation of airway hyperresponsiveness. IL-13 has two binding units; the IL-13 receptor alpha1 chain transduces the IL-13 signal comprising a heterodimer with the IL-4R alpha chain, whereas the IL-13 receptor alpha2 chain (IL-13Ralpha2) is thought to act as a decoy receptor. However, it remains obscure how expression of these molecules is regulated in each cell. In this article, we analyzed the expression of these components in BECs. Either IL-4 or IL-13 induced intracellular expression of IL-13Ralpha2 in BECs, which was STAT6-dependent and required de novo protein synthesis. IL-13Ralpha2 expressed on the cell surface as a monomer inhibited the STAT6-dependent IL-13 signal. Furthermore, expression of IL-13Ralpha2 was induced in lung tissues of ovalbumin-induced asthma model mice. Taken together, our results suggested the possibility that IL-13Ralpha2 induced by its ligand is transferred to the cell surface by an unknown mechanism, and it down-regulates the IL-13 signal in BECs, which functions as a unique negative-feedback system for the cytokine signal.  相似文献   

18.
Signaling via interleukin-2 (IL-2) and interleukin-9 receptors (IL-2R and IL-9R) involves heteromeric interactions between specific interleukin receptor subunits, which bind Janus kinase 1 (JAK1) and the JAK3 binding common gamma chain (gamma c). The potential existence and roles of homomeric and heteromeric complexes before ligand binding and their modulation by ligand and JAK3 are unclear. Using computerized antibody-mediated immunofluorescence co-patching of epitope-tagged receptors at the surface of live cells, we demonstrate that IL-2Rbeta, IL-9Ralpha, and gamma c each display a significant fraction of ligand-independent homomeric complexes (24-28% co-patching), whereas control co-patching levels with unrelated receptors are very low (7%). Heteromeric complex formation of IL2-Rbeta or IL-9Ralpha with gamma c is also observed in the absence of ligand (15-30%). Ligand binding increases this hetero-oligomerization 2-fold but does not affect homo-oligomerization. Co-expression of IL-2Ralpha does not affect the hetero-oligomerization of IL-2Rbeta and gamma c. Recruitment of gamma c into heterocomplexes is partly at the expense of its homo-oligomerization, suggesting that a functional role of the latter may be to keep the receptors inactive in the absence of ligand. At the same time, the preformed complexes between gamma c and IL-2Rbeta or IL-9Ralpha promote signaling by the JAK3 A572V mutant without ligand, supporting a pathophysiological role for the constitutive oligomerization in triggering ligand-independent activation of JAK3 (and perhaps other JAK mutants) mutants identified in several human cancers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号