首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cutaneous sensory neurons of the ophthalmic lobe of the trigeminal ganglion are derived from two embryonic cell populations, the neural crest and the paired ophthalmic trigeminal (opV) placodes. Pax3 is the earliest known marker of opV placode ectoderm in the chick. Pax3 is also expressed transiently by neural crest cells as they emigrate from the neural tube, and it is reexpressed in neural crest cells as they condense to form dorsal root ganglia and certain cranial ganglia, including the trigeminal ganglion. Here, we examined whether Pax3+ opV placode-derived cells behave like Pax3+ neural crest cells when they are grafted into the trunk. Pax3+ quail opV ectoderm cells associate with host neural crest migratory streams and form Pax3+ neurons that populate the dorsal root and sympathetic ganglia and several ectopic sites, including the ventral root. Pax3 expression is subsequently downregulated, and at E8, all opV ectoderm-derived neurons in all locations are large in diameter, and virtually all express TrkB. At least some of these neurons project to the lateral region of the dorsal horn, and peripheral quail neurites are seen in the dermis, suggesting that they are cutaneous sensory neurons. Hence, although they are able to incorporate into neural crest-derived ganglia in the trunk, Pax3+ opV ectoderm cells are committed to forming cutaneous sensory neurons, their normal fate in the trigeminal ganglion. In contrast, Pax3 is not expressed in neural crest-derived neurons in the dorsal root and trigeminal ganglia at any stage, suggesting either that Pax3 is expressed in glial cells or that it is completely downregulated before neuronal differentiation. Since Pax3 is maintained in opV placode-derived neurons for some considerable time after neuronal differentiation, these data suggest that Pax3 may play different roles in opV placode cells and neural crest cells.  相似文献   

2.
Neural crest cells arising from different rostrocaudal axial levels form different sets of derivatives as diverse as ganglia, cartilage and cornea. These variations may be due to intrinsic properties of the cell populations, different environmental factors encountered during migration or some combination thereof. We test the relative roles of intrinsic versus extrinsic factors by challenging the developmental potential of cardiac and trunk neural crest cells via transplantation into an ectopic midbrain environment. We then assess long-term survival and differentiation into diverse derivatives, including cornea, trigeminal ganglion and branchial arch cartilage. Despite their ability to migrate to the periocular region, neither cardiac nor trunk neural crest contribute appropriately to the cornea, with cardiac crest cells often forming ectopic masses on the corneal surface. Similarly, the potential of trunk and cardiac neural crest to form somatosensory neurons in the trigeminal ganglion was significantly reduced compared with control midbrain grafts. Cardiac neural crest exhibited a reduced capacity to form cartilage, contributing only nominally to Meckle's cartilage, whereas trunk neural crest formed no cartilage after transplantation, even when grafted directly into the first branchial arch. These results suggest that neural crest cells along the rostrocaudal axis display a graded loss in developmental potential to form somatosensory neurons and cartilage even after transplantation to a permissive environment. Hox gene expression was transiently maintained in the cardiac neural tube and neural crest at 12 hours post-transplantation to the midbrain, but was subsequently downregulated. This suggests that long-term differences in Hox gene expression cannot account for rostrocaudal differences in developmental potential of neural crest populations in this case.  相似文献   

3.
4.
The method of embryonic tissue transplantation was used to confirm the dual origin of avian cranial sensory ganglia, to map precise locations of the anlagen of these sensory neurons, and to identify placodal and neural crest-derived neurons within ganglia. Segments of neural crest or strips of presumptive placodal ectoderm were excised from chick embryos and replaced with homologous tissues from quail embryos, whose cells contain a heterochromatin marker. Placode-derived neurons associated with cranial nerves V, VII, IX, and X are located distal to crest-derived neurons. The generally larger, embryonic placodal neurons are found in the distal portions of both lobes of the trigeminal ganglion, and in the geniculate, petrosal and nodose ganglia. Crest-derived neurons are found in the proximal trigeminal ganglion and in the combined proximal ganglion of cranial nerves IX and X. Neurons in the vestibular and acoustic ganglia of cranial nerve VIII derive from placodal ectoderm with the exception of a few neural crest-derived neurons localized to regions within the vestibular ganglion. Schwann sheath cells and satellite cells associated with all these ganglia originate from neural crest. The ganglionic anlagen are arranged in cranial to caudal sequence from the level of the mesencephalon through the third somite. Presumptive placodal ectoderm for the VIIIth, the Vth, and the VIIth, IXth, and Xth ganglia are located in a medial to lateral fashion during early stages of development reflecting, respectively, the dorsolateral, intermediate, and epibranchial positions of these neurogenic placodes.  相似文献   

5.
6.
The cranial trigeminal ganglia play a vital role in the peripheral nervous system through their relay of sensory information from the vertebrate head to the brain. These ganglia are generated from the intermixing and coalescence of two distinct cell populations: cranial neural crest cells and placodal neurons. Trigeminal ganglion assembly requires the formation of cadherin‐based adherens junctions within the neural crest cell and placodal neuron populations; however, the molecular composition of these adherens junctions is still unknown. Herein, we aimed to define the spatio‐temporal expression pattern and function of Cadherin‐7 during early chick trigeminal ganglion formation. Our data reveal that Cadherin‐7 is expressed exclusively in migratory cranial neural crest cells and is absent from trigeminal neurons. Using molecular perturbation experiments, we demonstrate that modulation of Cadherin‐7 in neural crest cells influences trigeminal ganglion assembly, including the organization of neural crest cells and placodal neurons within the ganglionic anlage. Moreover, alterations in Cadherin‐7 levels lead to changes in the morphology of trigeminal neurons. Taken together, these findings provide additional insight into the role of cadherin‐based adhesion in trigeminal ganglion formation, and, more broadly, the molecular mechanisms that orchestrate the cellular interactions essential for cranial gangliogenesis.  相似文献   

7.
8.
Several studies have suggested that the development of cholinergic properties in cranial parasympathetic neurons is determined by these cells' axial level of origin in the neural crest. All cranial parasympathetic neurons normally derive from cranial neural crest. Trunk neural crest cells give rise to sympathetic neurons, most of which are noradrenergic. To determine if there is an intrinsic difference in the ability of cranial and trunk neural crest cells to form cholinergic neurons, we have compared the development of choline acetyltransferase (ChAT)-immunoreactive cells in explants of quail cranial and trunk neural crest in vitro. Both cranial and trunk neural crest explants gave rise to ChAT-immunoreactive cells in vitro. In both types of cultures, some of the ChAT-positive cells also expressed immunoreactivity for the catecholamine synthetic enzyme tyrosine hydroxylase. However, several differences were seen between cranial and trunk cultures. First, ChAT-immunoreactive cells appeared two days earlier in cranial than in trunk cultures. Second, cranial cultures contained a higher proportion of ChAT-immunoreactive cells. Finally, a subpopulation of the ChAT-immunoreactive cells in cranial cultures exhibited neuronal traits, including neurofilament immunoreactivity. In contrast, neurofilament-immunoreactive cells were not seen in trunk cultures. These results suggest that premigratory cranial and trunk neural crest cells differ in their ability to form cholinergic neurons.  相似文献   

9.
In all higher vertebrate embryos the sensory ganglia of the trunk develop adjacent to the neural tube, in the cranial halves of the somite-derived sclerotomes. It has been known for many years that ganglia do not develop in the most cranial (occipital) sclerotomes, caudal to the first somite. Here we have investigated whether this is due to craniocaudal variation in the neural tube or crest, or to an unusual property of the sclerotomes at occipital levels. Using the monoclonal antibody HNK-1 as a marker for neural crest cells in the chick embryo, we find that the crest does enter the cranial halves of the occipital sclerotomes. Furthermore, staining with zinc iodide/osmium tetroxide shows that some of these crest-derived cells sprout axons within these sclerotomes. By stage 23, however, no dorsal root ganglia are present within the five occipital sclerotomes, as assessed both by haematoxylin/eosin and zinc iodide/osmium tetroxide staining. Moreover, despite this loss of sensory cells, motor axons grow out in these segments, many of them later fasciculating to form the hypoglossal nerve. The sclerotomes remain visible until stages 27/28, when they dissociate to form the base of the skull and the atlas and axis vertebrae. After grafting occipital neural tube from quail donor embryos in place of trunk neural tube in host chick embryos, quail-derived ganglia do develop in the trunk sclerotomes. This shows that the failure of occipital ganglion development is not the result of some fixed local property of the neural crest or neural tube at occipital levels. We therefore suggest that in the chick embryo the cranial halves of the five occipital sclerotomes lack factors essential for normal sensory ganglion development, and that these factors are correspondingly present in all the more caudal sclerotomes.  相似文献   

10.
11.
Dorsal root ganglia (DRGs) arise from trunk neural crest cells that emerge from the dorsal neuroepithelium and coalesce into segmental streams that migrate ventrally along the developing somites. Proper formation of DRGs involves not only normal trunk neural crest migration, but also the ability of DRG progenitors to pause at a particular target location where they can receive DRG-promoting signals. In mammalian embryos, a receptor tyrosine kinase proto-oncogene, ErbB3, is required for proper trunk neural crest migration. Here, we show that in zebrafish mutants lacking ErbB3 function, neural crest cells do not pause at the location where DRGs normally form and DRG neurons are not generated. We also show that these mutants lack trunk neural crest-derived sympathetic neurons, but that cranial neural crest-derived enteric neurons appear normal. We isolated three genes encoding neuregulins, ErbB3 ligands, and show that two neuregulins function together in zebrafish trunk neural crest cell migration and in DRG formation. Together, our results suggest that ErbB3 signaling is required for normal migration of trunk, but not cranial, neural crest cells.  相似文献   

12.
The neural crest of vertebrate embryos has been used to elucidate steps involved in early embryonic cellular processes such as differentiation and migration. Neural crest cells form a ridge along the dorsal midline and subsequently they migrate throughout the embryo and differentiate into a wide variety of cell types. Intrinsic factors and environmental cues distributed along the neural tube, along the migratory pathways, and/or at the location of arrest influence the fate of neural crest cells. Although premigratory cells of the cranial and trunk neural crest exhibit differences in their differentiation potentials, premigratory trunk neural crest cells are generally assumed to have equivalent developmental potentials. Axolotl neural crest cells from different regions of origin, different stages of development, and challenged with different culture media have been analyzed for differentiation preferences pertaining to the pigment cell lineages. We report region-dependent differentiation of chromatophores from trunk neural crest at two developmental stages. Also, dosage with guanosine produces region-specific influences on the production of xanthophores from wild-type embryos. Our results support the hypothesis that spatial and temporal differences among premigratory trunk neural crest cells found along the anteroposterior axis influence developmental potentials and diminish the equivalency of axolotl neural crest cells.  相似文献   

13.
While most cranial ganglia contain neurons of either neural crest or placodal origin, neurons of the trigeminal ganglion derive from both populations. The Wnt signaling pathway is known to be required for the development of neural crest cells and for trigeminal ganglion formation, however, migrating neural crest cells do not express any known Wnt ligands. Here we demonstrate that Wise, a Wnt modulator expressed in the surface ectoderm overlying the trigeminal ganglion, play a role in promoting the assembly of placodal and neural crest cells. When overexpressed in chick, Wise causes delamination of ectodermal cells and attracts migrating neural crest cells. Overexpression of Wise is thus sufficient to ectopically induce ganglion-like structures consisting of both origins. The function of Wise is likely synergized with Wnt6, expressed in an overlapping manner with Wise in the surface ectoderm. Electroporation of morpholino antisense oligonucleotides against Wise and Wnt6 causes decrease in the contact of neural crest cells with the delaminated placode-derived cells. In addition, targeted deletion of Wise in mouse causes phenotypes that can be explained by a decrease in the contribution of neural crest cells to the ophthalmic lobe of the trigeminal ganglion. These data suggest that Wise is able to function cell non-autonomously on neural crest cells and promote trigeminal ganglion formation.  相似文献   

14.
Neurons of cranial sensory ganglia are derived from the neural crest and ectodermal placodes, but the mechanisms that control the relative contributions of each are not understood. Crest cells of the second branchial arch generate few facial ganglion neurons and no vestibuloacoustic ganglion neurons, but crest cells in other branchial arches generate many sensory neurons. Here we report that the facial ganglia of Hoxa2 mutant mice contain a large population of crest-derived neurons, suggesting that Hoxa2 normally represses the neurogenic potential of second arch crest cells. This may represent an anterior transformation of second arch neural crest cells toward a fate resembling that of first arch neural crest cells, which normally do not express Hoxa2 or any other Hox gene. We additionally found that overexpressing Hoxa2 in cultures of P19 embryonal carcinoma cells reduced the frequency of spontaneous neuronal differentiation, but only in the presence of cotransfected Pbx and Meis Hox cofactors. Finally, expression of Hoxa2 and the cofactors in chick neural crest cells populating the trigeminal ganglion also reduced the frequency of neurogenesis in the intact embryo. These data suggest an unanticipated role for Hox genes in controlling the neurogenic potential of at least some cranial neural crest cells.  相似文献   

15.
The quail-chick marker system has been used to study the early developmental stages of the ganglia located along cranial nerves VII, IX, and X. The streams of neural crest cells arising from the rhombencephalic-vagal neural crest were followed from the onset of their migration up to the localization of crest cells in the trunk and root ganglia of these nerves. It was shown that two different populations of crest cells are segregated early as a result of morphogenetic movements in the hypobranchial region. The dorsal population gives rise to the root ganglia of nerves IX and X located close to the encephalic vesicles, where the crest cells differentiate both into neurons and into glia. In contrast, the ventral stream of neural crest cells contributes together with cells from epibranchial placodes to the trunk ganglia (geniculate, petrous, and nodose ganglia) of cranial nerves VII, IX, and X. The successive steps of the invasion of the placodal anlage by crest cells can be followed owing to the selective labeling of the neural crest cells. It appears that the latter give rise to the satellite cells of the geniculate, petrous, and nodose ganglia while the large sensory neurons originate from the placodes. The nodose ganglion has been the subject of further studies aimed to investigate whether neuronal potentialities can be elicited in the neural crest-derived cells that it contains. The ability to label selectively either the neurons or the glia by the quail nuclear marker made this investigation possible in the particular case of the nodose ganglion whose neurons and satellite cells have a different embryonic origin. By the technique already described (N. M. Le Douarin, M. A. Teillet, C. Ziller, and J. Smith, 1978, Proc. Nat. Acad. Sci. USA75, 2030–2034) of back-transplantation into the neural crest migration pathway of a younger host, it was shown that the presumptive glial cells of the nodose ganglion are able to remigrate when transplanted into a 2-day chick host and to differentiate into autonomic structures (sympathetic ganglion cells, adrenomedullary cells, and enteric ganglia). It is proposed as a working hypothesis that neuronal potentialities contained in the neural crest cells which invade the placodal primordium of the nodose ganglion are repressed through cell-cell interactions occurring between placodal and crest cells.  相似文献   

16.
The precise migration of neural crest cells is apparently controlled by their environment. We have examined whether the embryonic tissue spaces in which crest cells normally migrate are sufficient to account for the pattern of crest cell distribution and whether other migratory cells could also distribute themselves along these pathways. To this end, we grafted a variety of cell types into the initial crest cell migratory pathway in chicken embryos. These cell types included (a) undifferentiated neural crest cells isolated from cultured neural tubes, intact crest from cranial neural folds, and crest derivatives (pigment cells and spinal ganglia); (b) normal embryonic fibroblastic cells from somite, limb bud, lateral plate, and heart ventricle; and (c) a transformed fibroblastic cell line (Sarcoma 180). Crest cells or their derivatives grafted into the crest migratory pathway all distributed normally, although in contrast to the result when neural tubes were graftedin situ, fewer cells were observed in the epithelium and few or none were localized in the nascent spinal ganglia. Grafted quail somite cells contributed to normal somitic structures and did not migrate extensively in the chicken host. Other fibroblasts did not migrate along cranial or trunk crest pathways, or invade adjacent tissues, but remained intact at the graft site. Sarcoma 180 cells, however, distributed themselves along the normal trunk crest pathway. Cranial and trunk crest cells and crest derivatives grafted ectopically in the limb bud or somite also dispersed, and were found along the ventral migratory pathway. Fibroblastic cells grafted into ectopic sites again remained intact and did not invade host tissue. We conclude (1) that neural crest cells and their derivatives are highly motile and invasive in their normal pathway, as well as in unfamiliar embryonic environments; and (2) that the crest pathway does not act solely to direct neural crest cells, since at least one transformed cell can follow the crest migratory route.  相似文献   

17.
The ontogeny of the neurons exhibiting substance P-like immunoreactivity (SPLI) was examined in the spinal and cranial sensory ganglia of chick and quail embryos. It was shown that in dorsal root ganglia (DRG) virtually all neuronal somas occupying the mediodorsal (MD) region of the ganglia are SPLI-positive while the larger neurons of the lateroventral (LV) area are SPLI-negative. In the cranial nerve ganglia, both types of neurons coexist in the trigeminal ganglion but with a different distribution: small neurons with SPLI are proximal while large neurons without SPLI occupy the maxillomandibular and ophthalmic lobes. The distal ganglia of nerves VII and IX (i.e., geniculate, petrosal) do not show cell bodies with SPLI in the two species considered. A few of them only (about 12%) are found in the nodose (distal ganglion of nerve X). The proximal ganglia of nerves IX and X (i.e., superior-jugular complex) are composed of small neurons which virtually all exhibit SPLI. Chimaeric cranial sensory ganglia were constructed by grafting the quail hind-brain primordium into chick embryos. Revelation of SPLI was combined with acridine orange staining on the same sections in order to ascertain the placodal (chick host) or neural crest (quail donor) origin of the SP-positive neurons in each type of ganglion. We found that all the neurons showing SPLI are derived from the neural crest in the trigeminal and in the superior and jugular ganglia. In the geniculate, petrosal, and nodose all the neurons are derived from the placodal ectoderm. The small number of SPLI-positive cells of the nodose ganglia are not an exception to this rule. Therefore, generally speaking, the sensory neurons of the cranial ganglia that express the SP phenotype are derived from the crest, with the exception of some neurons present in the nodose of both quail and chick embryos and which are of placodal origin. The vast majority of placode-derived neurons do not have amounts of SP that can be detected under the conditions of the present study.  相似文献   

18.
We examined the role of Delta signaling in specification of two derivatives in zebrafish neural plate: Rohon-Beard spinal sensory neurons and neural crest. deltaA-expressing Rohon-Beard neurons are intermingled with premigratory neural crest cells in the trunk lateral neural plate. Embryos homozygous for a point mutation in deltaA, or with experimentally reduced delta signalling, have supernumerary Rohon-Beard neurons, reduced trunk-level expression of neural crest markers and lack trunk neural crest derivatives. Fin mesenchyme, a putative trunk neural crest derivative, is present in deltaA mutants, suggesting it segregates from other neural crest derivatives as early as the neural plate stage. Cranial neural crest derivatives are also present in deltaA mutants, revealing a genetic difference in regulation of trunk and cranial neural crest development.  相似文献   

19.
Neuropilin (NRP) receptors and their class 3 semaphorin (SEMA3) ligands play well-established roles in axon guidance, with loss of NRP1, NRP2, SEMA3A or SEMA3F causing defasciculation and errors in growth cone guidance of peripherally projecting nerves. Here we report that loss of NRP1 or NRP2 also impairs sensory neuron positioning in the mouse head, and that this defect is a consequence of inappropriate cranial neural crest cell migration. Specifically, neural crest cells move into the normally crest-free territory between the trigeminal and hyoid neural crest streams and recruit sensory neurons from the otic placode; these ectopic neurons then extend axons between the trigeminal and facioacoustic ganglia. Moreover, we found that NRP1 and NRP2 cooperate to guide cranial neural crest cells and position sensory neurons; thus, in the absence of SEMA3/NRP signalling, the segmentation of the cranial nervous system is lost. We conclude that neuropilins play multiple roles in the sensory nervous system by directing cranial neural crest cells, positioning sensory neurons and organising their axonal projections.  相似文献   

20.
We have investigated dorsal root ganglion formation, in the avian embryo, as a function of the composition of the paraxial somitic mesoderm. Three or four contiguous young somites were unilaterally removed from chick embryos and replaced by multiple cranial or caudal half-somites from quail embryos. Migration of neural crest cells and formation of DRG were subsequently visualized both by the HNK-1 antibody and the Feulgen nuclear stain. At advanced migratory stages (as defined by Teillet et al. Devl Biol. 120, 329-347 1987), neural crest cells apposed to the dorsolateral faces of the neural tube were distributed in a continuous, nonsegmented pattern that was indistinguishable on unoperated sides and on sides into which either half of the somites had been grafted. In contrast, ventrolaterally, neural crest cells were distributed segmentally close to the neural tube and within the cranial part of each normal sclerotome, whereas they displayed a nonsegmental distribution when the graft involved multiple cranial half-somites or were virtually absent when multiple caudal half-somites had been implanted. In spite of the identical dorsal distribution of neural crest cells in all embryos, profound differences in the size and segmentation of DRG were observed during gangliogenesis (E4-9) according to the type of graft that had been performed. Thus when the implant consisted of compound cranial half-somites, giant, coalesced ganglia developed, encompassing the entire length of the graft. On the other hand, very small, dorsally located ganglia with irregular segmentation were seen at the level corresponding to the graft of multiple caudal half-somites. We conclude that normal morphogenesis of dorsal root ganglia depends upon the craniocaudal integrity of the somites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号