首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The symbiosis between legumes and rhizobia is characterised by the formation of dinitrogen-fixing root nodules. In natural conditions, nitrogen fixation is strongly impaired by abiotic stresses which generate over-production of reactive oxygen species. Since one of the nodule main antioxidant systems is the ascorbate–glutathione cycle, NADPH recycling that is involved in glutathione reduction is of great relevance under stress conditions. NADPH is mainly produced by glucose 6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) from the oxidative pentose phosphate pathway, and also by NADP+-dependent isocitrate dehydrogenase (ICDH; EC 1.1.1.42). In this work, 10 μM paraquat (PQ) was applied to pea roots in order to determine the in vivo relationship between oxidative stress and the activity of the NADPH-generating enzymes in nodules. Whereas G6PDH and 6PGDH activities remained unchanged, a remarkable induction of ICDH gene expression and a dramatic increase of the ICDH activity was observed during the PQ treatment. These results support that ICDH has a key role in NADPH recycling under oxidative stress conditions in pea root nodules.  相似文献   

3.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

4.
We have investigated the effect of aluminum (Al) on the activity of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) isolated from 5-mm root apices of 4-day-old wheat ( Triticum aestivum ) cultivars differing in resistance to Al. Rapid increases in G6PDH and 6PGDH activities were observed in Al-resistant cultivars (PT741 and Atlas 66) during the first 10 h of treatment with 100 μ M Al, while no change in the activity of either enzyme was observed in Al-sensitive cultivars (Katepwa and Neepawa) during a 24-h exposure to Al. The Al-induced increases in enzyme activities observed in the Al-resistant PT741 appear to reflect an induction of protein synthesis since the increases were completely abolished by 1 m M cycloheximide. No differences in G6PDH and 6PGDH activities were observed between the Al-sensitive and the Al-resistant genotypes when Al was supplied in vitro. Under these conditions, an increase in Al concentration from 0 to 1.4 m M caused a gradual decrease in activity of both enzymes, irrespective of the Al-resistance of whole seedlings. Aluminum-sensitive and aluminum-resistant cultivars also differed in the rate and extent of accumulation of slowly-exchanging Al in 5-mm root apices. During the first 6 h of Al treatment, Al accumulation was only 10% more rapid in Katepwa than in PT741. After 24-h exposure, accumulation in the Al-sensitive Katepwa, was two-fold higher. A decline in Al accumulation in a slowly-exchanging compartment as well as a decrease in activities of G6PDH and 6PGDH were found in the Al-resistant PT741, when seedlings were transferred to Al-free treatment solutions after 16-h exposure to 100 μ M Al. These results suggest that rapid induction of G6PDH and 6PGDH in the Al-resistant line PT741 by Al may play a role in the mechanism of Al resistance, possibly by regulation of the pentose phosphate pathway.  相似文献   

5.
6.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个关键酶。在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位。结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生。讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料。  相似文献   

7.
Glucose-6-phosphate dehydrogenase (G6PDH) from hepatopancreas of the land snail, Otala lactea, shows distinct changes in properties between active and estivating (dormant) states, providing the first evidence of pentose phosphate cycle regulation during hypometabolism. Compared with active snails, G6PDH Vmax increased by 50%, Km for glucose-6-phosphate decreased by 50%, Ka Mg x citrate decreased by 35%, and activation energy (from Arrhenius plots) decreased by 35% during estivation. DEAE-Sephadex chromatography separated two peaks of activity and in vitro incubations stimulating protein kinases or phosphatases showed that peak I (low phosphate) G6PDH was higher in active snails (57% of activity) whereas peak II (high phosphate) G6PDH dominated during estivation (71% of total). Kinetic properties of peaks I and II forms mirrored the enzyme from active and estivated states, respectively. Peak II G6PDH also showed reduced sensitivity to urea inhibition of activity and greater stability to thermolysin protease treatment. The interconversion of G6PDH between active and estivating forms was linked to protein kinase G and protein phosphatase 1. Estivation-induced phosphorylation of G6PDH may enhance relative carbon flow through the pentose phosphate cycle, compared with glycolysis, to help maintain NADPH production for use in antioxidant defense.  相似文献   

8.
葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶是植物戊糖磷酸途径中的两个酶.在克隆了水稻质体葡萄糖-6-磷酸脱氢酶基因OsG6PDH2和质体6-磷酸葡萄糖脱氢酶基因Os6PGDH2基础上,分析比较了水稻胞质和质体葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因的基因结构、表达特性和进化地位.结合双子叶模式植物拟南芥两种酶基因的分析结果,认为高等植物葡萄糖-6-磷酸脱氢酶基因和6-磷酸葡萄糖酸脱氢酶基因在进化方式上截然不同,葡萄糖-6-磷酸脱氢酶的胞质基因与动物和真菌等真核生物具有共同的祖先;6-磷酸葡萄糖酸脱氢酶的胞质酶和质体酶基因都起源于原核生物的内共生.讨论了植物葡萄糖-6-磷酸脱氢酶与6-磷酸葡萄糖酸脱氢酶基因可能的进化模式,为高等植物及质体的进化起源提供了新的资料.  相似文献   

9.
10.
Importance of glucose-6-phosphate dehydrogenase activity in cell death   总被引:12,自引:0,他引:12  
The intracellular redox potential plays an important role incell survival. The principal intracellular reductant NADPH is mainlyproduced by the pentose phosphate pathway by glucose-6-phosphate dehydrogenase (G6PDH), the rate-limiting enzyme, and by6-phosphogluconate dehydrogenase. Considering the importance of NADPH,we hypothesized that G6PDH plays a critical role in cell death. Ourresults show that 1) G6PDHinhibitors potentiatedH2O2-inducedcell death; 2) overexpression ofG6PDH increased resistance toH2O2-induced cell death; 3) serum deprivation, astimulator of cell death, was associated with decreased G6PDH activityand resulted in elevated reactive oxygen species (ROS);4) additions of substrates for G6PDHto serum-deprived cells almost completely abrogated the serumdeprivation-induced rise in ROS; 5)consequences of G6PDH inhibition included a significant increase inapoptosis, loss of protein thiols, and degradation of G6PDH; and6) G6PDH inhibition caused changesin mitogen-activated protein kinase phosphorylation that were similarto the changes seen withH2O2.We conclude that G6PDH plays a critical role in cell death by affectingthe redox potential.  相似文献   

11.
The coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans was investigated. By investigation of the activities of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) in the soluble fraction of G. oxydans, and cloning and expression of genes in Escherichia coli, it was found that both G6PDH and 6PGDH have NAD/NADP dual coenzyme specificities. It was suggested that the pentose phosphate pathway is responsible for NADH regeneration in G. oxydans.  相似文献   

12.
The coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans was investigated. By investigation of the activities of glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) in the soluble fraction of G. oxydans, and cloning and expression of genes in Escherichia coli, it was found that both G6PDH and 6PGDH have NAD/NADP dual coenzyme specificities. It was suggested that the pentose phosphate pathway is responsible for NADH regeneration in G. oxydans.  相似文献   

13.
Commercially obtained fruits of Corylus avellana exhibit the characteristic loss of dormancy of this seed following chilling under moist conditions. The activities of cytosolic and organellar enzymes of pentose phosphate pathway in cotyledonary tissue were assayed throughout stratification and over a similar period in damp vermiculite at 20° C. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconic acid dehydrogenase (6PGDH) were both found in cytosolic extracts in all treatments; only 6PGDH was present in the organellar fraction.The enzyme activities monitored in seeds at 20° C remained relatively constant over the course of the investigation except in the case of cytosolic 6PGDH where it is suggested an inhibitor of the enzyme accumulated. This inhibitor was removed by the partial purification procedure. Increases in the activities of the enzymes occurred during stratification, the major increase coinciding exactly with dormancy breakage but prior to the initiation of germination. The marked increase in G6PDH and 6PGDH concurrent with the change in germination potential of the chilled seed may have considerable biochemical significance in breaking down the dormant state.Abbreviations G6P glucose-6-phosphate - G6PDH glucose-6 phosphate dehydrogenase - NADP nicotinamide adenine dinucleotide phosphate - 6 PGDH 6-phosphogluconic acid dehydrogenase - PPP pentose phosphate pathway  相似文献   

14.
Glucose-6-phosphate dehydrogenase (G6PDH) is the key enzyme of the oxidative pentose phosphate pathway supplying reducing power (as NADPH) in non-photosynthesizing cells. We have examined in detail the redox regulation of the plastidial isoform predominantly present in Arabidopsis green tissues (AtG6PDH1) and found that its oxidative activation is strictly dependent on plastidial thioredoxins (Trxs) that show differential efficiencies. Light/dark modulation of AtG6PDH1 was reproduced in vitro in a reconstituted ferredoxin/Trx system using f-type Trx allowing to propose a new function for this Trx isoform co-ordinating both reductive (Calvin cycle) and oxidative pentose phosphate pathways.  相似文献   

15.
Plastids from roots of barley (Hordeum vulgare L.) seedlings were isolated by discontinuous Percoll-gradient centrifugation. Coinciding with the peak of nitrite reductase (NiR; EC 1.7.7.1, a marker enzyme for plastids) in the gradients was a peak of a glucose-6-phosphate (Glc6P) and NADP+-linked nitrite-reductase system. High activities of phosphohexose isomerase (EC 5.3.1.9) and phosphoglucomutase (EC 2.7.5.1) as well as glucose-6-phosphate dehydrogenase (Glc6PDH; EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) were also present in the isolated plastids. Thus, the plastids contained an overall electron-transport system from NADPH coupled with Glc6PDH and 6PGDH to nitrite, from which ammonium is formed stoichiometrically. However, NADPH alone did not serve as an electron donor for nitrite reduction, although NADPH with Glc6P added was effective. Benzyl and methyl viologens were enzymatically reduced by plastid extract in the presence of Glc6P+ NADP+. When the plastids were incubated with dithionite, nitrite reduction took place, and ammonium was formed stoichiometrically. The results indicate that both an electron carrier and a diaphorase having ferredoxin-NADP+ reductase activity are involved in the electron-transport system of root plastids from NADPH, coupled with Glc6PDH and 6PGDH, to nitrite.Abbreviations Cyt cytochrome - Glc6P glucose-6-phosphate - Glc6PDH glucose-6-phosphate dehydrogenase - MVH reduced methyl viologen - NiR nitrite reductase - 6PG 6-phosphogluconate - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

16.
17.
The changes in the activity of glucose-6-phosphate dehydrogenase (G6PDH) (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (6PGDH) (EC 1.1.1.44) in leaf tissues and the subcellular localisation of their isozymes in protoplasts derived from healthy and potato virus Y (PVY) infected plants of Nicotiana tabacum L. cv. Samsun were determined. The activities of G6PDH and 6PGDH were markedly increased in virus-infected leaves during the acute phase of infection both in crude homogenate and partial purificate (when compared with the values found in healthy control plants) and correlated with the multiplication curve of PVY. Intact chloroplasts and soluble cytosolic proteins were obtained from whole plants upon the culmination of the multiplication curve of PVY and upon the enhancement of the activity of both dehydrogenases by means of differential centrifugation of broken protoplasts. The chloroplastic fraction from infected protoplasts (based on chlorophyll content or NADP+-triosephosphate dehydrogenase activity) showed an enhanced activity of G6PDH (1.81 times that of healthy protoplasts), and 6PGDH (1.77 times). Cytosol from infected protoplasts (based on phosphoenolpyruvate carboxylase activity) contained only slightly enhanced activities of G6PDH and 6PGDH (only 1.26 and 1.16 times, respectively).  相似文献   

18.
The activities and kinetics of the enzymes G6PDH (glucose-6-phosphate dehydrogenase) and 6PGDH (6-phosphogluconate dehydrogenase) from the mesophilic cyanobacterium Synechococcus 6307 and the thermophilic cyanobacterium Synechococcus 6716 are studied in relation to temperature. In Synechococcus 6307 the apparent K m's are for G6PDH: 80M (substrate) and 20M (NADP+); for 6PGDH: 90M (substrate) and 25M (NADP+). In Synechococcus 6716 the apparent K m's are for G6PDH: 550M (substrate) and 30M (NADP+); for 6PGDH: 40M (substrate) and 10M (NADP+). None of the K m's is influenced by the growth temperature and only the K m's of G6PDH for G6P are influenced by the assay temperature in both organisms. The idea that, in general, thermophilic enzymes possess a lower affinity for their substrates and co-enzymes than mesophilic enzymes is challenged.Although ATP, ribulose-1,5-bisphosphate, NADPH and pH can all influence the activities of G6PDH and 6PGDH to a certain extent (without any difference between the mesophilic and the thermophilic strain), they cannot be responsible for the total deactivation of the enzyme activities observed in the light, thus blocking the pentose phosphate pathway.Abbreviations G6PDH glucose-6-phosphate, dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - G6P glucose-6-phosphate - 6PG 6-phosphogluconate - RUDP ribulose-1,5-bisphosphate - Tricine N-Tris (hydroxymethyl)-methylglycine  相似文献   

19.
葡萄糖-6-磷酸脱氢酶是植物戊糖磷酸途径中的一个关键性调控酶。其主要生理功能是产生供生物合成需要的NADPH及一些中间产物;此外还参与各种生物和非生物胁迫的应答反应。文中主要从葡萄糖-6-磷酸脱氢酶同工酶与调节机制等方面探讨了其生物学功能,再从胁迫耐受、基因克隆、酶的缺失和替代等方面的研究进行综述,并对已发表的高等植物中的G6PDH氨基酸序列进行聚类分析,为今后该酶的研究提供参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号