首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cranial neurogenic placodes and the neural crest make essential contributions to key adult characteristics of all vertebrates, including the paired peripheral sense organs and craniofacial skeleton. Neurogenic placode development has been extensively characterized in representative jawed vertebrates (gnathostomes) but not in jawless fishes (agnathans). Here, we use in vivo lineage tracing with DiI, together with neuronal differentiation markers, to establish the first detailed fate-map for placode-derived sensory neurons in a jawless fish, the sea lamprey Petromyzon marinus, and to confirm that neural crest cells in the lamprey contribute to the cranial sensory ganglia. We also show that a pan-Pax3/7 antibody labels ophthalmic trigeminal (opV, profundal) placode-derived but not maxillomandibular trigeminal (mmV) placode-derived neurons, mirroring the expression of gnathostome Pax3 and suggesting that Pax3 (and its single Pax3/7 lamprey ortholog) is a pan-vertebrate marker for opV placode-derived neurons. Unexpectedly, however, our data reveal that mmV neuron precursors are located in two separate domains at neurula stages, with opV neuron precursors sandwiched between them. The different branches of the mmV nerve are not comparable between lampreys and gnatho-stomes, and spatial segregation of mmV neuron precursor territories may be a derived feature of lampreys. Nevertheless, maxillary and mandibular neurons are spatially segregated within gnathostome mmV ganglia, suggesting that a more detailed investigation of gnathostome mmV placode development would be worthwhile. Overall, however, our results highlight the conservation of cranial peripheral sensory nervous system development across vertebrates, yielding insight into ancestral vertebrate traits.  相似文献   

2.
3.
Vertebrate cranial ectodermal placodes are transient, paired thickenings of embryonic head ectoderm that are crucial for the formation of the peripheral sensory nervous system: they give rise to the paired peripheral sense organs (olfactory organs, inner ears and anamniote lateral line system), as well as the eye lenses, and most cranial sensory neurons. Here, we present the first detailed spatiotemporal fate-maps in any vertebrate for the ophthalmic trigeminal (opV) and maxillomandibular trigeminal (mmV) placodes, which give rise to cutaneous sensory neurons in the ophthalmic and maxillomandibular lobes of the trigeminal ganglion. We used focal DiI and DiO labelling to produce eight detailed fate-maps of chick embryonic head ectoderm over approximately 24 h of development, from 0-16 somites. OpV and mmV placode precursors arise from a partially overlapping territory; indeed, some individual dyespots labelled both opV and mmV placode-derived cells. OpV and mmV placode precursors are initially scattered within a relatively large region of ectoderm adjacent to the neural folds, intermingled both with each other and with future epidermal cells, and with geniculate and otic placode precursors. Although the degree of segregation increases with time, there is no clear border between the opV and mmV placodes even at the 16-somite stage, long after neurogenesis has begun in the opV placode, and when neurogenesis is just beginning in the mmV placode. Finally, we find that occasional cells in the border region between the opV placode and mmV placode express both Pax3 (an opV placode specific marker) and Neurogenin1 (an mmV placode specific marker), suggesting that a few cells are responding to both opV and mmV placode-inducing signals. Overall, our results fill a large gap in our knowledge of the early stages of development of both the opV and mmV placodes, providing an essential framework for subsequent studies of the molecular control of their development.  相似文献   

4.
Much of the peripheral nervous system of the head is derived from ectodermal thickenings, called placodes, that delaminate or invaginate to form cranial ganglia and sense organs. The trigeminal ganglion, which arises lateral to the midbrain, forms via interactions between the neural tube and adjacent ectoderm. This induction triggers expression of Pax3, ingression of placode cells and their differentiation into neurons. However, the molecular nature of the underlying signals remains unknown. Here, we investigate the role of PDGF signaling in ophthalmic trigeminal placode induction. By in situ hybridization, PDGF receptor beta is expressed in the cranial ectoderm at the time of trigeminal placode formation, with the ligand PDGFD expressed in the midbrain neural folds. Blocking PDGF signaling in vitro results in a dose-dependent abrogation of Pax3 expression in recombinants of quail ectoderm with chick neural tube that recapitulate placode induction. In ovo microinjection of PDGF inhibitor causes a similar loss of Pax3 as well as the later placodal marker, CD151, and failure of neuronal differentiation. Conversely, microinjection of exogenous PDGFD increases the number of Pax3+ cells in the trigeminal placode and neurons in the condensing ganglia. Our results provide the first evidence for a signaling pathway involved in ophthalmic (opV) trigeminal placode induction.  相似文献   

5.
6.
Cranial placodes are ectodermal regions that contribute extensively to the vertebrate peripheral sensory nervous system. The development of the ophthalmic trigeminal (opV) placode, which gives rise only to sensory neurons of the ophthalmic lobe of the trigeminal ganglion, is a useful model of sensory neuron development. While key differentiation processes have been characterized at the tissue and cellular levels, the signaling pathways governing opV placode development have not. Here we tested in chick whether the canonical Wnt signaling pathway regulates opV placode development. By introducing a Wnt reporter into embryonic chick head ectoderm, we show that the canonical pathway is active in Pax3+ opV placode cells as, or shortly after, they are induced to express Pax3. Blocking the canonical Wnt pathway resulted in the failure of targeted cells to adopt or maintain an opV fate, as assayed by the expression of various markers including Pax3, FGFR4, Eya2, and the neuronal differentiation markers Islet1, neurofilament, and NeuN, although, surprisingly, it led to upregulation of Neurogenin2, both in the opV placode and elsewhere in the ectoderm. Activating the canonical Wnt signaling pathway, however, was not sufficient to induce Pax3, the earliest specific marker of the opV placode. We conclude that canonical Wnt signaling is necessary for normal opV placode development, and propose that other molecular cues are required in addition to Wnt signaling to promote cells toward an opV placode fate.  相似文献   

7.
8.
Sensory nerves play a vital role in maintaining corneal transparency. They originate in the trigeminal ganglion, which is derived from two embryonic cell populations (cranial neural crest and ectodermal placode). Nonetheless, it is unclear whether corneal nerves arise from neural crest, from placode, or from both. Quail-chick chimeras and species-specific antibodies allowed tracing quail-derived neural crest or placode cells during trigeminal ganglion and corneal development, and after ablation of either neural crest or placode. Neural crest chimeras showed quail nuclei in the proximal part of the trigeminal ganglion, and quail nerves in the pericorneal nerve ring and in the cornea. In sharp contrast, placode chimeras showed quail nuclei in the distal part of the trigeminal ganglion, but no quail nerves in the cornea or in the pericorneal nerve ring. Quail placode-derived nerves were present, however, in the eyelids. Neural crest ablation between stages 8 and 9 resulted in diminished trigeminal ganglia and absence of corneal innervation. Ablation of placode after stage 11 resulted in loss of the ophthalmic branch of the trigeminal ganglion and reduced corneal innervation. Noninnervated corneas still became transparent. These results indicate for the first time that although both neural crest and placode contribute to the trigeminal ganglion, corneal innervation is entirely neural crest-derived. Nonetheless, proper corneal innervation requires presence of both cell types in the embryonic trigeminal ganglion. Also, complete lack of innervation has no discernible effect on development of corneal transparency or cell densities.  相似文献   

9.
The method of embryonic tissue transplantation was used to confirm the dual origin of avian cranial sensory ganglia, to map precise locations of the anlagen of these sensory neurons, and to identify placodal and neural crest-derived neurons within ganglia. Segments of neural crest or strips of presumptive placodal ectoderm were excised from chick embryos and replaced with homologous tissues from quail embryos, whose cells contain a heterochromatin marker. Placode-derived neurons associated with cranial nerves V, VII, IX, and X are located distal to crest-derived neurons. The generally larger, embryonic placodal neurons are found in the distal portions of both lobes of the trigeminal ganglion, and in the geniculate, petrosal and nodose ganglia. Crest-derived neurons are found in the proximal trigeminal ganglion and in the combined proximal ganglion of cranial nerves IX and X. Neurons in the vestibular and acoustic ganglia of cranial nerve VIII derive from placodal ectoderm with the exception of a few neural crest-derived neurons localized to regions within the vestibular ganglion. Schwann sheath cells and satellite cells associated with all these ganglia originate from neural crest. The ganglionic anlagen are arranged in cranial to caudal sequence from the level of the mesencephalon through the third somite. Presumptive placodal ectoderm for the VIIIth, the Vth, and the VIIth, IXth, and Xth ganglia are located in a medial to lateral fashion during early stages of development reflecting, respectively, the dorsolateral, intermediate, and epibranchial positions of these neurogenic placodes.  相似文献   

10.
Neurogenic placodes are transient, thickened patches of embryonic vertebrate head ectoderm that give rise to the paired peripheral sense organs and most neurons in cranial sensory ganglia. We present the first analysis of gene expression during neurogenic placode development in a basal actinopterygian (ray-finned fish), the North American paddlefish (Polyodon spathula). Pax3 expression in the profundal placode confirms its homology with the ophthalmic trigeminal placode of amniotes. We report the conservation of expression of Pax2 and Pax8 in the otic and/or epibranchial placodes, Phox2b in epibranchial placode-derived neurons, Sox3 during epibranchial and lateral line placode development, and NeuroD in developing cranial sensory ganglia. We identify Sox3 as a novel marker for developing fields of electrosensory ampullary organs and for ampullary organs themselves. Sox3 is also the first molecular marker for actinopterygian ampullary organs. This is consistent with, though does not prove, a lateral line placode origin for actinopterygian ampullary organs.  相似文献   

11.
The ontogeny of the neurons exhibiting substance P-like immunoreactivity (SPLI) was examined in the spinal and cranial sensory ganglia of chick and quail embryos. It was shown that in dorsal root ganglia (DRG) virtually all neuronal somas occupying the mediodorsal (MD) region of the ganglia are SPLI-positive while the larger neurons of the lateroventral (LV) area are SPLI-negative. In the cranial nerve ganglia, both types of neurons coexist in the trigeminal ganglion but with a different distribution: small neurons with SPLI are proximal while large neurons without SPLI occupy the maxillomandibular and ophthalmic lobes. The distal ganglia of nerves VII and IX (i.e., geniculate, petrosal) do not show cell bodies with SPLI in the two species considered. A few of them only (about 12%) are found in the nodose (distal ganglion of nerve X). The proximal ganglia of nerves IX and X (i.e., superior-jugular complex) are composed of small neurons which virtually all exhibit SPLI. Chimaeric cranial sensory ganglia were constructed by grafting the quail hind-brain primordium into chick embryos. Revelation of SPLI was combined with acridine orange staining on the same sections in order to ascertain the placodal (chick host) or neural crest (quail donor) origin of the SP-positive neurons in each type of ganglion. We found that all the neurons showing SPLI are derived from the neural crest in the trigeminal and in the superior and jugular ganglia. In the geniculate, petrosal, and nodose all the neurons are derived from the placodal ectoderm. The small number of SPLI-positive cells of the nodose ganglia are not an exception to this rule. Therefore, generally speaking, the sensory neurons of the cranial ganglia that express the SP phenotype are derived from the crest, with the exception of some neurons present in the nodose of both quail and chick embryos and which are of placodal origin. The vast majority of placode-derived neurons do not have amounts of SP that can be detected under the conditions of the present study.  相似文献   

12.
13.
Neural crest cells are considered a key vertebrate feature that is studied intensively because of their relevance to development and evolution. Here we report the expression of Pax7 in the dorsal non-neural ectoderm and in the trunk neural crest of the early chick embryo. Pax7 is expressed in the trunk neural crest migrating along the ventral and dorsolateral routes. Pax7 is first downregulated in the neural crest-derived neuronal precursors, secondly in the glial, and finally in the melanocyte precursors. Conserved developmental expression in the melanocyte lineage of both Pax3 and Pax7 was evidenced in chick and quail, but only Pax3 in mouse and rat.  相似文献   

14.
15.
16.
17.
Migratory cranial neural crest cells differentiate into a wide range of cell types, such as ectomesenchymal tissue (bone and connective tissues) ventrally in the branchial arches and neural tissue (neurons and glia) dorsally. We investigated spatial and temporal changes of migration and differentiation potential in neural crest populations derived from caudal midbrain and rhombomeres 1 and 2 by back-transplanting cells destined for the first branchial arch and trigeminal ganglion from HH8-HH19 quail into HH7-HH11 chicks. Branchial arch cells differentiated down ectomesenchymal lineages but largely lost both the ability to localize to the trigeminal position and neurogenic differentiation capacity by HH12-HH13, even before the arch is visible, and lost long distance migratory ability around HH17. In contrast, neural crest-derived cells from trigeminal ganglia lost ectomesechymal differentiation potential by HH17. Despite this, they retain the ability to migrate into the branchial arches until at least HH19. However, many of the neural crest-derived trigeminal ganglia cells in the branchial arch localized to the non-neural crest core of the arch from HH13 and older donors. These results suggest that long distance migration ability, finer scale localization, and lineage restriction may not be coordinately regulated in the cranial neural crest population.  相似文献   

18.
19.
The nodose ganglion is the distal cranial ganglion of the vagus nerve which provides sensory innervation to the heart and other viscera. In this study, removal of the neuronal precursors which normally populate the right nodose ganglion was accomplished by ablating the right nodese placode in stage 9 chick embryos. Subsequent histological evaluation showed that in 54% of lesioned embryos surviving to day 6, the right ganglion was absent. Most embryos surviving to day 12, however, had identifiable right ganglia. In day 12 embryos, the right ganglion which developed was abnormal, with ganglion volume and ganglion cell diameter reduced by 50% and 20%, respectively, compared to control ganglia. To investigate the source of the neuron population in the regenerated ganglion, we combined nodose placode ablation with bilateral replacement of chick with quail cardiac neural crest (from mid-otic placode to somite 3). These cells normally provide only non-neuronal cells to the nodose ganglion, but produce neurons in other regions. At day 9, quail-derived neurons were identified in the right nodose ganglia of these chimeras, indicating that cardiac neural crest cells can generate neurons in the ganglion when placode-derived neurons are absent or reduced in number. On the other hand, we found that sympathetic neural crest (from somites 10 to 20) does not support ganglion development, suggesting that only neural crest cells normally present in the ganglion participate in reconstituting its neuronal population. Our previous work has shown that right nodose placode ablation produces abnormal cardiac function, which mimics a life-threatening human heart condition known as long QT syndrome. The present results suggest that the presence of neural crest-derived neurons in the developing right nodose ganglion may contribute to the functional abnormality in long QT syndrome.This work was supported by grant PO1 HL 36059  相似文献   

20.
Sensory ganglia taken from quail embryos at E4 to E7 were back-transplanted into the vagal neural crest migration pathway (i.e., at the level of somites 1 to 6) of 8- to 10-somite stage chick embryos. Three types of sensory ganglia were used: (i) proximal ganglia of cranial sensory nerves IX and X forming the jugular-superior ganglionic complex, whose neurons and nonneuronal cells both arise from the neural crest; (ii) distal ganglia of the same nerves, i.e., the petrosal and nodose ganglia in which the neurons originate from epibranchial placodes and the nonneuronal cells from the neural crest; (iii) dorsal root ganglia taken in the truncal region between the fore- and hindlimb levels. The question raised was whether cells from the graft would be able to yield the neural crest derivatives normally arising from the hindbrain and vagal crest, such as carotid body type I and II cells, enteric ganglia, Schwann cells located along the local nerves, and the nonneuronal contingent of cells in the host nodose ganglion. All the grafted cephalic ganglia provided the host with the complete array of these cell types. In contrast, grafted dorsal root ganglion cells gave rise only to carotid body type I and II cells, to the nonneuronal cells of the nodose ganglion, and to Schwann cells; the ganglion-derived cells did not invade the gut and therefore failed to contribute to the host's enteric neuronal system. Coculture on the chorioallantoic membrane of aneural chick gut directly associated with quail sensory ganglia essentially reinforced these results. These data demonstrate that the capacity of peripheral ganglia to provide enteric plexuses varies according to the level of the neuraxis from which they originate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号