首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 362 毫秒
1.
李丽娟  张吉  吴丹  殷旭旺  徐宗学  张远 《生态学报》2017,37(20):6863-6874
研究河岸带土地利用方式对河流生物群落的影响对河岸带管理和河流生态系统修复至关重要。研究了太子河河岸带的土地利用类型(森林用地、森林耕作用地、耕地和城镇建设用地)和鱼类功能群的关系,结果表明:栖息地质量参数在不同土地利用类型内具有显著差异,森林用地区电导率、总溶解固体、淤泥和底质含沙量比例的平均值均较低,分别为(105.05μs/cm、80.38 mg/L、65.00 mL和0%),底质类型以石块为主;耕作区的水深、流量和淤泥的平均值均是最高(186.83 m、80.11 m~3和5333.33 mL),底质类型以沙质和淤泥为主。太子河流域鱼类功能群划分为5种类型(18个亚类),在不同土地利用类型内具有差异显著,森林用地内的鱼食性、石块栖功能群、昆虫食性和黏性卵功能群的比例最高;森林耕作用地内的植食性和底层栖功能群的比例最高;耕地内的沙栖功能群、中下层栖功能群和筑巢产卵功能群的比例最高;城镇建设用地内的淤泥栖功能群、耐污种、中下层栖功能群和杂食性功能群的比例最高。研究显示,栖息地评价得分高、栖境复杂的区域其个体数量较高,而栖息地得分低、底质类型以淤泥为主的区域其个体数量较低。  相似文献   

2.
赵银军  梁日梅  丁爱中  蓝文陆 《生态学报》2023,43(12):4954-4964
流域景观特征决定了非点源污染物来源与地表景观削减消纳能力,但尚缺乏全流域不同空间尺度对二者关联性的认识。以广西北部湾南流江为例,分别在子流域、河岸缓冲带以及监测点圆形缓冲区三种尺度上,基于2020年Landsat 8 OLI遥感影像解译的土地利用类型特征,结合水质监测数据,运用数理统计和GIS空间分析方法,探讨了流域景观特征在不同空间尺度上对河流水质的影响。结果表明:(1)在子流域尺度,土地利用类型以林地为主,而在河岸缓冲带与监测点圆形缓冲区均以耕地为主;(2)水质指标高锰酸盐指数、生化需氧量与景观特征相关性最为显著,耕地、建设用地、其他用地和园地与其呈正相关,是南流江水质污染负荷的重要来源区;景观格局指数中,斑块密度、蔓延度指数、多样性指数、均匀度指数是引起河流水质指标变化的主要景观因子;(3)受流域内或不同子流域间景观特征差异,景观组成面积占比和景观格局指数均在河岸缓冲带尺度对水质状况影响最大,分别可解释57.0%和64.7%的水质指标变化;子流域尺度次之,圆形缓冲区尺度最小,且景观格局指数对水质状况的影响大于景观组成面积占比。建议在河岸带50 m范围内严格控制耕地面积,建设河岸缓...  相似文献   

3.
流域景观格局与河流水质的多变量相关分析   总被引:12,自引:0,他引:12  
赵鹏  夏北成  秦建桥  赵华荣 《生态学报》2012,32(8):2331-2341
流域内的景观格局改变是人类活动的宏观表现,会对河流水质产生显著影响,因此明确影响水质变化的关键景观因子,对于深入了解景观对水质的影响机制具有重要的研究价值。选择广东省淡水河流域为研究对象,以2007年ALOS卫星影像以及水质监测数据为基础,运用空间分析和多变量分析方法,分析淡水河流域景观格局与河流水质的相关关系。用包括流域和河岸带尺度的景观组成和空间结构信息的景观指数表征景观格局,用Spearman秩相关分析、多元线性逐步回归模型和典型相关分析(CCA)研究景观指数和水质指标的相关关系。研究结果表明:林地、城镇用地和农业用地占淡水河流域总面积超过90%,其中城镇用地超过20%。多元线性逐步回归分析和CCA结果说明水质指标受到多个景观指数的综合影响,反映了景观格局对水质的复杂影响机制。流域景观格局对河流水质有显著影响,流域尺度的景观指数比河岸带尺度的景观指数对水质影响更大。城镇用地比例是影响耗氧污染物和营养盐等污染物浓度最重要的景观指数,林地和农业用地对水质的影响较小。另外,景观破碎化对pH值、溶解氧和重金属等水质指标有显著影响。CCA的第一排序轴解释了景观指数与水质指标相关性的54.0%,前两排序轴累积能解释景观指数与水质指标相关性的87.6%,前两轴分别主要表达了城市化水平和景观破碎化水平的变化梯度。淡水河流域的景观格局特征从上游到下游呈现出城市—城乡交错—农村的景观梯度,水质变化也对应了这个梯度的变化,说明人类活动引起的流域土地覆盖及土地管理措施变化会对水质变化产生显著影响。  相似文献   

4.
应用鱼类完整性评价体系评价辽河流域健康   总被引:28,自引:4,他引:24  
裴雪姣  牛翠娟  高欣  徐琛 《生态学报》2010,30(21):5736-5746
根据2009年8月辽河流域33个站点采集的鱼类数据(参照点8个,观测点25个),通过参数指标值分布范围、相关关系和判别能力分析,从23个侯选指标中筛选出了辽河流域的鱼类完整性指数(F-IBI)构成指标体系。该体系包括鱼类总种类数、Shannon-Wiener多样性指数、中上层鱼类百分比、底层鱼类百分比、鱼类个体总数、杂食性鱼类百分比、耐受性鱼类百分比、敏感性鱼类百分比和产粘性卵鱼类百分比共9个生物参数。分别采用1、3、5赋值法和比值法计算各站点的IBI分值,并根据参照点IBI分值的25%分位数值确定健康等级标准,对小于25%分位数值的分布范围进行3等分,提出了辽河流域河流鱼类完整性评价标准,分为健康、一般、差、较差4个等级。两种方法评价结果虽不完全相同,但趋势基本一致。Pearson相关分析表明IBI值与生境状况、水质状况、栖息地环境质量显著相关,其中与海拔、栖息地评分呈显著正相关,与CODCr、氯化物、总溶解颗粒物、含沙量、硬度、电导率呈显著负相关。  相似文献   

5.
土地利用是影响河流水质的重要因素之一,量化不同河岸缓冲区尺度下土地利用方式及空间格局与水质因子之间的关系,对土地利用合理规划及水质改善具有重要意义。本研究以嘎呀河流域为例,基于2021年5月共91个点位的水质调查数据,从河岸缓冲区尺度分析流域土地利用及景观空间分布格局,并采用冗余分析(RDA)和广义加性模型(GAM)探讨土地利用方式及空间分布格局对河流水质的影响。结果表明:总氮是影响嘎呀河水质的首要因素。50、100和500 m河岸缓冲区以耕地为优势土地利用类型,将点位划分为耕地优势组和耕地其他组;1000、1500和2000 m河岸缓冲区以林地为优势土地利用类型,将点位分为林地优势组和林地其他组。100 m河岸缓冲区是对嘎呀河水质指标的最强影响尺度,其次为1000 m河岸缓冲区。林地优势组中,铵氮、电导率、溶解氧、磷酸盐和高锰酸盐指数均受土地利用类型面积占比的显著影响,其中,铵氮浓度随着林地面积占比和耕地面积占比的增加而增大,磷酸盐浓度与Shannon多样性指数(SHDI)显著相关,高锰酸盐指数受SHDI和最大斑块指数(LPI)影响明显。耕地优势组中,总氮浓度受林地面积占比、草地面积...  相似文献   

6.
为研究太子河大型底栖动物摄食功能群对河岸带土地利用类型的响应关系,于2012年5月对太子河流域底栖动物和水环境因子和土地利用类型进行野外调查及数据分析。结果表明:1)太子河流域底栖动物群落在4种不同土地利用类型内具有极显著差异,平均丰度、Shannon-Wiener多样性指数和Pielou均匀度指数在森林用地中最高,分别为8.86、0.73和0.94,平均密度在森林耕作用地中最高(782.75个/m2),除食碎屑者功能群(S),其他摄食功能群在不同土地利用类型内无差异(P > 0.05)。2)太子河土地利用类型与水环境因子之间的Pearson分析表明,森林用地与EC、TDS、TN、NH3-N、CODMn之间呈显著负相关性,与DO、IOS之间呈显著正相关性;耕地与DO和IOS之间呈显著负相关性;城镇用地与EC、TDS和TN之间呈正相关性。3)太子河土地利用类型与底栖动物功能群之间的Spearman分析表明森林用地与食碎屑者(S)、刮食者(SC)和收集者(GC)呈正相关性。耕地与食碎屑者(S)、滤食者(FC)之间呈负相关性,城镇用地与刮食者(SC)和收集者(GC)之间呈显著负相关性。4)底栖动物功能群和水环境因子之间的典范对应分析表明,食碎屑者(S)功能群主要受底质指数(IOS)驱动,其他功能群与环境因子之间无相关性。因此,水环境因子和底栖动物群落参数比摄食功能群更能反映人类活动对土地利用的改变,水环境和底栖动物群落研究可为河岸带土地利用保护提供理论依据。  相似文献   

7.
吴璟  杨莲芳  姜小三  李强  王备新 《生态学报》2008,28(3):1183-1191
土地利用/覆被变化对溪流生态系统的影响是溪流生态学研究的热点.生物完整性是诊断溪流生物学状况和生态健康的重要指标.目的是研究西苕溪流域内土地利用类型对大型底栖无脊椎动物完整性(B-IBI)的影响.利用2003年西苕溪TM数据和DEM模型计算了62个样点上游3种空间尺度下(亚流域、沿岸和局部)的土地利用类型.结果表明,耕地,民居和竹园在流域中的百分比与B-IBI负相关,耕地百分比对B-IBI的影响在亚流域(r=-0.527,p<0.001),河岸(r=-0.665, p<0.001)和局部(r=-0.696, p<0.001)尺度上均显著.针叶林,阔叶林和混交林百分比与B-IBI正相关.阔叶林百分比在亚流域(r=0.333,p<0.001),河岸(r=0.589 ,p<0.001)和局部尺度(r=0.618,p<0.001)与B-IBI显著相关.而针叶林百分比仅在亚流域尺度(r=0.366,p<0.001)与B-IBI显著相关.在研究流域内耕地百分比小于50%的情况下,B-IBI并非随着耕地百分比的增长而线性下降,而是在达到一定阀值后(亚流域尺度,27%;河岸尺度,57%;局部尺度,59%)耕地的影响逐渐趋缓.在耕地百分比小于阀值前,B-IBI在局部尺度上与耕地百分比的增长的关系最强(r=-0.808, p<0.001, n=46).建议在沿岸区增加阔叶林,针叶林与混交林的占有率,或者建立耕地与溪流间的林地缓冲带,有助于保护和恢复西苕溪生态健康.  相似文献   

8.
和克俭  刘虹  丁佼  黄晓霞  刘琦  张琦 《生态学报》2021,41(23):9525-9535
研究土地利用对大型底栖动物群落的影响,对流域土地利用规划修编和河流生态修复等有重要意义。以红河上游的把边江流域为研究区,调查大型底栖动物群落现状,计算37个样点上游集水区土地利用组分、配置、多样性和水文距离4个方面20个土地利用指标,分析不同土地利用方式对大型底栖动物群落的影响。本次调查共鉴定出25个大型底栖动物分类单元,其中水生昆虫最多,占分类单元总数的72%;摄食功能群以捕食者(PR)、刮食者(SC)和直接收集者(GC)为主。把边江流域城镇用地和林地对大型底栖动物群落的影响占主导地位,而耕地对大型底栖动物群落的影响较小。影响把边江流域大型底栖动物群落的关键土地利用指标为城镇用地面积比(3PLA)、城镇用地最大斑块指数(3LPI)、城镇用地聚合指数(3AI)、城镇用地水流长度(3FLOW)、林地最大斑块指数(1LPI)和林地形状指数(1LSI)。土地利用组分、配置和水文距离是影响把边江流域大型底栖动物群落的主要方面,而土地利用多样性对大型底栖动物群落的影响较小。大型底栖动物物种密度和物种多样性与3PLA、3LPI、3AI、3FLOW和1LSI呈负相关,与1LPI呈正相关。1LPI与浮游目(如小蜉科、扁蜉科)为代表的清洁物种呈现较明显的正相关关系。城镇用地指标与SC和SH(撕食者)密度具有显著的负相关关系,与GC密度有较弱的正相关关系,而与其他功能群没有明显的相关关系。SC和SH对水质和环境条件敏感,而GC对人类干扰耐受性较强。1LPI与SC和FC(滤食收集者密度)正相关,而与PR和GC密度负相关。SC和FC对生境的完整性要求较高,而GC和PR对人为干扰和较为破碎的生境更为适应。一方面,随着城镇用地的规模、边界复杂性和聚集程度增加,研究区大型底栖动物密度和多样性降低;另一方面,随着林地完整性降低,大型底栖动物物种均匀度降低。土地利用与大型底栖动物物种多样性和功能群多样性的关系不完全一致,1LSI和3FLOW与物种多样性负相关,而与功能群多样性呈正相关关系,土地利用对物种-功能群-群落不同尺度上的影响差异还需要更深入的研究。  相似文献   

9.
为探究不同空间尺度的景观格局对流溪河水质的影响,于2020年6月和2021年1月在流溪河干流15个采样点进行了水样的采集,测定了水温、溶解氧、pH、氨氮、硝态氮、硫酸盐和氯化物等水质指标。结合遥感解译所得的土地利用数据,提取了不同空间尺度(子流域和河岸带缓冲区)的景观格局指数,采用Bioenv分析、Mantle检验、方差分解和层次分割理论等方法揭示了景观格局对水质变化的影响。研究结果表明:氨氮是流溪河的主要污染物。土地利用结构与空间格局特征对水质的影响存在空间尺度效应。在100 m河岸带缓冲区,水域是影响水质的主要贡献源;而在其他空间尺度建设用地是影响水质的主要贡献源。在子流域尺度,林地和建设用地的斑块密度(PD指数)是影响水质变化的核心特征;而在河岸带缓冲区尺度,水域和建设用地的连通性(CONTAG指数)和林地的多样性(SHDI指数)是影响水质变化的关键特征。在各个空间尺度,土地利用与空间格局的交互作用对驱动水质变化起主导作用,尤其在1000 m河岸带缓冲区对水质的贡献率最高。因此,加强1000 m缓冲区尺度土地利用的管理和减少建设用地成片建设规划等对保护流域水质具有重要意义。  相似文献   

10.
基于着生藻类的太子河流域水生态系统健康评价   总被引:14,自引:0,他引:14  
殷旭旺  渠晓东  李庆南  刘颖  张远  孟伟 《生态学报》2012,32(6):1677-1691
本研究以辽宁省太子河流域为研究范例,调查了全流域范围内69个样点的着生藻类群落和水环境理化特征,并在此基础上应用硅藻生物评价指数(DBI)和生物完整性评价指数(P-IBI),同时结合栖息地环境质量评价指数(QHEI),对太子河流域水生态系统进行健康评价。结果表明,太子河流域着生藻类群落结构具有明显的空间异质性,CCA结果显示驱动着生藻类群落结构形成的水环境因子为电导率、总溶解固体和总氮。虽然DBI、P-IBI和QHEI在太子河流域某些河段上的评价结果有较大出入,但从全流域尺度上看,DBI、P-IBI和QHEI的评价结果基本一致,表现为太子河上游健康状况较好,中游健康状况一般,而下游健康状况较差。文中讨论了水环境理化因子与着生藻类群落结构的相互关系,并对比分析了DBI、P-IBI和QHEI这三种河流健康评价方法。  相似文献   

11.
1. Restoration of riparian forests has been promoted as a means of mitigating urban impacts on stream ecosystems. However, conventional urban stormwater drainage may diminish the beneficial effect of riparian forests.
2. The relative effects of riparian deforestation and catchment urbanisation on stream ecosystems have rarely been discriminated because urban land use and riparian degradation usually covary. However, land use at three scales (channel canopy cover along a 100-m site, riparian forest cover within 200 m of the channel for 1 km upstream, and catchment imperviousness) covaried only weakly along the lowland Yarra River, Victoria, Australia.
3. We tested the extent to which each land use measure explained macroinvertebrate assemblage composition on woody debris and in the sediments of pools or runs in the mainstem Yarra River in autumn and spring 1998.
4. Assemblage composition in both habitats and in both seasons was most strongly correlated with proportion of catchment covered by impervious surfaces. Sites with higher imperviousness had fewer sensitive taxa (those having a strong positive influence on indicators of biological integrity) and more taxa typical of degraded urban streams. Sensitive taxa rarely occurred in sites with >4% total imperviousness. However, within sites of similar imperviousness, those with more riparian forest cover had more dipteran taxa. Channel canopy cover did not explain assemblage composition strongly.
5. Riparian forest cover may influence richness of some macroinvertebrate taxa, but catchment urbanisation probably has a stronger effect on sensitive taxa. In catchments with even a small amount of conventionally drained urban land, riparian revegetation is unlikely to have an effect on indicators of stream biological integrity. Reducing the impacts of catchment urbanisation through dispersed, low-impact drainage schemes is likely to be more effective.  相似文献   

12.
Water resources demand constant conservation actions due to several problems (e.g. riparian vegetation cut-off, construction of dams, acidification, sewage and pesticide spills) that degrade the aquatic systems worldwide and affect its physicochemical parameters and habitat characteristics. Odonata is a potential group of organisms that could indicate these habitat alterations once they have aquatic and terrestrial life forms. In this study, we tested the use of adult odonate individual species and community assemblage measures to evaluate the effect of riparian vegetation cut-off and sewage discharges. The study was performed at Turvo Sujo River, in Viçosa, Southern Brazil. We selected twelve sites, six of them were upstream and six were downstream the city. Species abundance and species richness estimates of adult odonates were performed on sunny days during summer and winter. We analyzed the goodness-of-fit of the species abundances to geometric and lognormal series. We also measured the Habitat Physical Integrity Score (HPIS), pasture and forest proportions and physicochemical water parameters at each site. Only few species were abundant in up- and downstream regions. Abundance of Argia modesta was higher at the upstream (t = 3.188; df = 17; p = 0.005) than at the downstream region and this species is a potential habitat bioindicator organisms. Species richness was statistically different only in the wet season and species–abundance relations at the two regions fitted well to both geometric and lognormal series. The lack of riparian vegetation indicates a loss of habitat integrity and heterogeneity at Turvo Sujo River basin, which was mainly dominated by lake-dwelling odonate species. Low species richness differences are caused by species pool biases toward those ones capable to survive at degraded ecosystems, suggesting that the effects of water parameters are much less important than a landscape dominated by pastures and practically without forests. We suggest the use of species–abundance models (like geometric and lognormal series) to determine the degree of impacts over a given community once they are simple models and can show intrinsic processes structuring communities.  相似文献   

13.
Urban rivers have often experienced substantial engineering modification and consequently are highly degraded aquatic ecosystems with minimal riparian habitat. Habitat restoration and improvement efforts are needed within urban rivers to support ecological communities and increase ecosystem integrity. Most river restoration techniques are not feasible within large urban rivers, and so there is a need to develop novel methodologies. Artificial structures such as river walls can function as habitat for plant and invertebrate species in urban rivers, and in some cases can be more diverse than remnant habitat. Along the River Thames through central London, plant species richness was found to be significantly higher on river walls than intertidal foreshore, which represents the only remnant habitat for riparian species. Both this survey and other studies have suggested that the physical and environmental characteristics of river walls are likely to influence their capacity to function as ecological habitat, for example, walls composed of more complex construction materials (brick and boulders) being more diverse than simpler structures (concrete and sheet piling). The opportunity exists to use river walls and other artificial structures (e.g., jetties) to improve habitat along urban rivers by installing walls which are designed to be more complex, or by adding modifications to existing walls. Some trial modifications, such as the addition of wall ledges and timber fenders to sheet piling, have been installed at Deptford Creek along the River Thames, and have so far greatly supported the colonization and development of plant communities. The restoration possibilities of such modifications should be considered, and further development and rigorous testing of installations is required in urban rivers to make sound restoration recommendations.  相似文献   

14.
1. Species richness and assemblage patterns of organisms are dictated by numerous factors, probably operating at multiple scales. Freshwater mussels (Unionidae) are an endangered, speciose faunal group, making them an interesting model system to study the influence of landscape features on organisms. In addition, landscape features that influence species distributions and the scale at which the factors have the greatest impact are important issues that need to be answered to conserve freshwater mussels. 2. In this study, we quantified freshwater mussel communities at 16 sites along three mid‐sized rivers in the south‐central United States. We addressed the following questions: (i) Are there predictable longitudinal changes in mussel community composition? (ii) What landscape variables best explain shifts in community composition? and (iii) At what scale do landscape variables best predict mussel community composition? 3. After controlling for the influence of longitudinal position along the stream, we compared mussel distributions to a suite of hypothesised explanatory landscape variables across multiple scales – catchment scale (entire drainage area), buffer scale (100‐m riparian buffer of the entire catchment) and reach scale (100‐m riparian buffer extending 1 km upstream from the sampling site). 4. We found a significant and consistent longitudinal shift in dominant mussel species across all three rivers, with community composition strongly related to distance from the headwaters, which is highly correlated with stream size. After accounting for stream size, variables at the buffer scale were the best predictors of mussel community composition. After accounting for catchment position, mean channel slope was the best explanatory variable of community composition and appeared in all top candidate models at the catchment and buffer scales. Coverage of wetland and urban area were also correlated with community composition at the catchment and buffer scales. 5. Our results suggest that landscape‐scale habitat factors influence mussel community composition. Landscape features at the buffer scale performed best at determining community composition after accounting for position in the catchment; thus, further protection of riparian buffers will help to conserve mussel communities.  相似文献   

15.
16.
《新西兰生态学杂志》2011,33(2):177-189
Urban streams globally are characterised by degraded habitat conditions and low aquatic biodiversity, but are increasingly becoming the focus of restoration activities. We investigated habitat quality, ecological function, and fish and macroinvertebrate community composition of gully streams in Hamilton City, New Zealand, and compared these with a selection of periurban sites surrounded by rural land. A similar complement of fish species was found at urban and periurban sites, including two threatened species, with only one introduced fish widespread (Gambusia affinis). Stream macroinvertebrate community metrics indicated low ecological condition at most urban and periurban sites, but highlighted the presence of one high value urban site with a fauna dominated by sensitive taxa. Light-trapping around seepages in city gullies revealed the presence of several caddisfly species normally associated with native forest, suggesting that seepage habitats can provide important refugia for some aquatic insects in urban environments. Qualitative measures of stream habitat were not significantly different between urban and periurban sites, but urban streams had significantly lower hydraulic function and higher biogeochemical function than periurban streams. These functional differences are thought to reflect, respectively, (1) the combined effects of channel modification and stormwater hydrology, and (2) the influence of riparian vegetation providing shade and enhancing habitat in streams. Significant relationships between some macroinvertebrate community metrics and riparian vegetation buffering and bank protection suggest that riparian enhancement may have beneficial ecological outcomes in some urban streams. Other actions that may contribute to urban stream restoration goals include an integrated catchment approach to resolving fish passage issues, active reintroduction of wood to streams to enhance cover and habitat heterogeneity, and seeding of depauperate streams with native migratory fish to help initiate natural recolonisation.  相似文献   

17.
The riparian zone and instream habitat integrity of the Luvuvhu River were assessed based on a qualitative rating of the impacts of major disturbance factors such as water abstraction, flow regulation, bed and channel modification, etc. A system was devised to assess the impact of these factors on the relative frequency and variability of habitats on a spatial and temporal scale gauged against habitat characteristics that could have been expected to occur under conditions not anthropogenically influenced. It was found that deterioration of habitat integrity can be ascribed primarily to water abstraction. This has resulted in the cessation of surface flow in a naturally perennial river during the dry season and during droughts with consequent tree deaths and a loss of fast flowing instream habitat types in the main stem of the river. The relatively small high rainfall area in the catchment, the highly variable rainfall pattern and the occurrence of sporadic severe droughts exacerbate the impact of water abstraction on the instream and riparian habitats with expected detrimental consequences for the associated biota. The effect of water abstraction is particularly severe in the lower part of the river which flows through the Kruger National Park as no perennial tributaries join the Luvuvhu River in this section. Other factors which affect the habitat integrity of the river are the removal of indigenous riparian vegetation in some river sections, encroachment by exotic vegetation, bank erosion and stream bed modification.  相似文献   

18.
大汶河水生态环境健康状况与土地利用的相关性   总被引:1,自引:0,他引:1  
为了解大汶河水生态环境现状及河岸带土地利用类型对其影响,基于2017年4月大汶河流域水生态调查数据,采用主成分分析和相关分析方法对流域地形、水文、水环境因子、主要水生生物因子和栖息地质量5个方面共19个候选指标进行筛选和优化,构建了大汶河生态系统健康评价多指标体系并用于大汶河水生态健康评价。结果表明:水环境因子和水生生物类型指标在健康评价指标体系中所占权重较大;大汶河水生态系统健康状况评价结果主要以一般和较差为主,分别占总采样点的58.33%和20.83%,仅瀛汶河上段、大汶河南支上段和大汶河干流下段部分断面处于健康或亚健康水平;城镇村及工矿用地、耕地和交通用地与大汶河生态健康综合指数呈负相关,是该流域水生态系统受到破坏的主要因素。  相似文献   

19.
River restoration is a central issue of present-day River Basin Management. Unfortunately, many studies have shown limited ecological improvements, hypothesizing catchment influences and missing donor populations as main impeding factors. This study evaluates the ecological status after restoration at 46 river reaches in light of catchment influences upstream. Three groups of environmental parameters were investigated: (i) riparian land use and (ii) physical habitat quality in different lengths upstream of the restorations and (iii) land use in the whole catchment upstream. Ecological quality ratios of standardized fish, invertebrate and macrophyte samples were used as response variables. The results imply that sub-catchment variables influence the ecological status more than local habitat improvements. In particular, fish and invertebrate ecological status was positively linked to percent deciduous forest upstream of restored sites, while macrophytes revealed an opposite trend. Furthermore, we found a strong linkage of site-scale ecological status and physical habitat quality up to 5 km upstream of the restorations; the more natural were riparian land use and river habitat quality upstream, the higher was the chance of a good ecological quality in restored reaches. We conclude that site-scale restoration measures are likely to be unsuccessful, if the sub-catchment physical habitat upstream is degraded.  相似文献   

20.
1. Urbanisation severely affects stream hydrology, biotic integrity and water quality, but relatively little is known about effects on organic matter dynamics. Coarse particulate organic matter (CPOM) is a source of energy and nutrients in aquatic systems, and its availability has implications for ecosystem productivity and aquatic communities. In undisturbed environments, allochthonous inputs from riparian zones provide critical energy subsidies, but the extent to which this occurs in urbanised streams is poorly understood. 2. We investigated CPOM inputs, standing stocks, retention rates and retention mechanisms in urban and peri‐urban streams in Melbourne, Australia. Six streams were chosen along a gradient of catchment urbanisation, with the presence of reach scale riparian canopy cover as a second factor. CPOM retention was assessed at baseflow via replicate releases of marked Eucalyptus leaves where the retention distance and mechanism were recorded. CPOM and small wood (>1 cm diameter) storage were measured via cores and direct counts, respectively, while lateral and horizontal CPOM inputs were assessed using riparian litter traps. Stream discharge, velocity, depth and width were also measured. 3. CPOM inputs were not correlated with urbanisation, but were significantly higher in ‘closed’ canopy reaches. Urbanisation and riparian cover altered CPOM retention mechanisms, but not retention distances. Urban streams showed greater retention by rocks; while in less urban streams, retention by small wood was considerably higher. CPOM and small wood storage were significantly lower in more urban streams, but we found only a weak effect of riparian cover. 4. These findings suggest that while riparian vegetation increases CPOM inputs and has modest/weak effects on storage, catchment scale urbanisation decreases organic matter availability. Using an organic matter budget approach, it appears likely that the increased frequency and magnitude of high flows associated with catchment urbanisation exerts an overriding influence on organic matter availability. 5. We conclude that to maintain both organic matter inputs and storage, the restoration and protection of streams in urban or rapidly urbanising environments relies on the management of both riparian vegetation and catchment hydrology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号