首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsatellites are highly polymorphic and efficient markers for the analysis of plant genomes. Primer specificity, however, may restrict the applicability of these markers even between closely related species for comparative mapping studies. We have demonstrated that the majority of microsatellites identified in oilseed rape (Brassica napus L; AC genome) correspond to loci which can be easily assigned to the A and C progenitor genomes. A study with 63 primer pairs has shown that 54% detect two loci, one from each genome, while 25% and 21%, respectively, are either A or C genome-specific. The distribution of rapeseed microsatellites in the C genome was investigated by genetic mapping in Brassica oleracea L. Ninety two dinucleotide microsatellites were screened for polymorphism in an F2 population derived from a cross between collard and cauliflower, for which an RFLP map has been constructed previously. Thirty three primer pairs (35.7%) have yielded either unspecific or no PCR products whereas the remaining primer pairs amplified one or more distinct loci. The level of polymorphism found in the mapping population was 49.2%. A total of 29 primer pairs disclosed 34 loci of which 31 are evenly distributed on 8 of the 9 B. oleracea linkage groups. For the remaining three markers linkage could not be established. Our results showed that microsatellite markers from the composite genome of B. napus can serve as a useful marker system in genetic studies and for plant-breeding objectives in B. oleracea. Received: 14 April 2000 / Accepted: 3 July 2000  相似文献   

2.
We constructed a Brassica napus genetic map with 240 simple sequence repeats (SSR) primer pairs from private and public origins. SSR, or microsatellites, are highly polymorphic and efficient markers for the analysis of plant genomes. Our selection of primer pairs corresponded to 305 genetic loci that we were able to map. In addition, we also used 52 sequence-characterized amplified region primer pairs corresponding to 58 loci that were developed in our lab. Genotyping was performed on six F2 populations, corresponding to a total of 574 F2 individual plants, obtained according to an unbalanced diallel cross design involving six parental lines. The resulting consensus map presented 19 linkage groups ranging from 46.2 to 276.5 cM, which we were able to name after the B. napus map available at , thus enabling the identification of the A genome linkage groups originating from the B. rapa ancestor and the C genome linkage groups originating from the B. oleracea ancestor in the amphidiploid genome of B. napus. Some homoeologous regions were identified between the A and the C genomes. This map could be used to identify more markers, which would eventually be linked to genes controlling important agronomic characters in rapeseed. Furthermore, considering the good genome coverage we obtained, together with an observed homogenous distribution of the loci across the genome, this map is a powerful tool to be used in marker-assisted breeding. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
The application of simple sequence repeat (SSR) genotyping for the characterization of genetic variation in crop plants has been hindered by ready access to useful primer pairs and potentially limited conservation of the repeat sequences among related species. In this phase of work, we report on the identification and characterization of SSRs that are conserved in Brassica napus L. (rapeseed) and its putative progenitors, B. oleracea L. (cabbage, and related vegetable types) and B. rapa (vegetable and oil types). Approximately 140 clones from a size-fractionated genomic library of B. napus were sequenced, and primer pairs were designed for 21 dinucleotide SSRs. Seventeen primer pairs amplified products in the three species and, among these, 13 detected variation between and within species. Unlike findings on SSR information content in human, no relationship could be established between the number of tandem repeats within the target sequence and heterozygosity. All primer pairs have been designed to work under identical amplification conditions; therefore, single-reaction, multiplex polymerase chain reaction (PCR) with these SSRs is possible. Once moderate numbers of primer pairs are accessible to the user community, SSR genotyping may provide a useful method for the characterization, conservation, and utilization of agricultural crop diversity.  相似文献   

4.
Isolation and characterization of microsatellites in Brassica rapa L   总被引:1,自引:0,他引:1  
We report here the isolation and characterization of microsatellites, or simple sequence repeats (SSRs), in Brassica rapa. The size-fractionated genomic library was screened with (GA)(15) and (GT)(15) oligonucleotide probes. A total of 58 clones were identified as having the microsatellite repeats, and specific primer pairs were designed for 38 microsatellite loci. All primer pairs, except two, amplified fragments having the sizes expected from the sequences. Of the 36 primer pairs, 35 amplified polymorphic loci in 19 cultivars of B. rapa, while monomorphism was observed in only one primer pair. A total of 232 alleles was identified by the 36 primer pairs in 19 cultivars of B. rapa, and these primer pairs were examined also in nine Brassicaceae species. Most of the 36 primer pairs amplified the loci in the Brassicaceae species. Segregation of the microsatellites was studied in an F(2) population from a cross of doubled-haploid lines DH27 x G309. The microsatellites segregated in a co-dominant manner. These results indicate that the microsatellites isolated in this study were highly informative and could be useful tools for genetic analysis in B. rapa and other related species.  相似文献   

5.
Microsatellite markers have assumed great significance in biological research. The isolation and characterisation of microsatellites involves DNA library construction and screening, DNA sequencing, primer design and PCR optimisation. When a microsatellite is situated close to the beginning or end of a cloned fragment, specific primers cannot be designed for one of the flanking sequences, thus hindering the utilisation of such microsatellites as markers. The present approach was to use one 5′-anchored primer complementary to the microsatellite sequence in combination with one specific Cy5- labelled primer with a view to retrieving useful microsatellites, which would otherwise be lost. Six pairs of a 5′ anchored primer and a specific primer were used across a set of 31 Brassica napus winter cultivars and one accession each of five additional Brassica species. Using laser fluorometry a single labelled product was observed after amplification with each of four primer pairs, and one primer pair gave two labelled products. Three products corresponded in size with the products expected if 5′ anchoring was effective, indicating the amplification of locus-specific full-length products including all of the microsatellite repeats. All six primer pairs showed polymorphisms across the Brassica species examined, but only one primer pair showed polymorphisms within B. napus, making it useful for genetic analysis in rapeseed cultivars. The other primer pairs could be useful in studying gene introgression into B. napus or for investigating interspecific crosses involving different Brassica species. Received: 5 August 1999 / Accepted: 1 November 1999  相似文献   

6.
We developed a simple marker technique called sequence-related amplified polymorphism (SRAP) aimed for the amplification of open reading frames (ORFs). It is based on two-primer amplification. The primers are 17 or 18 nucleotides long and consist of the following elements. Core sequences, which are 13 to 14 bases long, where the first 10 or 11 bases starting at the 5′ end, are sequences of no specific constitution (”filler” sequences), followed by the sequence CCGG in the forward primer and AATT in the reverse primer. The core is followed by three selective nucleotides at the 3′ end. The filler sequences of the forward and reverse primers must be different from each other and can be 10 or 11 bases long. For the first five cycles the annealing temperature is set at 35°C. The following 35 cycles are run at 50°C. The amplified DNA fragments are separated by denaturing acrylamide gels and detected by autoradiography. We tested the marker technique in a series of recombinant inbred and doubled-haploid lines of Brassica oleracea L. After sequencing, approximately 45% of the gel-isolated bands matched known genes in the Genbank database. Twenty percent of the SRAP markers were co-dominant, which was demonstrated by sequencing. Construction of a linkage map revealed an even distribution of the SRAP markers in nine major linkage groups, not differing in this regard to AFLP markers. We successfully tagged the glucosinolate desaturation gene BoGLS-ALK with these markers. SRAPs were also easily amplified in other crops such as potato, rice, lettuce, Chinese cabbage (Brassica rapa L.), rapeseed (Brassica napus L.), garlic, apple, citrus, and celery. We also amplified cDNA isolated from different tissues of Chinese cabbage, allowing the fingerprinting of these sequences. Received: 3 November 2000 / Accepted 24 November 2000  相似文献   

7.
Difficulty in propagating self-incompatible lines on a large scale limits the utilization of self-incompatibility in Brassica napus. The self-incompatible line S-1300 and its maintainer Bing409 were used in this study to develop molecular markers linked to the maintenance for the self-incompatibility of S-1300. The maintenance of Bing409 is controlled by one recessive gene. SLG-specific primer pairs PS5/PS15 and PS3/PS21 cannot be used to discriminate the S haplotypes of Bing409 and S-1300. BrSRK-60-based primer pair SRKa-L and SRKa-R produced one band in S-1300, but no band in Bing409. BrSP11-60-based primer pair SP11a-L and SP11a-R gave rise to one band in S-1300 and Bing409, but their length was different. Compared with SP11-S-1300, SP11-Bing409 had two deletions of 2 and 9 bp. One co-dominant cleaved amplified polymorphic sequence marker was developed; two dominant sequence characterized amplified region markers linked to the maintenance were developed on the 9 bp deletion. The markers co-segregated with self-incompatibility phenotypes in S-1300 × Bing409 F2, two BC1 and eight BC1F2 populations. We have shown a way to develop PCR markers linked to the S haplotype of B. napus, which could be very helpful for marker-assisted selection in B. napus hybrid breeding.  相似文献   

8.
Using an enrichment procedure, we have cloned and sequenced microsatellite loci from black poplar (Populus nigra L.) and developed primers for sequence-tagged microsatellite (STMS) analysis. Twelve primer pairs for dinucleotide repeats produced fragments of sufficient quality which were polymorphic in P. nigra. Some of them also showed amplification in other Populus species (P. deltoides, P. tricocarpa, P. tremula, P. tremuloides, P. candicans, and/or P. lasiocarpa). The best nine and (GT) (GA) microsatellite markers were tested on a set of 23 P. nigra genotypes from all over Europe. The microsatellites were highly polymorphic, with 10–19 different alleles per microsatellite locus among these 23 genotypes. WPMS08 sometimes amplified three fragments. Using the other eight marker loci, the level of heterozygosity among the plants was on average 0.71 (range 0.25–1.00). The microsatellite markers developed will be useful for screening the genetic diversity in natural populations and in gene bank collections. Received: 21 October 1999 / Accepted: 24 November 1999  相似文献   

9.
AFLP markers were employed to assess the genetic diversity amongst 21 established natural and nine synthetic varietes and lines of Brassica juncea originating from Asia, Australia, Canada, Eastern Europe and Russia. Six of the synthetics used for diversity studies have been developed recently. Twenty one EcoRI/MseI-based AFLP primer pairs generated a total of 1251 scorable fragments among the 30 genotypes studied, of which 778 bands were polymorphic with an average of 37 polymorphic bands per primer pair. On the basis of the similarity coefficients (F value), cluster analysis was performed using the UPGMA method. The 30 B. juncea lines could be grouped into three distinct clusters. All the Indian, Chinese and previously developed synthetics formed one cluster (cluster A), the recently developed synthetics formed a separate cluster (cluster B) and the lines from Australia, Canada, Eastern Europe and Russia formed the third cluster (cluster C). A majority of the lines were uniquely identified by one or more primer pairs due to the presence or absence of variety specific band(s). Four primer pairs were found to be most informative, since these uniquely identified all the genotypes assayed. These four primer pairs, could therefore be used as fingerprinting primers for varietal identification. Received: 1 November 1999 / Accepted: 8 May 2000  相似文献   

10.
A size-fractionated library of Brassica napus L. (rapeseed), composed of 15000 clones, was screened for the presence of GA-, CA-, and GATA-simple-sequence repeats (SSRs). GA-SSRs were four- and five-fold more abundant than CA- and GATA-SSRs, respectively, and present at a frequency of approximately one SSR for every 100 kb of DNA. Following the sequencing of 124 positive clones, primer pairs were designed and evaluated for seven selected SSRs. Products were amplified in an array of individuals of B. napus, B. oleracea and B. rapa, demonstrating that the seven SSRs were conserved among species. Two SSRs were polymorphic. Among 11 accessions, the dinucleotide (GA)-repeat, B.n.9A, yielded 12 fragments, while the tetranucleotide-repeat (GATA), B.n.6A2, revealed two fragments. Automated, fluorescence-based detection of polyacrylamide gels has been employed to simultaneously increase throughput, reduce unit cost, improve analytical resolution, and expedite data acquisition of SSR analysis. Though initial financial investment and technical capabilities may prevent some from directly employing our documented approach, SSR analysis warrants further investigation as a tool in genetic studies for enhancing both the conservation and utilization of genetic resources.  相似文献   

11.
‘SI1300’ is a self-incompatible Brassica napus line generated by introgressing an S haplotype from B. rapa ‘Xishuibai’ into a rapeseed cultivar ‘Huayou No. 1’. Five S-locus specific primer pairs were employed to develop cleaved amplified polymorphic sequences (CAPS) markers linked the S haplotype of ‘SI1300’. Two segregating populations (F2 and BC1) from the cross between ‘SI1300’ and self-compatible European spring cultivar ‘Defender’, were generated to verify the molecular markers. CAPS analysis revealed no desirable polymorphism between self-incompatible and self-compatible plants. Twenty primer pairs were designed based on the homology-based candidate gene method, and six dominant sequence characterized amplified region (SCAR) markers linked with the S-locus were developed. Of the six markers, three were derived from the SRK and SP11 alleles of class II B. rapa S haplotypes and linked with S haplotype of ‘SI1300’. The other three markers were designed from the SLG-A10 and co-segregated with S haplotype of ‘Defender’. We successfully combined two pairs of them and characterized two multiplex PCR markers which could discriminate the homozygous and heterozygous genotypes. These markers were further validated in 24 F3 and 22 BC1F2 lines of ‘SI1300 × Defender’ and another two segregating populations from the cross ‘SI1300 × Yu No. 9’. Nucleotide sequences of fragments linked with S-locus of ‘SI1300’ showed 99% identity to B. rapa class II S-60 haplotype, and fragments from ‘Defender’ were 97% and 94% identical to SLG and SRK of B. rapa class I S-47 haplotype, respectively. ‘SI1300’ was considered to carry two class II S haplotypes and the S haplotype on the A-genome derived from B. rapa ‘Xishuibai’ determines the SI phenotype, while ‘Defender’ carry a class I S haplotype derived from B. rapa and a class II S haplotype from B. oleracea. SCAR markers developed in this study will be helpful for improving SI lines and accelerating marker-assisted selection process in rapeseed SI hybrid breeding program.  相似文献   

12.
 Microsatellites are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. The potential of microsatellite markers for use in a genetic diversity study in Elymus species was evaluated. Genomic libraries of Elymus caninus were constructed. The libraries were screened with two dinucleotide, (GA)n and (GT)n, and two trinucleotide repeats, (TCT)n and (CAC)n. A total of 19 positive clones were found for the two dinucleotide repeats; no positive clone was found for the trinucleotide repeats. Positive clones were sequenced to confirm the presence of microsatellites and to generate polymerase chain reaction (PCR) primers based on the sequences flanking the microsatellite. All sequenced (GA)n clones have repeats of n>10; over half of the (GT)n microsatellites have n<10 repeats. Primer pairs were designed and evaluated for 8 selected microsatellites. PCR products were amplified from 15 Elymus caninus accessions. The number of alleles found for the eight loci varied from 1 for ECGA89 and ECGT35 to 13 for ECGA22, as determined by non-denaturing polyacrylamide electrophoresis. Six microsatellite loci were found to be polymorphic in E. caninus. The eight primer pairs were tested on three other species; seven were successful in amplifying DNA from Elymus alaskanus and E. mutabilis, and four amplified DNA from E. caucasicus. Based on these results, microsatellites appear to be useful markers in detecting variation in E. caninus. Received: 8 September 1997/Accepted: 6 October 1997  相似文献   

13.
We report the isolation and characterization of the first set of sequence‐tagged microsatellites sites (STMS) markers in Catharanthus roseus, a plant with a vast range of medicinal uses. The microsatellite loci were cloned from an enriched library constructed using degenerate primers. Based on the microsatellite motifs, seven STMS primer pairs were designed. They were used to amplify 32 accessions of C. roseus and one accession of Catharanthus trichophyllus. The primers amplified an average of 3.86 alleles per locus. The observed heterozygosity ranged from 0.2903 to 0.9688 with an average of 0.7511. The STMS markers of C. roseus also amplified corresponding loci in a related species (C. trichophyllus) suggesting conservation of the loci across the genus. These markers will prove useful for genetic diversity analysis and linkage map construction in C. roseus.  相似文献   

14.
杂交育种依然是我国油菜育种的主要方法,杂种优势的利用仍然是提高产量的重要途径.为了解我国甘蓝型油菜的遗传变异,采用16个EST-SSR标记对近年来推广的91个品种的遗传多样性进行了分析.共扩增到100个条带,其中84个多态性带,多态性比率为84%.平均每对引物扩增的带数和多态性带数分别为6.25个和5.25个.多态性信息含量(PIC)变化在0.022-0.926之间,平均为0.677,所揭示的基因型数变化于2-24之间,平均为12.44个.供试材料间遗传距离变幅较大(0.0530-0.7223之间),说明它们具有广泛的遗传变异.其中,杂交种和2000年以后育成品种的遗传基础较宽,遗传多样性分别明显高于常规品种和2000年以前育成的品种.按非加权成对平均数法(UPGMA)进行的聚类分析显示,在遗传距离为0.313处,参试材料可以分为三大类,其中,包含87份材料的第一大类在遗传距离为0.233处又可进一步分为10个亚类.聚类结果与系谱来源基本一致,比较真实反映了所用材料的遗传变异情况.  相似文献   

15.
Microsatellites are valuable markers for the analysis of genetic diversity, linkage mapping or genotyping. The limited availability of microsatellites for the genus Potentilla (Rosaceae) stipulated the isolation of markers from a representative (Potentilla pusilla Host) of the Potentilla core group that constitutes the most species‐rich evolutionary lineage within the genus. Thousand four hundred and seventy‐six simple sequence repeat (SSR) containing candidate sequences were isolated from a single‐type line using 454 sequencing. Seventy‐four functional microsatellite markers were developed from 200 sequences selected for suitable priming sites flanking microsatellite repeats referring to a 37% primer‐to‐marker conversion ratio. Seventy‐two markers were polymorphic. These numbers confirm the increased efficiency of pyrosequencing over traditional isolation techniques in the development of microsatellites. Amplification primer sequences and the sequences of corresponding target fragments are provided for all functional markers, and molecular polymorphisms estimated for four accessions of P. pusilla and among seven core group species represented by 14 individuals are reported. Cross‐species transferability ranged between 86.4% and 97.3% among the studied taxa, and 57, 11 and six of the selected primer pairs amplified fragments of expected size and number in seven, six and five of the species, respectively. Reproducibility of the molecular phenotypes was 97.0%, which was inferred using a replicate sample of P. pusilla.  相似文献   

16.
Transposon display (TD) is a technique for analyzing polymorphic insertions and excisions of transposable elements. We used the CACTA transposon to develop cultivar-specific transposon insertion-sequence characterized amplified regions (Ti-SCARs) for rapeseed (Brassica napus). Using 16 combinations of TD primers, we detected 19 cultivar-specific fragments among six rapeseed cultivars. Of the 16 primer pairs, 12 successfully amplified targets in B. napus and six amplified novel, cultivar-specific markers. Cultivar-specific markers can be used for cultivar fingerprinting and marker-assisted selection in the rapeseed breeding program. Moreover, because Ti-SCARs are based on transposon insertions, Ti-SCAR markers may be used in reverse genetic techniques for isolating novel genes in plants.  相似文献   

17.
Different cultivars/transgenic lines of oilseed rape (Brassica napus) were crossed (as females) with different cultivars/populations of Brassica campestris. All cross combinations produced seed, with an average seed set per pollination of 9.8. Backcrossing of selected interspecific hybrids (as females) to B. campestris resulted in a much lower seed set, average 0.7 seed per pollination. In the single backcross progeny where a large enough population (92 plants) was obtained for analysis, 33 B. napus specific RAPD markers were investigated to determine the extent of transfer of oilseed rape genetic material into this population. Markers were transferred to the backcross generation with frequencies ranging from 26% to 91%. Almost all of the markers (30/33) were transferred in a frequency not significantly different from 50%. Analysis of the pairwise segregation of markers revealed that 23 markers could be assigned to six linkage groups, most probably reflecting six B. napus C-chromosomes. The presence of backcross plants with recombinant genotypes suggests that complex genetic processes can take place during interspecific hybridisation and backcrossing in these Brassica species. The implications of our results for the possible choice of integration sites of transgenes in oilseed rape are discussed.  相似文献   

18.
Genetic analysis, particularly the development of genetic linkage maps in forage grass species, lags well behind other members of the Poaceae. Comparative mapping within this family has revealed extensive conservation in gene and marker synteny among chromosomes of diverse genera. Recently, the ability to transfer mapped STS markers between barley and wheat has been demonstrated. The transfer of mapped STS markers between cereals and forage grasses could provide PCR-based markers for comparative mapping in these species providing they amplify homologous sequences. In this study, primers derived from three barley genes of defined function and a gene from Phalaris coerulescens were used to amplify homologous fragments in Lolium perenne. Primers derived from two barley and two oat cDNA clones were also tested along with eight barley and two Triticum tauchii STS markers. Twenty one primer pairs derived from 18 loci were tested. Eleven primer pairs (52%) amplified homologous sequences in L. perenne from ten (55%) of the loci targetted. Thirteen new STS markers were generated in L. perenne, of which ten have been mapped in barley or rye and amplify homologous sequences in L. perenne. Received: 20 October 2000 / Accepted: 13 January 2001  相似文献   

19.
Rapeseed (Brassica napus L.) is the leading European oilseed crop serving as source for edible oil and renewable energy. The objectives of our study were to (i) examine the population structure of a large and diverse set of B. napus inbred lines, (ii) investigate patterns of genetic diversity within and among different germplasm types, (iii) compare the two genomes of B. napus with regard to genetic diversity, and (iv) assess the extent of linkage disequilibrium (LD) between simple sequence repeat (SSR) markers. Our study was based on 509 B. napus inbred lines genotyped with 89 genome-specific SSR primer combinations. Both a principal coordinate analysis and software STRUCTURE revealed that winter types, spring types, and swedes were assigned to three major clusters. The genetic diversity of winter oilseed rape was lower than the diversity found in other germplasm types. Within winter oilseed rape types, a decay of genetic diversity with more recent release dates and reduced levels of erucic acid and glucosinolates was observed. The percentage of linked SSR loci pairs in significant (r 2 > Q 95 unlinked loci pairs) LD was 6.29% for the entire germplasm set. Furthermore, LD decayed rapidly with distance, which will allow a relatively high mapping resolution in genome-wide association studies using our germplasm set, but, on the other hand, will require a high number of markers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号