首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Boron and salinity effects on grafted and non-grafted melon plants   总被引:7,自引:0,他引:7  
Production of melon (Cucumis melo) may be limited by excesses of boron and salinity, and it was hypothesized that melon grafted onto Cucurbita rootstock would be more tolerant to excessive boron concentrations than non-grafted plants. The objectives of this study were (i) to determine the effects of salinity and excessive boron concentrations in irrigation water on growth and yields of grafted and non-grafted melon plants; and (ii) to study the interaction between the effects of salinity and boron on the uptake of macroelements and boron by grafted and non-grafted melon plants. The plants were grown in pots of Perlite in a greenhouse. The combined effects of boron and salinity on growth and yield were investigated for five boron concentrations, ranging from 0.2 to 10 mg L− 1, and two salinity levels, electrical conductivity (EC) 1.8 and 4.6 dS m− 1, in the irrigation water. With low salinity the boron concentrations in old leaves of non-grafted and grafted plants ranged from 249 to 2827 and from 171 to 1651 mg kg− 1 dry weight, respectively; with high salinity the corresponding concentrations ranged from 192 to 2221 and from 200 to 1263 mg kg− 1 dry weight, respectively. These results indicate that the grafted plants accumulated less boron than the non-grafted plants when they were exposed to similar boron concentrations, and that both plant types absorbed less boron when irrigated with the more saline irrigation water. It is suggested that: (i) the Cucurbita rootstock excluded some boron and that this, in turn, decreased the boron concentration in the grafted plants; and (ii) the low boron uptake under high-salinity irrigation was mainly a result of reduced transpiration of the plants. Significant negative linear regressions were found between fruit yield and leaf boron concentration for grafted plants, under both low and high salinity levels, and for non-grafted plants under low salinity. The fruit yield of the grafted plants was less affected by boron accumulation in the leaves than that of non-grafted plants. Increasing the water salinity decreased the sensitivity of both plant types to increases in leaf boron concentration, which indicates that the effects of boron and salinity on melon plants were not additive.  相似文献   

2.
Salt stress response in tomato beyond the salinity tolerance threshold   总被引:1,自引:0,他引:1  
Crop salt tolerance is generally assessed as the relative yield response to increasing root zone salinity, expressed as soil (ECe) or irrigation water (ECw) electrical conductivity. Alternatively, the dynamic process of salt accumulation into the shoot relative to the shoot biomass has also been considered as a tolerance index. These relationships are graphically represented by two intersecting linear regions, which identify (1) a specific threshold tolerance, at which yield begins to decrease, and (2) a declining region, which defines the yield reduction rate. Although the salinity threshold is intuitively a critical parameter for establishing plant salt tolerance, we focused our interest on physiological modifications that may occur in the plant at salinity higher than the so-called tolerance threshold. For this purpose, we exposed hydroponically grown tomato plants to eight different salinity levels (EC = 2.5 (non-salinized control); 4.2; 6.0; 7.8; 9.6; 11.4; 13.2; 15.0 dS m−1). Based on biomass production, water relations, leaf ions accumulation, leaf and root abscisic acid and stomatal conductance measurements, we were able to identify a specific EC value (approximately 9.6 dS m−1) at which a sharp increase of the shoot and root ABA levels coincided with (1) a decreased sensitivity of stomatal response to ABA; (2) a different partitioning of Na+ ions between young and mature leaves; (3) a remarkable increase of the root-to-shoot ratio. The specificity and functional significance of this response in salt stress adaptation is discussed.  相似文献   

3.
Salinity is one of the serious abiotic stresses adversely affecting the majority of arable lands worldwide, limiting the crop productivity of most of the economically important crops. Sweet basil (Osmium basilicum) plants were grown in a non-saline soil (EC = 0.64 dS m−1), in low saline soil (EC = 5 dS m−1), and in a high saline soil (EC = 10 dS m−1). There were differences between arbuscular mycorrhizal (Glomus deserticola) colonized plants (+AMF) and non-colonized plants (−AMF). Mycorrhiza mitigated the reduction of K, P and Ca uptake due to salinity. The balance between K/Na and between Ca/Na was improved in +AMF plants. Growth enhancement by mycorrhiza was independent from plant phosphorus content under high salinity levels. Different growth parameters, salt stress tolerance and accumulation of proline content were investigated, these results showed that the use of mycorrhizal inoculum (AMF) was able to enhance the productivity of sweet basil plants under salinity conditions. Mycorrhizal inoculation significantly increased chlorophyll content and water use efficiency under salinity stress. The sweet basil plants appeared to have high dependency on AMF which improved plant growth, photosynthetic efficiency, gas exchange and water use efficiency under salinity stress. In this study, there was evidence that colonization with AMF can alleviate the detrimental salinity stress influence on the growth and productivity of sweet basil plants.  相似文献   

4.
A pot experiment was carried out with tomato (Lycopersicon esculentum Mill.) cv. “Target F1” in a mixture of peat, perlite, and sand (1:1:1) to investigate the effects of supplementary calcium sulphate on plants grown at high NaCl concentration (75 mM). The treatments were: (i) control (C), nutrient solution alone; (ii) salt treatment (C + S), 75 mM NaCl; (iii) salt plus calcium treatment 1 (C + S + Ca1), 75 mM NaCl plus additional mixture of 2.5 mM CaSO4 in nutrient solution; (iv) salt plus calcium treatment 2 (C + S + Ca2), 75 mM NaCl plus additional mixture of 5 mM CaSO4 in nutrient solution. The plants grown under salt stress produced low dry matter, fruit weight, and relative water content than those grown in standard nutrient solution. Supplemental calcium sulphate added to nutrient solution containing salt significantly improved growth and physiological variables affected by salt stress (e.g. plant growth, fruit yield, and membrane permeability) and also increased leaf K+, Ca2+, and N in tomato plants. The effects of supplemental CaSO4 in maintaining membrane permeability, increasing concentrations of Ca2+, N, and K+ and reducing concentration of Na+ (because of cation competition in root zone) in leaves could offer an economical and simple solution to tomato crop production problems caused by high salinity.  相似文献   

5.
Field trials were carried out to evaluate six treatments combining biological agents and chemical fungicides applied via chemigation against white mold (Sclerotinia sclerotiorum) on processing tomatoes. The experiment was performed in Goiânia, Brazil, with tomato hybrid Heinz 7155 in 2009 and 2010 in a field previously infested with S. sclerotiorum sclerotia. Treatments were arranged in a randomized complete block design in a 2 × 3 factorial structure (with and without Trichoderma spp. 1.0 × 109 viable conidia mL−1 ha−1) × fluazinam (1.0 L ha−1), procimidone (1.5 L ha−1) and control, applied by drip irrigation. Treatments were applied three times 10 days apart, starting one month after transplanting. Each treatment consisted of plots with three 72-meter rows with four plants m−1 and 1.5 m spacing between rows, with three replications. Based on disease incidence evaluated weekly, the area under the disease progress curve (AUDPC) was obtained. Yield and its components were evaluated in addition to fruit pH and °Brix. Results were subjected to ANOVA, Scott-Knott (5%), and regression analysis. Biocontrol using Trichoderma spp. via chemigation singly or in combination with synthetic fungicides fluazinam and procimidone reduced AUDPC and increased fruit yield up to 25 t ha−1. The best treatment for controlling white mold also increased pulp yield around 1.0 and 7.0 t ha−1 in 2009 and 2010, respectively. The present work demonstrated the advantages of white mold biological control in processing tomato crops, where drip irrigation favored Trichoderma spp. delivery close to the plants and to the inoculum source.  相似文献   

6.
In the present study, the hypothesis was tested as to whether silicon supplied via the nutrient solution is capable of enhancing the tolerance of hydroponically grown zucchini squash (Cucurbita pepo L. cv. ‘Rival’) to salinity and powdery mildew infections. Two experiments were conducted involving a low (2.2 dS m?1, 0.8 mM NaCl) and a high salinity level (6.2 dS m?1, 35 mM NaCl) in combination with a low (0.1 mM) and a high (1.0 mM) Si level in the nutrient solution supplied to the crop. The exposure of the plants to high external salinity restricted significantly the vegetative growth as well as the fruit yield of zucchini due to a reduction of both the number of fruits per plant and the mean fruit weight. However, the inclusion of 1 mM of Si in the salinized nutrient solution mitigated the salinity-associated suppression of both growth and yield. Part of the growth and fruit yield suppression at high salinity was due to restriction of net photosynthesis. The stomatal conductance was also restricted by salinity, whereas the substomatal CO2 concentration was not affected by the NaCl or Si treatments. The supply of 1 mM of Si via the nutrient solution mitigated the inhibitory effect of salinity on net photosynthesis and this effect was associated with lower Na and Cl translocation to the epigeous plant tissues. Furthermore, the supply of Si via the nutrient solution suppressed appreciably the expansion of a powdery mildew (Podosphaera xanthii) infection in the leaves at both salinity levels. These results indicate that the supply of at least 1 mM of Si via the nutrient solution is capable of enhancing both tolerance to salinity and resistance to powdery mildew in soilless cultivations of zucchini squash.  相似文献   

7.
Water scarcity is a major limiting factor for crop productivity in arid and semi-arid areas. Grafting elite commercial cultivars onto selected vigorous rootstocks is considered as a useful strategy to alleviate the impact of environmental stresses. This study aims to investigate the feasibility of using grafting to improve fruit yield and quality of cucumber under water stress conditions. Alosama F1 cucumber cultivar (Cucumis sativus L.) was grafted onto Affyne (Cucumis sativus L.) and Shintoza A90 (Cucurbitamaxima × C. moschata) rootstocks. Non-grafted plants were used as control. All genotypes were grown under three surface drip irrigation regimes: 50%, 75% and 100% of the crop evapotranspiration (ETc), which represent high-water stress, moderate-water stress and non-water stress conditions, respectively. Yield and fruit quality traits were analyzed and assessed. In comparison to the non-grafted plants, the best grafting treatment under water stress was Alosama F1 grafted onto Shintoza A90 rootstock. It had an overall improved yield and fruit quality under water stress owing to an increase in the total fruit yield by 27%, from 4.815 kg plant?1 in non-grafted treatment to 6.149 kg plant?1 in grafted treatment under moderate -water stress, total soluble solid contents (13%), titratable acidity (39%) and vitamin C (33%). The soil water contents were low in soil surface and increase gradually with soil depth, while salt distribution showed an adverse trend. The positive effects of grafting on plant growth, productivity, and water use efficiency support this strategy as an useful tool for improving water stress tolerance in greenhouse grown cucumber in Saudi Arabia.  相似文献   

8.
Two commercial tomato cultivars were used to determine whether grafting could prevent decrease of fruit weight and quality under salt stress conditions. The cultivars Buran F1 and Berberana F1 were grafted onto rootstock ‘Maxifort’ and grown under three levels of elevated soil salinity (EC 3.80 dS m?1, 6.95 dS m?1 and 9.12 dS m?1). Fruit weight reduction of grafted plants was lower (about 20–30%) in comparison with non‐grafted ones. Salt stress at the second salinity level (EC 6.95 dS m?1) induced the highest alteration of examined growth and quality parameters. The total increase of phenols, flavonoids, ascorbate and lycopene content in the fruits of both grafted and non‐grafted plants for both cultivars had a similar trend and intensity, though some inter‐cultivar variation was observed. The possibility of grafting tomato plants to improve salt tolerance without fruit quality loss is discussed.  相似文献   

9.
Environmental stress can affect development and yield of tomato plants. This study was undertaken to investigate the underlying mechanism asserted by kaolin on tomato physiology by evaluating its effect on leaf, canopy and inner fruit temperatures, gas exchange at the leaf and canopy scales, above ground biomass, yield and fruit quality.The study was carried out under field conditions in Southern Italy. Treatments were plants treated with kaolin-based particle film (Surround® WP) suspension and untreated plants (control).Kaolin application slightly increased leaf and canopy scale temperatures by 1.0 and 0.4 °C, respectively, transpiration rate decreased at both scales. On calm days (wind speed <0.5 m s?1) with a prevalently clear sky at midday, inner fruit temperature (tf) of kaolin-treated plants was 4.4 °C lower than the tf of control plants, while in days with clear sky-windy, and cloudy-calm, the tf did not differ.At leaf scale, net assimilation was reduced by 26% in kaolin-coated treatments. Stomatal conductance decreased by 53%, resulting in reductions of 34 and 15% in transpiration and internal CO2 concentration, respectively. Gas exchange parameters measured at canopy scale were similarly affected. In kaolin-treated plants, assimilation and evapotranspiration rates were reduced by 17 and 20%, respectively, while dark respiration was not affected. Above ground dry biomass decreased by 6.4%.Marketable yield in kaolin-treated plants was 21% higher than those measured in control plants; this is possibly related to the 96 and 79% reduction in sunburned fruit and those damaged by insects, respectively, and to the 9% increase in mean fruit weight. Kaolin treatment increased lycopene fruit content by 16%, but did not affect total soluble solids content, fruit dry matter, juice pH, titratable acidity or tomato fruit firmness. The use of kaolin-based particle film technology would be an effective tool to alleviate heat stress and to reduce water stress in tomato production under arid and semi-arid conditions.  相似文献   

10.
A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions.  相似文献   

11.
Arbutus unedo seedlings were grown in a greenhouse and submitted to three irrigation treatments (salinity period) using solutions with an EC of 0.85 dS m?1 (control treatment), 5.45 dS m?1 (S1) and 9.45 dS m?1 (S2). After 16 weeks, growth and ornamental characters, leaf water potentials, gas exchange and ion concentrations were determined. After the salinity period, plants were exposed to a relief period for 1 month, whereby half of the plants were transplanted to field conditions and the other half into 24 cm diameter plastic pots. Salinity induced a significant decrease in shoot biomass and leaf area but root/shoot ratio was increased. Plant height was significantly inhibited by salinity. The ornamental characters were affected in the treated plants, with symptoms of salt injury, such as burning of leaf margin. Leaf water potentials decreased with increasing salinity, more significantly at predawn than at midday. The relationship between net photosynthesis (Pn) and leaf conductance (gl) was linear for all treatments and the same values of Pn are associated with lower values of gl for the saline treatments than for control treatment. The concentration of Cl? in leaves increased with increasing salinity and was higher than the corresponding concentration of Na+. Na+ and Cl? contents were higher in the leaves than in the roots in both saline treatments. The K+ and Ca2+ levels were lower in the treated plants than in control plants and applied salinity reduced the K+/Na+ ratio in leaves, stems and roots, the decrease being much greater for leaves than for roots. The Ca2+/Na+ ratio fell with salinity in all parts of the plants. At the end of the relief period leaf water potentials were recovered mainly in field conditions. S2 treatment showed lower values of Pn and gl than control and S1 treatments in pot conditions and in field conditions S1 showed the lowest values for Pn and gl.  相似文献   

12.
Defensive proteins, such as polyphenol oxidase (PPO) and trypsin inhibitor (TI), are induced by herbivore wounding and exogenous methyl jasmonate application in various plant species. This study was conducted to measure induction of PPO and TI in radish, sweet pepper, tomato, and water spinach plants following herbivore wounding (I), methyl jasmonate application (M), and a combination of the two treatments (M + I). The effect of induced responses was also examined against third instar Spodoptera litura Fab. PPO activity was induced in radish by treatment I only; in sweet pepper, by treatments I and M; in tomato, by treatments I, M, and M + I; and in water spinach, by treatments M and M + I. The activity of TI was enhanced 1.2–1.4-fold in radish, sweet pepper, and tomato by M and M + I treatments, whereas in water spinach, it was enhanced 1.2-fold by all 3 treatments. The relative growth rate (RGR) of S. litura was reduced by 53% on radish plants following M treatment only. It was reduced by 37% and 42% on sweet paper plants following M and M + I treatment, respectively. RGR was significantly reduced on test tomato plants following I, M, and M + I treatments. The RGR of S. litura was unaffected on water spinach plants following any treatment. Collectively, the results of this study indicated that induction of plant defensive proteins in response to S. litura feeding or exogenous methyl jasmonate application varied among plant species, which further affected the induced plant resistance to the caterpillars.  相似文献   

13.
Soil salinity is one of the most important environmental factors responsible for serious agricultural problems. Tomato salt tolerance may be improved by genetic selection and by the use of adapted physiological tools. The aim of this study was to investigate the impact of exogenous application of salicylic acid (SA 0.01 mM) and calcium sulphate (CaSO4 5 mM), singly or in combination, on plant growth, photosynthetic pigments, nutritional behaviour and some metabolic parameters (total chlorophyll, carotenoids, soluble sugars, proline and lipid peroxidation) of two tomato cultivars (cv. Super Marmande and cv. Red River) exposed to salt stress (100 mM NaCl). Application of 100 mM NaCl reduced plant growth, total chlorophyll and carotenoid contents. Salt stress also induced an accumulation of Na+, a decrease in K+ and Ca2 + concentration and root sugar level, an increase in malondialdehyde (MDA) and proline concentration. Deleterious impact of salinity was related to modification in ion content rather than modification in the plant water status. Exogenous application of SA or Ca alone improved plant behaviour in the presence of NaCl. Nevertheless, the best results in terms of growth, photosynthetic pigment concentrations and mineral nutrition (limitation of Na+ accumulation and maintenance of K+ and Ca2 + content) were obtained in response to the combined SA + Ca treatment. Although the involved physiological parameters varied depending on the considered cultivar, our results suggest that Ca2 + and SA may interact to reduce the stress experienced by the plant in the presence of NaCl.  相似文献   

14.
A study quantifying the effect of NaCl on growth and Cd accumulation of Spartina alterniflora subjected to Cd stress was conducted. Seedlings were cultivated in the presence of 1 or 3 mM Cd alone, or combined with NaCl (50 or 100 mM). The results showed that NaCl magnified the phytotoxicity of moderate Cd stress (1 mM Cd) on plants due to reduced levels of plant biomass, plant height, and chlorophyll a + b, while no synergistic effects were recorded under severe Cd stress (3 mM Cd). Proline and Ca2 + accumulated along with additional NaCl under moderate Cd stress, instead of reduced or unchanged levels under severe Cd stress owing to different adoption strategies caused by NaCl under different Cd stresses. NaCl reduced the oxidative stress in Cd-treated plants through increasing levels of antioxidative enzymes (catalase (CAT) and peroxidase (POD)) under moderate Cd stress. With NaCl addition, Cd2 + contents in S. alterniflora increased and reduced under moderate and severe Cd stress, respectively. However, total Cd2 + amounts increased with increasing NaCl concentration due to biological dilution. NaCl improved the increase of Cd2 + translocation factor (TF) under moderate Cd stress, indicating that NaCl might improve Cd2 + uptake and translocation from roots to shoots, and enhance the phytoextraction of S. alterniflora on Cd; while phytostabilization of Cd under severe Cd stress may be possible due to the reduced TF. Thus, NaCl alleviated phytotoxicity caused by Cd stress through improved management of osmotic solutes and oxidative status, and affected Cd accumulations in S. alterniflora differently under moderate and severe Cd stresses.  相似文献   

15.
《Aquatic Botany》2007,87(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

16.
《Aquatic Botany》2008,88(4):292-298
The effect of salinity on leaf area and the relative accumulation of Na+ and K+ in leaves of the mangrove associate Hibiscus tiliaceus were investigated. Photosynthetic gas exchange characteristics were also examined under arid and non-arid leaf conditions at 0, 10, 20 and 30‰ substrate salinity. At salinities  40‰, plants showed complete defoliation followed by 100% mortality within 1 week. Salinities  30‰ were negatively correlated with the total leaf area per plant (r2 = 0.94). The reduction in the total plant leaf area is attributed to the reduction in the area of individual leaves (r2 = 0.94). Selective uptake of K+ over Na+ declined sharply with increasing salinity, where K+/Na+ ratio was reduced from 6.37 to 0.69 in plants treated with 0 and 30‰, respectively. Under non-arid leaf condition, increasing salinity from 0 to 30‰ has significantly reduced the values of the intrinsic components of photosynthesis Vc,max (from 50.4 to 18.4 μmol m−2 s-1), Jmax (from 118.0 to 33.8 μmol photons m−2 s−1), and VTPU (from 6.90 to 2.30 μmol m−2 s−1), while stomatal limitation to gas phase conductance (SL) increased from 14.6 to 38.4%. Water use efficiency (WUE) has subsequently doubled from 3.20 for the control plants to 8.93 for 30‰ treatment. Under arid leaf conditions, the stomatal factor (SL) was more limiting to photosynthesis than its biochemical components (73.4 to 26.6%, respectively, at 30‰). It is concluded that salinity causes a drastic decline in photosynthetic gas exchange in H. tiliaceus leaves through its intrinsic and stomatal components, and that the apparent phenotypic plasticity represented by the leaf area modulation is unlikely to be the mechanism by which H. tiliaceus avoids salt stress.  相似文献   

17.
《Aquatic Botany》2007,86(3):213-222
Melaleuca ericifolia Sm. (Swamp paperbark) is a common tree species in freshwater and brackish wetlands in southern and eastern Australia. The survival of this species in many wetlands is now threatened by increased salinity and inappropriate water regimes. We examined the response of 5-month-old M. ericifolia seedlings to three water depths (exposed, waterlogged and submerged) at three salinities (2, 49 and 60 dS m−1). Increasing water depth at the lowest salinity did not affect survival, but strongly inhibited seedling growth. Total biomass, leaf area and maximum root length were highest in exposed plants, intermediate in waterlogged plants and lowest in submerged plants. Although completely submerged plants survived for 10 weeks at the lowest salinity, they demonstrated negative growth rates and were unable to extend their shoots above the water surface. At the higher salinities, M. ericifolia seedlings were intolerant of waterlogging and submergence: all plants died after 9 weeks at 60 dS m−1. Soil salinities increased over time, and by Week 10, exceeded external water column salinities in both the exposed and waterlogged treatments. In exposed sediment, ∼90% of plants survived for 10 weeks at 60 dS m−1 even though soil salinities reached ∼76 dS m−1. No mortality occurred in the exposed plants at 49 dS m−1, and small but positive relative growth rates were recorded at Week 10. We conclude that at low salinities M. ericifolia seedlings are highly tolerant of sediment waterlogging, but are unlikely to tolerate prolonged submergence. However, at the higher salinities, M. ericifolia seedlings are intolerant of waterlogging and submergence and died rapidly after 5 weeks exposure to this combination of environmental stressors. This research demonstrates that salinity may restrict the range of water regimes tolerated by aquatic plants.  相似文献   

18.
A hydroponic experiment was conducted to assess the possible involvement of polyamines (PAs), abscisic acid (ABA) and anti-oxidative enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in adaptation of six populations of Panicum antidotale Retz. to selection pressure (soil salinity) of a wide range of habitats. Plants of six populations were collected from six different habitats with ECe ranging from 3.39 to 19.23 dS m−1 and pH from 7.65 to 5.86. Young tillers from 6-month-old plants were transplanted in plastic containers each containing 10 l of half strength Hoagland's nutrient solution alone or with 150 mol m−3 NaCl. After 42 days growth, contents of polyamines (Put, Spd and Spm) and ABA, and the activities of anti-oxidative enzymes (SOD, POD and CAT) of all populations generally increased under salt stress. The populations collected from highly saline habitats showed a greater accumulation of polyamines and ABA and the activities of anti-oxidative enzymes as compared to those from mild or non-saline habitats. Moreover, Spm/Spd and Put/(Spd + Spm) ratios generally increased under salt stress. However, the populations from highly saline environments had significantly higher Spm/Spd and Put/(Spd + Spm) ratios as compared to those from mild or non-saline environments. Similarly, the populations adapted to high salinity accumulated less Na+ and Cl in culm and leaves, and showed less decrease in leaf K+ and Ca2+ under salinity stress. Higher activities of anti-oxidative enzymes and accumulation of polyamines and ABA, and increased Spm/Spd and Put/(Spm + Spd) ratios were found to be highly correlated with the degree of adaptability of Panicum to saline environment.  相似文献   

19.
Our study is focused on native spontaneous species of saline ecosystems Plantago maritima. Plants were cultivated at several salt concentrations (0, 50, 100, 200, 300, 400 and 500 mM NaCl) in a glass greenhouse under semi-controlled conditions. Growth parameters, water parameters and ionic status were determined and they were used as criteria to assess the response of P. maritima under a salinity gradient. Catalase, guaiacaol and ascobate peroxidase activities, total protein and proline were also determined. Our results show that P. maritima is a facultative halophyte capable of expressing its maximum growth potential at relatively low concentrations of salt (less than 3 g l−1 NaCl). At high doses of salt (concentrations > 200 mM), the decrease in the growth of P. maritima is associated to a decrease in the uptake of K+. There is a disruption of the water intake of their organs and therefore results an invasion of the cytoplasm by Na+ toxic ion. However, stressed plants use K+ more sparingly. They invest especially in the production of biomass expressed by the dry weight of the shoots, and they use Na+ and proline for osmotic adjustment. The halophyte studied is able to accumulate high levels of proline in response to increasing salt concentration. The accumulation of the amino compound, mainly in roots, is interpreted as an indicator of salt tolerance. Additionally, a significant correlation between the tolerance of the plants to salinity and the activity of several antioxidant enzymes has been observed. Hence, we suggest the possibility of using these activities as a biochemical indicator for salt tolerance in P. maritima. Our study points out two types of biomarkers of salt exposure: enzymatic biomarkers in the leaves and proline content in the roots. Both did show very good correlation with salt exposure, and thus may be considered good biomarkers of exposure with a very good dose–response relationship.  相似文献   

20.
The source of infection has always been considered as an important factor in epidemiology and mostly linked to environmental source such as surface water, soil, plants and also animals. The activity of the opportunistic pathogens associated with plant root, their adaptation and survival under hostile environmental condition is poorly understood. In this study the salt tolerance ability of Methylobacterium mesophilicum and its colonization in the root and shoot of plants under severe drought and salt stress conditions were investigated. The colonization of plant by M. mesophilicum was investigated in a gnotobiotic sand system, and their survival in pots with saline soil. Bacterial strain was found to colonize rhizosphere of cucumber, tomato and paprika grown under normal and salt stress condition and reached up to 6.4 × 104 and 2.6 × 104 CFU/g root. The strain was resistant to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neomycin, penicillin and was also tolerant to salinity stress (up to 6% NaCl). These abilities play important roles in enabling persistent colonization of the plant surface by M. mesophilicum strains. In conclusion, this study provides background information on the behaviour of opportunistic pathogen M. mesophilicum on plants and their survival in harsh environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号