首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Diversity of arbuscular mycorrhizal fungi (AMF) is well studied in many ecosystems, but little is known about AMF in cold-dominated regions with very high altitude. Here, we examined AMF communities associated with two plant species in the Tibet Plateau. Roots and rhizosphere soils of Dracocephalum heterophyllum (pioneer species) and Astragalus polycladus (late-successional species) were sampled at five sites with altitude from 4500 to 4800 m a.s.l. A total of 21 AMF phylotypes were identified from roots and spores following cloning and sequencing of 18S rRNA gene, including eight new phylotypes and one new family-like clade. More AMF phylotypes colonized root samples of D. heterophyllum (5.4±0.49) than of A. polycladus (1.93±0.25). Vegetation coverage was the most important factor influencing AMF community composition in roots. Globally infrequent phylotype Glo-B2 in Glomus group B was the most dominant in roots, followed by globally frequent phylotype Glo-A2 related to Glomus fasciculatum/intraradices group. Our findings suggest that a diverse AMF flora is present in the Tibet Plateau, comprising both potentially habitat-selective and generalist fungi.  相似文献   

2.
The cultivation of genetically modified plants (GMP) has raised concerns regarding the plants’ ecological safety. A greenhouse experiment was conducted to assess the impact of five seasons of continuous Bt (Bacillus thuringiensis) maize cultivation on the colonisation and community structure of the non-target organisms arbuscular mycorrhizal fungi (AMF) in the maize roots, bulk soils and rhizospheric soils using the terminal restriction fragment length polymorphism (T-RFLP) analysis of the 28S ribosomal DNA and sequencing methods. AMF colonisation was significantly higher in the two Bt maize lines that express Cry1Ab, 5422Bt1 (event Bt11) and 5422CBCL (MON810) than in the non-Bt isoline 5422. No significant differences were observed in the diversity of the AMF community between the roots, bulk soils and rhizospheric soils of the Bt and non-Bt maize cultivars. The AMF genus Glomus was dominant in most of the samples, as detected by DNA sequencing. A clustering analysis based on the DNA sequence data suggested that the sample types (i.e., the samples from the roots, bulk soils or rhizospheric soils) might have greater influence on the AMF community phylotypes than the maize cultivars. This study indicated that the Cry1Ab protein has minor effects on the AMF communities after five seasons of continuous Bt maize cultivation.  相似文献   

3.

Background and aims

We investigated the genetic diversity of arbuscular mycorrhizal fungi (AMF) in soils and the roots of Phalaris aquatica L., Trifolium subterraneum L., and Hordeum leporinum Link growing in limed and unlimed soil, the influence of lime application on AMF colonization and the relationship between AMF diversity and soil chemical properties.

Methods

The sampling was conducted on a long-term liming experimental site, established in 1992, in which lime was applied every 6 years to maintain soil pH (in CaCl2) at 5.5 in the 0–10 cm soil depth. Polymerase chain reaction, cloning and sequencing techniques were used to investigate the diversity of AMF.

Results

Altogether, 438 AMF sequences from a total of 480 clones were obtained. Sequences of phylotypes Aca/Scu were detected exclusively in soil, while Glomus sp. (GlGr Ab) and an uncultured Glomus (UnGlGr A) were detected only in plant roots. Glomus mosseae (GlGr Aa) was the dominant AMF in the pastures examined; however, the proportion of G. mosseae was negatively correlated with soil pH, exchangeable Ca and available P. Generally, diversity of the AMF phylotypes was greater in the bulk unlimed soil and plants from this treatment when compared to the limed treatments.

Conclusions

Long-term lime application changed soil nutrient availability and increased AMF colonization, but decreased AMF phylotype diversity, implying that soil chemistry may determine the distribution of AMF in acid soils. Future studies are required to explore the functions of these AMF groups and select the most efficient AMF for sustainable farming in acid soils.  相似文献   

4.
The community composition of arbuscular mycorrhizal fungi (AMF) was investigated in roots of four different plant species (Inula salicina, Medicago sativa, Origanum vulgare, and Bromus erectus) sampled in (1) a plant species-rich calcareous grassland, (2) a bait plant bioassay conducted directly in that grassland, and (3) a greenhouse trap experiment using soil and a transplanted whole plant from that grassland as inoculum. Roots were analyzed by AMF-specific nested polymerase chain reaction, restriction fragment length polymorphism screening, and sequence analyses of rDNA small subunit and internal transcribed spacer regions. The AMF sequences were analyzed phylogenetically and used to define monophyletic phylotypes. Overall, 16 phylotypes from several lineages of AMF were detected. The community composition was strongly influenced by the experimental approach, with additional influence of cultivation duration, substrate, and host plant species in some experiments. Some fungal phylotypes, e.g., GLOM-A3 (Glomus mosseae) and several members of Glomus group B, appeared predominantly in the greenhouse experiment or in bait plants. Thus, these phylotypes can be considered r strategists, rapidly colonizing uncolonized ruderal habitats in early successional stages of the fungal community. In the greenhouse experiment, for instance, G. mosseae was abundant after 3 months, but could not be detected anymore after 10 months. In contrast, other phylotypes as GLOM-A17 (G. badium) and GLOM-A16 were detected almost exclusively in roots sampled from plants naturally growing in the grassland or from bait plants exposed in the field, indicating that they preferentially occur in late successional stages of fungal communities and thus represent the K strategy. The only phylotype found with high frequency in all three experimental approaches was GLOM A-1 (G. intraradices), which is known to be a generalist. These results indicate that, in greenhouse trap experiments, it is difficult to establish a root-colonizing AMF community reflecting the diversity of these fungi in the field roots because fungal succession in such artificial systems may bias the results. However, the field bait plant approach might be a convenient way to study the influence of different environmental factors on AMF community composition directly under the field conditions. For a better understanding of the dynamics of AMF communities, it will be necessary to classify AMF phylotypes and species according to their life history strategies.  相似文献   

5.
Variation in the abiotic environment and host plant preferences can affect the composition of arbuscular mycorrhizal (AMF) assemblages. This study analyzed the AMF taxa present in soil and seedlings of Artemisia tridentata ssp. wyomingensis collected from sagebrush steppe communities in southwestern Idaho, USA. Our aims were to determine the AMF diversity within and among these communities and the extent to which preferential AMF–plant associations develop during seedling establishment. Mycorrhizae were identified using molecular methods following DNA extraction from field and pot culture samples. The extracted DNA was amplified using Glomeromycota specific primers, and identification of AMF was based on phylogenetic analysis of sequences from the large subunit-D2 rDNA region. The phylogenetic analyses revealed seven phylotypes, two within the Claroideoglomeraceae and five within the Glomeraceae. Four phylotypes clustered with known species including Claroideoglomus claroideum, Rhizophagus irregularis, Glomus microaggregatum, and Funneliformis mosseae. The other three phylotypes were similar to several published sequences not included in the phylogenetic analysis, but all of these were from uncultured and unnamed glomeromycetes. Pairwise distance analysis revealed some phylotypes with high genetic variation. The most diverse was the phylotype that included R. irregularis, which contained sequences showing pairwise differences up to 12 %. Most of the diversity in AMF sequences occurred within sites. The smaller genetic differentiation detected among sites was correlated with differences in soil texture. In addition, multiplication in pot cultures led to differentiation of AMF communities. Comparison of sequences obtained from the soil with those from A. tridentata roots revealed no significant differences between the AMF present in these samples. Overall, the sites sampled were dominated by cosmopolitan AMF taxa, and young seedlings of A. tridentata ssp. wyomingensis were colonized in relation to the abundance of these taxa in the soil.  相似文献   

6.
Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.  相似文献   

7.
To better understand the diversity and species composition of arbuscular mycorrhizal fungi (AMF) in mangrove ecosystems, the AMF colonization and distribution in four semi-mangrove plant communities were investigated. Typical AMF hyphal, vesicle and arbuscular structures were commonly observed in all the root samples, indicating that AMF are important components on the landward fringe of mangrove habitats. AMF spores were extracted from the rhizospheric soils, and an SSU rDNA fragment from each spore morph-type was amplified and sequenced for species identification. AMF species composition and diversity in the roots of each semi-mangrove species were also analyzed based on an SSU-ITS-LSU fragment, which was amplified, cloned and sequenced from root samples. In total, 11 unique AMF sequences were obtained from spores and 172 from roots. Phylogenetic analyses indicated that the sequences from the soil and roots were grouped into 5 and 14 phylotypes, respectively. AMF from six genera including Acaulospora, Claroideoglomus, Diversispora, Funneliformis, Paraglomus, and Rhizophagus were identified, with a further six phylotypes from the Glomeraceae family that could not be identified to the genus level. The AMF genus composition in the investigated semi-mangrove communities was very similar to that in the intertidal zone of this mangrove ecosystem and other investigated mangrove ecosystems, implying possible fungal adaptation to mangrove conditions.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) are crucial for ecosystem functioning, and thus have potential use for sustainable agriculture. In this study, we investigated the impact of organic and mineral fertilizers on the AMF community composition and content of Glomalin-related soil protein (GRSP) in a field experimental station which was established in 1979, in the Loess Plateau of China. Roots and soils were sampled three times during the growing period of winter wheat in 2008. The treatments including: N (inorganic N), NP (inorganic N and P), SNP (straw, inorganic N and P), M (farmyard manure), MNP (farmyard manure, inorganic N and P), and CK (no fertilization). AMF communities of root and soil samples were analyzed using PCR-DGGE, cloning and sequencing techniques; and GRSP content was determined by Bradford assay. Our results indicated that spore density, GRSP, and AMF community varied significantly in soils of long-term fertilization plots at three different wheat growing stages. The effects of wheat growing period on AMF community in roots were much more evident than fertilization regimes. However, the diversity of AMF was low in our study field. Up to five AMF phylotypes appeared in each sample, with the overwhelming dominance of a Glomus-like phylotype affiliated to G. mosseae. GRSP content was correlated positively with organic carbon, total phosphorus, available phosphorus, soil pH, and spore densities, but correlated negatively with soil C/N (P?<?0.05). The results of our study highlight that the richness of AMF in Loess Plateau agricultural region is low, and long-term fertilization, especially amendments with manure and straw, has beneficial effects on accumulation of soil organic carbon, spore density, GRSP content, and AMF diversity. Host phenology, edaphic factors (influenced by long-term fertilization), and habitats interacted to affect the AMF community and agoecosystem functioning. Additionally, soil moisture and pH make a greater contribution than other determined soil parameters to the AMF community dynamics in such a special semi-arid agroecosystem where crops rely greatly on rainfall.  相似文献   

9.
The community composition of arbuscular mycorrhizal fungi (AMF) was analyzed in roots of Gentiana verna, Gentiana acaulis, and accompanying plant species from two species-rich Swiss alpine meadows located in the same area. The aim of the study was to elucidate the impact of host preference or host specificity on the AMF community in the roots. The roots were analyzed by nested PCR, restriction fragment length polymorphism screening, and sequencing of ribosomal DNA small-subunit and internal transcribed spacer regions. The AMF sequences were analyzed phylogenetically and used to define monophyletic sequence types. The AMF community composition was strongly influenced by the host plant species, but compositions did not significantly differ between the two sites. Detailed analyses of the two cooccurring gentian species G. verna and G. acaulis, as well as of neighboring Trifolium spp., revealed that their AMF communities differed significantly. All three host plant taxa harbored AMF communities comprising multiple phylotypes from different fungal lineages. A frequent fungal phylotype from Glomus group B was almost exclusively found in Trifolium spp., suggesting some degree of host preference for this fungus in this habitat. In conclusion, the results indicate that within a relatively small area with similar soil and climatic conditions, the host plant species can have a major influence on the AMF communities within the roots. No evidence was found for a narrowing of the mycosymbiont spectrum in the two green gentians, in contrast to previous findings with their achlorophyllous relatives.  相似文献   

10.
To better understand adaptation of plants and their mycorrhizae to extreme environmental conditions, we analyzed the composition of communities of arbuscular mycorrhizal fungi (AMF) in roots from geothermal sites in Yellowstone National Park (YNP), USA. Arbuscular mycorrhizal fungi were identified using molecular methods including seven specific primer pairs for regions of the ribosomal DNA that amplify different subgroups of AMF. Roots of Dichanthelium lanuginosum, a grass only occurring in geothermal areas, were sampled along with thermal and nonthermal Agrostis scabra and control plants growing outside the thermally influenced sites. In addition, root samples of Agrostis stolonifera from geothermal areas of Iceland were analyzed to identify possible common mycosymbionts between these geographically isolated locations. In YNP, 16 ribosomal DNA phylotypes belonging to the genera Archaeospora, Glomus, Paraglomus, Scutellospora, and Acaulospora were detected. Eight of these phylotypes could be assigned to known morphospecies, two others have been reported previously in molecular studies from different environments, and six were new to science. The most diverse and abundant lineage was Glomus group A, with the most frequent phylotype corresponding to Glomus intraradices. Five of the seven phylotypes detected in a preliminary sampling in a geothermal area in Iceland were also found in YNP. Nonthermal vegetation was dominated by a high diversity of Glomus group A phylotypes while nonthermal plants were not. Using multivariate analyses, a subset of three phylotypes were determined to be associated with geothermal conditions in the field sites analyzed. In conclusion, AMF communities in geothermal soils are distinct in their composition, including both unique phylotypes and generalist fungi that occur across a broad range of environmental conditions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
This study aimed to assess AMF diversity in various plant species in lakes with low and relatively high P concentrations to elucidate possible correlations with environmental factors in order for better understanding the functioning of mycorrhizal fungi in submerged plants. A considerable diversity of AMF communities was observed in the lakes with low dissolved P concentrations, especially in the roots of Littorella uniflora. Glomus group A, Archaeospora and Acaulospora were the most frequent and diverse AMF lineages with eight, seven and four phylotypes at Littorella uniflora in at least six lakes with low dissolved P concentrations. In theses lakes, AMF were for the first time observed in the roots of J. bulbosus, a member of a family previously thought to be non-mycorrhizal. In the lakes with relatively high dissolved P concentrations, the frequency decreased from Acaulospora, found at three locations, to Archaeospora at two locations and Glomus group A and Paraglomus at one location.All chemical parameters of the surface water layer, except pH, revealed significant (p ≤ 0.01) differences between the lakes with low and relatively high dissolved P concentrations. Mean Mg2+, Ca2+, K+, NH4+, CO2, o-PO43− and HCO3 were 3, 13.5, 15.7, 19.5, 31 and 42.6 times higher, respectively, in the lakes with relatively high dissolved P concentrations compared to the lakes with low dissolved P concentrations. AMF occurred more abundantly with low phosphate and high redox values in the lakes than with high phosphate and low redox values. The pH-value, the total-calcium and total-phosphorus concentrations were strongly correlated with the occurrence of Glomus phylotypes 4 and Archaeospora phylotypes 5 and 8, and a bit less with Acaulospora phylotype 4 and Archaeospora phylotype 3. In such lakes the presence of a diverse AMF community still enables the uptake of sufficient P for isoetid plant species despite the prevailing ‘ultra-oligotrophic’ conditions. As a consequence, macrophyte plant communities in lakes with relatively high dissolved P concentrations are less dependent on AMF colonization for their development.  相似文献   

12.
A clear understanding of how crop root proliferation affects the distribution of the spore abundance of arbuscular mycorrhizal fungi (AMF) and the composition of AMF communities in agricultural fields is imperative to identify the potential roles of AMF in winter cover crop rotational systems. Toward this goal, we conducted a field trial using wheat (Triticum aestivum L.) or red clover (Trifolium pratense L.) grown during the winter season. We conducted a molecular analysis to compare the diversity and distribution of AMF communities in roots and spore abundance in soil cropped with wheat and red clover. The AMF spore abundance, AMF root colonization, and abundance of root length were investigated at three different distances from winter crops (0 cm, 7.5 cm, and 15 cm), and differences in these variables were found between the two crops. The distribution of specific AMF communities and variables responded to the two winter cover crops. The majority of Glomerales phylotypes were common to the roots of both winter cover crops, but Gigaspora phylotypes in Gigasporales were found only in red clover roots. These results also demonstrated that the diversity of the AMF colonizing the roots did not significantly change with the three distances from the crop within each rotation but was strongly influenced by the host crop identity. The distribution of specific AMF phylotypes responded to the presence of wheat and red clover roots, indicating that the host crop identity was much more important than the proliferation of crop roots in determining the diversity of the AMF communities.  相似文献   

13.
The community assembly change of arbuscular mycorrhizal fungi (AMF) during the reclamation of wetlands to paddy fields is mostly unknown. In this study, we applied the high-throughput sequencing technique to investigate the composition of the AMF community in natural wetland (common wild rice and Leersia hexandra Swartz) and paddy field (Asian cultivated rice), as well as the soil elements effective on the community of AMF. Soil properties including soil organic carbon, available nitrogen (AN), available phosphorus (AP), available potassium, and pH were also measured. Operational taxonomic units (OTUs) of nine genera in four orders (Glomerales, Diversisporales, Archaeosporales, and Paraglomerales) of AMF were detected. All detected AMF genera were found in the wild rice wetland, while about half of the detected AMF genera were absent in paddy field; however, the absolute amount of total AMF in the paddy field and wetland was not different. Among all measured soil properties, AMF community was affected significantly by soil AN and AP. Results indicate that agricultural managements affect AMF community significantly, but do not have negative effects on the absolute amount of all the AMF genera. Soil AP may be the main factor resulting in the decreased AMF genus in paddy field. In addition, AMF may have contributed to the survival and evolution of plants.  相似文献   

14.
In many areas of China, tidal wetlands have been converted into agricultural land for rice cultivation. However, the consequences of land use changes for soil microbial communities are poorly understood. Therefore, we investigated bacterial and archaeal communities involved in inorganic nitrogen turnover (nitrogen fixation, nitrification, and denitrification) based on abundances and relative species richness of the corresponding functional genes along a soil chronosequence ranging between 50 and 2,000 years of paddy soil management compared to findings for a tidal wetland. Changes in abundance and diversity of the functional groups could be observed, reflecting the different chemical and physical properties of the soils, which changed in terms of soil development. The tidal wetland was characterized by a low microbial biomass and relatively high abundances of ammonia-oxidizing microbes. Conversion of the tidal wetlands into paddy soils was followed by a significant increase in microbial biomass. Fifty years of paddy management resulted in a higher abundance of nitrogen-fixing microbes than was found in the tidal wetland, whereas dominant genes of nitrification and denitrification in the paddy soils showed no differences. With ongoing rice cultivation, copy numbers of archaeal ammonia oxidizers did not change, while that of their bacterial counterparts declined. The nirK gene, coding for nitrite reductase, increased with rice cultivation time and dominated its functionally redundant counterpart, nirS, at all sites under investigation. Relative species richness showed significant differences between all soils with the exception of the archaeal ammonia oxidizers in the paddy soils cultivated for 100 and 300 years. In general, changes in diversity patterns were more pronounced than those in functional gene abundances.  相似文献   

15.
Diversity and colonization levels of naturally occurring arbuscular mycorrhizal fungi (AMF) in onion roots were studied to compare organic and conventional farming systems in the Netherlands. In 2004, 20 onion fields were sampled in a balanced survey between farming systems and between two regions, namely, Zeeland and Flevoland. In 2005, nine conventional and ten organic fields were additionally surveyed in Flevoland. AMF phylotypes were identified by rDNA sequencing. All plants were colonized, with 60% for arbuscular colonization and 84% for hyphal colonization as grand means. In Zeeland, onion roots from organic fields had higher fractional colonization levels than those from conventional fields. Onion yields in conventional farming were positively correlated with colonization level. Overall, 14 AMF phylotypes were identified. The number of phylotypes per field ranged from one to six. Two phylotypes associated with the Glomus mosseae–coronatum and the G. caledonium–geosporum species complexes were the most abundant, whereas other phylotypes were infrequently found. Organic and conventional farming systems had similar number of phylotypes per field and Shannon diversity indices. A few organic and conventional fields had larger number of phylotypes, including phylotypes associated with the genera Glomus-B, Archaeospora, and Paraglomus. This suggests that farming systems as such did not influence AMF diversity, but rather specific environmental conditions or agricultural practices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Guillermo A. Galván and István Parádi contributed equally to this research and share first co-authorship.  相似文献   

16.
Arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi are rarely studied at extremely high elevations. Here, AM and DSE colonization in two dominant plant species (Melandrium apetalum and Poa litwinowiana) were microscopically observed on the forefront of Zhadang Glacier (5,500 m above sea level) in the Qinghai-Tibet Plateau, China. The AM fungal taxa were also identified by molecular methods. Both AM and DSE fungi synchronously colonized these two plant species, but AM dominated in M. apetalum and DSE dominated in P. litwinowiana. A total of five AM fungal spore morphotypes (Acaulospora capsicula, Diversispora sp., Glomus constrictum, G. eburneum and Glomus sp.) were found in the rhizosphere soils. Molecular identification revealed two AM fungal phylotypes: one Claroideoglomus phylotype from roots and one Diversispora phylotype from spores. These results extend the elevation at which both AM and DSE are known to occur.  相似文献   

17.
We examined arbuscular mycorrhizal (AM) fungi colonizing the roots of Stipa krylovii, a grass species dominating the grasslands of the steppe zone in Hustai and Uvurkhangai in Mongolia. The AM fungal communities of the collected S. krylovii roots were examined by molecular analysis based on the partial sequences of a small subunit of ribosomal RNA gene as well as AM fungal colonization rates. Almost all AM fungi detected were in Glomus-group A, and were divided into 10 phylotypes. Among them, one phylotype forming a clade with G. intraradices and G. irregulare was the most dominant. Furthermore, it was also found that most of the phylotypes include AM fungi previously detected in high altitude regions in the Eurasian Continent. Significant correlations were found among soil total N, total plant biomass and AM fungal colonization ratio, which suggested that higher plant biomass may be required for the proliferation of AM fungi in the environment. Meanwhile, redundancy analysis on AM fungal distribution and environmental variables suggested that the effect of plant biomass and most soil chemical properties on the AM fungal communities were not significant.  相似文献   

18.
The community composition of arbuscular mycorrhizal fungi (AMF) was analyzed in roots of Gentiana verna, Gentiana acaulis, and accompanying plant species from two species-rich Swiss alpine meadows located in the same area. The aim of the study was to elucidate the impact of host preference or host specificity on the AMF community in the roots. The roots were analyzed by nested PCR, restriction fragment length polymorphism screening, and sequencing of ribosomal DNA small-subunit and internal transcribed spacer regions. The AMF sequences were analyzed phylogenetically and used to define monophyletic sequence types. The AMF community composition was strongly influenced by the host plant species, but compositions did not significantly differ between the two sites. Detailed analyses of the two cooccurring gentian species G. verna and G. acaulis, as well as of neighboring Trifolium spp., revealed that their AMF communities differed significantly. All three host plant taxa harbored AMF communities comprising multiple phylotypes from different fungal lineages. A frequent fungal phylotype from Glomus group B was almost exclusively found in Trifolium spp., suggesting some degree of host preference for this fungus in this habitat. In conclusion, the results indicate that within a relatively small area with similar soil and climatic conditions, the host plant species can have a major influence on the AMF communities within the roots. No evidence was found for a narrowing of the mycosymbiont spectrum in the two green gentians, in contrast to previous findings with their achlorophyllous relatives.  相似文献   

19.
The effect of cultivation of mycorrhizal and non-mycorrhizal plants and mineral fertilization on the arbuscular mycorrhizal fungal (AMF) community structure of maize (Zea mays L.) plants was studied. Soil samples were collected from two field experiments treated for 5 years with three fertilization systems (Control – no fertilization; Mineral – NPK fertilization; and Organic – Farmyard manure fertilization). Soil samples containing soil and root fragments of rapeseed (Brassica napus L., non-mycorrhizal plant) and wheat (Triticum aestivum L., mycorrhizal plant) collected from the field plots were used as native microbial inoculum sources to maize plants. Maize plants were sown in pots containing these inoculum sources for four months under glasshouse conditions. Colonization of wheat roots by AMF, AMF community structure, AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize were investigated. Sixteen AMF species were identified from rhizosphere soil samples as different species of genera Acaulospora, Claroideoglomus, Dentiscutata, Funneliformis, Gigaspora, Quatunica, Racocetra, and Rhizoglomus. Maize plants grown in manure-fertilized soils had a distinct AMF community structure from plants either fertilized with mineral NPK-fertilizer or non-fertilized. The results also showed that inoculum from non-mycorrhizal plants combined with mineral fertilization decreased AMF diversity (Shannon’s index), AMF dominance (Simpson’s index) and growth of maize. Our findings suggest that non-mycorrhizal plants, such as B. napus, can negatively affect the presence and the effects of soil inoculation on maize growth. Also, our results highlight the importance of considering the long-term effect of rapeseed cultivation system on the reduction of population sizes of infective AMF, and its effect on succeeding annual crops.  相似文献   

20.
The diversity potential of arbuscular mycorrhizal fungi (AMF) in three different tropical soils of southern part of India was assessed by traditional morpho-typing of AMF-spores and by culture-independent nested-PCR of internal transcribed spacer region of ribosomal genes. The population diversity of AMF in soil was strongly correlated with available P2O5 in soil. Among the three different soils, black-cotton soil had more diversified AMF species than alluvial and red sandy soils. Pooled data of morpho-typing and sequence-driven analysis revealed that Glomus, Gigaspora, Scutellospora and Acaulospora are the AMF genera present in these soils. The diversity of AMF in soil differs with the mycorrhiza colonizing the plant roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号