首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When grown under suboptimal conditions, rhizobacteria of the genus Azospirillum produce high levels of poly-beta-hydroxybutyrate (PHB). Azospirillum brasilense strain Sp7 and a phbC (PHB synthase) mutant strain in which PHB production is impaired were evaluated for metabolic versatility, for the ability to endure various stress conditions, for survival in soil inoculants, and for the potential to promote plant growth. The carbon source utilization data were similar for the wild-type and mutant strains, but the generation time of the wild-type strain was shorter than that of the mutant strain with all carbon sources tested. The ability of the wild type to endure UV irradiation, heat, osmotic pressure, osmotic shock, and desiccation and to grow in the presence of hydrogen peroxide was greater than that of the mutant strain. The motility and cell aggregation of the mutant strain were greater than the motility and cell aggregation of the wild type. However, the wild type exhibited greater chemotactic responses towards attractants than the mutant strain exhibited. The wild-type strain exhibited better survival than the mutant strain in carrier materials used for soil inoculants, but no difference in the ability to promote plant growth was detected between the strains. In soil, the two strains colonized roots to the same extent. It appears that synthesis and utilization of PHB as a carbon and energy source by A. brasilense under stress conditions favor establishment of this bacterium and its survival in competitive environments. However, in A. brasilense, PHB production does not seem to provide an advantage in root colonization under the conditions tested.  相似文献   

2.
Genes responsible for the synthesis of poly(3-hydroxybutyrate) (PHB) in Azotobacter sp. FA8 were cloned and analyzed. A PHB polymerase gene (phbC) was found downstream from genes coding for beta-ketothiolase (phbA) and acetoacetyl-coenzyme A reductase (phbB). A PHB synthase mutant was obtained by gene inactivation and used for genetic studies. The phbC gene from this strain was introduced into Ralstonia eutropha PHB-4 (phbC-negative mutant), and the recombinant accumulated PHB when either glucose or octanoate was used as a source of carbon, indicating that this PHB synthase cannot incorporate medium-chain-length hydroxyalkanoates into PHB.  相似文献   

3.
Like many other prokaryotes, rhizobacteria of the genus Azospirillum produce high levels of poly(β-hydroxybutyrate) (PHB) under suboptimal growth conditions. Utilization of PHB by bacteria under stress has been proposed as a mechanism that favors their compatible establishment in competitive environments, thus showing great potential for the improvement of bacterial inoculants for plants and soils. The three genes that are considered to be essential in the PHB biosynthetic pathway, phbA (β-ketothiolase), phbB (acetoacetyl coenzyme A reductase), and phbC (PHB synthase), were identified in Azospirillum brasilense strain Sp7, cloned, and sequenced. The phbA, -B, and -C genes were found to be linked together and located on the chromosome. An A. brasilense phbC mutant was obtained by insertion of a kanamycin resistance cassette within the phbC gene. No PHB production was detected in this mutant. The capability of the wild-type strain to endure starvation conditions was higher than that of the mutant strain. However, motility, cell aggregation, root adhesion, and exopolysaccharide (EPS) and capsular polysaccharide (CPS) production were higher in the phbC mutant strain than in the wild type.  相似文献   

4.
Azospirillum brasilense Sp7 and its ntrA (rpoN), ntrBC, and ntrC mutants have been evaluated for their capabilities of poly-3-hydroxybutyrate (PHB) accumulation in media with high and low ammonia concentrations. It was observed that the ntrBC and ntrC mutants can produce PHB in both low- and high-C/N-ratio media, while no significant PHB production was observed for the wild type or the ntrA mutant in low-C/N-ratio media. Further investigation by fermentation analysis indicated that the ntrBC and ntrC mutants were able to grow and accumulate PHB simultaneously in the presence of a high concentration of ammonia in the medium, while little PHB was produced in the wild type and ntrA (rpoN) mutant during active growth phase. These results provide the first genetic evidence that the ntrB and ntrC genes are involved in the regulation of PHB synthesis by ammonia in A. brasilense Sp7.  相似文献   

5.
The role of three key nitrogen regulatory genes, glnB (encoding the P(II) protein), glnZ (encoding the P(z) protein), and glnD (encoding the GlnD protein), in regulation of poly-3-hydroxybutyrate (PHB) biosynthesis by ammonia in Azospirillum brasilense Sp7 was investigated. It was observed that glnB glnZ and glnD mutants produce substantially higher amounts of PHB than the wild type produces during the active growth phase. glnB and glnZ mutants have PHB production phenotypes similar to that of the wild type. Our results indicate that the P(II)-P(z) system is apparently involved in nitrogen-dependent regulation of PHB biosynthesis in A. brasilense Sp7.  相似文献   

6.
The feasibility of genetically engineering soybean seed coats to divert metabolism towards the production of novel biochemicals was tested. The genes phbA, phbB, phbC from Ralstonia eutropha each under the control of the seed coat peroxidase promoter were introduced into soybean and the production of polyhydroxybutyrate (PHB) was assayed. The analysis of seed coats arising from 4 independent transformation events demonstrated that PHB was produced at a mean of 0.12% seed coat dried weight with individual values up to 0.36%. These values demonstrate that it is possible to metabolically engineer soybean seed coats.  相似文献   

7.
The competitive abilities of Sinorhizobium meliloti mutant strains containing lesions in the PHB synthesis (phbC) and degradation (bdhA) pathways were compared. While the bdhA mutant showed no noticeable symbiotic defects on alfalfa host plants when inoculated alone, in mixed inoculation experiments it was found to be less competitive than the wild type for nodule occupancy. Long-term survival of the bdhA mutant on a carbon-limiting medium was not affected. However, when subjected to competition with the wild-type strain in periodic subculturing through alternating carbon-limiting and carbon-excess conditions, the bdhA mutant performed poorly. A more severe defect in competition for growth and nodule occupancy was observed with a mutant unable to synthesize PHB (phbC). These results indicate that the ability to efficiently deposit cellular PHB stores is a key factor influencing competitive survival under conditions of fluctuating nutrient carbon availability, whereas the ability to use these stores is less important.  相似文献   

8.
Extracellular polysaccharides play an important role in aggregation and surface colonization of plant-associated bacteria. In this work, we report the time course production and monomer composition of the exopolysaccharide (EPS) produced by wild type strain and several mutants of the plant growth promoting rhizobacterium (PGPR) Azospirillum brasilense. In a fructose synthetic medium, wild type strain Sp7 produced a glucose-rich EPS during exponential phase growth and an arabinose-rich EPS during stationary and death phase growth. D-glucose or L-arabinose did not support cell growth as sole carbon sources. However, glucose and arabinose-rich EPSs, when used as carbon source, supported bacterial growth. Cell aggregation of Sp7 correlated with the synthesis of arabinose-rich EPS. exoB (UDP-glucose 4'-epimerase), exoC (phosphomannomutase) and phbC (poly-beta-hydroxyburyrate synthase) mutant strains, under tested conditions, produced arabinose-rich EPS and exhibited highly cell aggregation capability. A mutant defective in LPS production (dTDP 4-rhamnose reductase; rmlD) produced glucose-rich EPS and did not aggregate. These results support that arabinose content of EPS plays an important role in cell aggregation. Cell aggregation appears to be a time course phenomenon that takes place during reduced metabolic cell activity. Thus, aggregation could constitute a protected model of growth that allows survival in a hostile environment. The occurrence of exoC and rmlD was detected in several species of Azospirillum.  相似文献   

9.
10.
When grown under suboptimal conditions, rhizobacteria of the genus Azospirillum produce high levels of poly-β-hydroxybutyrate (PHB). Azospirillum brasilense strain Sp7 and a phbC (PHB synthase) mutant strain in which PHB production is impaired were evaluated for metabolic versatility, for the ability to endure various stress conditions, for survival in soil inoculants, and for the potential to promote plant growth. The carbon source utilization data were similar for the wild-type and mutant strains, but the generation time of the wild-type strain was shorter than that of the mutant strain with all carbon sources tested. The ability of the wild type to endure UV irradiation, heat, osmotic pressure, osmotic shock, and desiccation and to grow in the presence of hydrogen peroxide was greater than that of the mutant strain. The motility and cell aggregation of the mutant strain were greater than the motility and cell aggregation of the wild type. However, the wild type exhibited greater chemotactic responses towards attractants than the mutant strain exhibited. The wild-type strain exhibited better survival than the mutant strain in carrier materials used for soil inoculants, but no difference in the ability to promote plant growth was detected between the strains. In soil, the two strains colonized roots to the same extent. It appears that synthesis and utilization of PHB as a carbon and energy source by A. brasilense under stress conditions favor establishment of this bacterium and its survival in competitive environments. However, in A. brasilense, PHB production does not seem to provide an advantage in root colonization under the conditions tested.  相似文献   

11.
二次转化获得整合phbA、phbB、phbC基因的转基因烟草(英文)   总被引:7,自引:0,他引:7  
将携有导肽序列的phbB(编码乙酰乙酰CoA还原酶 )和phbC(编码PHB合酶 )连入pBIB_HYG得到组成型表达载体pZCB ,用冻融法转入根癌土壤杆菌 (Agrobacteriumtumefaciens (SmithetTownsend)Conn)并由其介导转化已整合且表达phbA(编码 3_酮硫裂解酶 )基因并具有卡那霉素抗性的转基因烟草 (NicotianatabacumL .)。通过二次转化可避开传统杂交育种 ,在 5个月内获得整合PHB合成所需 3个基因的转基因烟草。所获转基因植株表型正常 ,经PCR、PCR_Southern、RT_PCR_DNA杂交检测确定有 5 0株烟草稳定整合phbB、phbC基因 ,其中 6 .6 7%的植株可在转录水平表达双基因  相似文献   

12.
13.
The Azospirillum brasilense Sp245 napABC genes, encoding nitrate reductase activity, were isolated and sequenced. The derived protein sequences are very similar throughout the whole Nap segment to the NapABC protein sequences of Escherichia coli, Pseudomonas sp. G-179, Ralstonia eutropha, Rhodobacter sphaeroides, and Paracoccus denitrificans. Based on whole-cell nitrate reductase assays with the artificial electron donors benzyl viologen and methyl viologen, and assays with periplasmic cell-free extracts, it was concluded that the napABC-encoded enzyme activity in Azospirillum brasilense Sp245 corresponds to a periplasmic dissimilatory nitrate reductase, which was expressed under anoxic conditions and oxic conditions. A kanamycin-resistant Azospirillum brasilense Sp245 napA insertion mutant was constructed. The mutant still expressed assimilatory nitrate reductase activity, but was devoid of its periplasmic dissimilatory nitrate reductase activity.  相似文献   

14.
15.
Abstract Azospirillum brasilense is a rhizosphere microorganism which has potential use for promoting plant growth in economically important crops. Its ability to survive the adverse conditions imposed by nutrient starvation and competition in the rhizosphere is of great importance. A. brasilense accumulates up to 70% of its cell dry weight with poly-β-hydroxybutyrate (PHB). In the presence of stress factors such as ultraviolet radiation, desiccation and osmotic stress, PHB-rich cells survived better than PHB-poor cells. Polymer-rich cells of Azospirillum fixed N2 in the absence of exogenous carbon and combined nitrogen. The enzymes of the PHB cycle in both the synthesis and degradation processes as well as during starvation were more active in PHB-rich cells. After 24 h of starvation there was a peak of activity of d (−)β-hydroxybutyrate dehydrogenase, β-ketothiolase and thiophorase due to PHB degradation. Additionally, acetoacetyl-CoA reductase dropped to a minimum level because PHB could not be synthesized. The possible utilization of PHB as a sole carbon and energy source by A. brasilense and other bacteria during establishment, proliferation and survival in the rhizosphere will be discussed.  相似文献   

16.
Like many other prokaryotes, rhizobacteria of the genus Azospirillum produce high levels of poly--hydroxybutyrate (PHB) under sub-optimal growth conditions. Utilization of PHB by bacteria under stress has been proposed as a mechanism that favors their compatible establishment in competitive environments. PHB depolymerase (PhaZ) is an essential enzyme in PHB degradation. The phaZ gene was identified in Azospirillum brasilense, cloned, sequenced, and shown to be located on the chromosome. Insertion of a kanamycin-resistant cassette within phaZ of A. brasilense resulted in a phaZ mutant that was unable to degrade PHB; however, carbon source utilization was similar in both the wild-type and the mutant strain. The ability of the wild-type to endure starvation conditions, ultraviolet irradiation, heat, and osmotic shock, and to grow in the presence of hydrogen peroxide was higher than that of the mutant strain. By contrast, the ability of the phaZ mutant strain to endure desiccation was higher than that of the wild-type strain. No differences between the strains were seen in their ability to endure sonication, or to survive in carrier materials used for soil inoculants. In addition, motility was the same between the two strains, whereas cell aggregation and exopolysaccharide production were higher in the wild-type than in the phaZ mutant strain.  相似文献   

17.
Polyhydroxyalkanoates: an overview   总被引:25,自引:0,他引:25  
Polyhydroxyalkanoates have gained major importance due to their structural diversity and close analogy to plastics. These are gaining more and more importance world over. Different sources (natural isolates, recombinant bacteria, plants) and other methods are being investigated to exert more control over the quality, quantity and economics of poly(3-hydroxybutyrate) (PHB) production. Their biodegradability makes them extremely desirable substitutes for synthetic plastics. The PHB biosynthetic genes phbA, phbB and phbC are clustered and organized in one phbCAB operon. The PHB pathway is highly divergent in the bacterial genera with regard to orientation and clustering of genes involved. Inspite of this the enzymes display a high degree of sequence conservation. But how similar are the mechanisms of regulation of these divergent operons is as yet unknown. Structural studies will further improve our understanding of the mechanism of action of these enzymes and aid us in improving and selecting better candidates for increased production. Metabolic engineering thereafter promises to bring a feasible solution for the production of "green plastic".  相似文献   

18.
固氯螺菌(Azospirillum)是一类仅在限铵和微好氧条件下固氮的微生物,它可与许多禾本科作物联合共生⑴,具有较大的应用潜力。铵作为固氮作用的调节信号,在固氮螺菌的实际应用中是首要的限制因素。在固氯螺菌中,铵不但具有与肺炎克氏杆菌(Klebsiella pneumoniae)相似的阻遏固氮酶合成的作用,而且还对已合成的固氮酶进行活性调节⑵。研究表明,其固氮酶翻译后活性调节的机制类似于深红红螺菌(Rhodospirillum rubrum)⑶,即在有铵条件下其固氮酶铁蛋白的一个亚基被共价修饰而丧失活性,这一过程是可逆的。由于铵在固氮螺菌中双水平地调节固氮作用,使得在野生菌株中研究其固氮基因表达水平上的调节较为困难。Zhang等⑷利用区域定位诱变技术获得了巴西固氮螺菌Sp7(A.Brasilense Sp7)的draT-突变株,在该突变株中铵不再影响固氮酶的活性,这为其固氮基因表达调节的研究提供了一个良好的材料。本文将组成型表达的肺炎克氏杆菌nifA基围引入该突变株中,通过分析讨论铵对巴西固氮螺菌固氮基固表达的调节作用方式。  相似文献   

19.
巴西固氮螺菌Yu62 draTG基因及其下游区域的定位诱变分析   总被引:3,自引:0,他引:3  
用卡那霉素盒(Km-cassette)插入法,对巴西固氮螺菌(Azospirillumbrasilense)Yu62的draTG基因及其下游区域进行了诱变,并获得相应的突变株,研究表明draT变突株的固氮酶活性不再受铵抑制,而draG突变株在有铵时则丧失固氮酶活性,但当铵耗尽后却不能使像野生型菌株那样恢复活性,draTG下游区域突变株YZ4(突变位点距draG约2kb)在无氮及限铵条件下,其固氮酶  相似文献   

20.
The interaction between Azospirillum brasilense and plants is not fully understood, although several bacterial surface components like exopolysaccharides (EPS), flagella, and capsular polysaccharides are required for attachment and colonization. While in other plant-bacteria associations (Rhizobium-legume, Pseudomonas-potato), lipopolysaccharides (LPS) play a key role in the establishment of an effective association, their role in the root colonization by Azospirillum had not been determined. In this study, we isolated a Tn5 mutant of A. brasilense Cd (EJ1) with an apparently modified LPS core structure, non-mucoid colony morphology, increased EPS production, and affected in maize root colonization. A 3790-bp region revealed the presence of three complete open reading frames designated rmlC, rmlB and rmlD. The beginning of a fourth open reading frame was found and designated rmlA. These genes are organized in a cluster which shows homology to the cluster involved in the synthesis of dTDP-rhamnose in other bacteria. Additionally, the analysis of the monosaccharide composition of LPSs showed a diminution of rhamnose compared to the wild-type strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号