首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The initiation of stomatal development in the developing Arabidopsis epidermis is characterized by an asymmetric ‘entry’ division in which a small cell, known as a meristemoid, and a larger daughter cell is formed. The meristemoid may undergo further asymmetric divisions, regenerating a meristemoid each time, before differentiating into a guard mother cell which divides symmetrically to form a pair of guard cells surrounding a stomatal pore. Recently EPF2 and BASL have emerged as regulators of these asymmetric divisions and here we present results indicating that these two factors operate independently to control stomatal developmentKey words: stomata, development, meristemoids, asymmetric cell division, leaf epidermis, cell polarity, peptide signal  相似文献   

2.
通过激光扫描共聚焦显微镜,利用不同种类(波长)的激光研究拟南芥叶片气孔发生与发育。结果表明,利用紫外激光(351nm)扫描可以清楚观察到拟南芥表皮各种细胞及其发生发育的形态变化,包括表皮毛细胞、副卫细胞、保卫细胞、铺垫表皮细胞等。气孔发生过程中,首先原表皮细胞不对称分裂产生拟分生组织和副卫细胞,接着分化出保卫细胞母细胞,进一步发育形成保卫细胞,最终形成气孔器。气孔分化完成后,保卫细胞在紫外激光下不产生荧光,但利用蓝光激发(488nm)辅助荧光素染色,可清晰地看到保卫细胞。结果表明,激光扫描共聚焦显微镜在拟南芥叶表皮细胞形态研究上有独特的功能。  相似文献   

3.
Paracytic and anisocytic types of mature stomata are found inthe leaf of Aganosma dichotoma. Stomata with one guard cell,stomata with degenerated guard cells, and contiguous stomataare common. Stomata with arrested pore development are alsofound in certain cases. A single guard cell without any porehas not been designated as a stoma with one guard cell in thepresent investigation. Ontogeny of contiguous stomata have beentraced. Subsidiary cells are, morphologically, just like theircontiguous guard cells. Subsidiary cells may retain their shapeand contents even when their contiguous stoma becomes mature,or may change their shape and lose their contents. They mayor may not divide. Subsidiary cells form a whorl of more thantwo subsidiary cells around a stoma by their divisions. Degenerationof guard cell(s)— their contents and nuclei—havebeen traced. In certain cases guard cells divide forming morethan two guard cells associated to a single pore. Cytoplasmicconnections are found between two guard cells of nearby stomata,and between a guard cell and an epidermal cell. Near the wound,the epidermal cells over the veins become meristermatic givingrise to new epidermal cells but no meristemoid.  相似文献   

4.
Anomocytic stomata and stomata with single subsidiary cells are commonly observed Sometimes a stoma appears anisocytic. Double cytoplasmic connections between nearby stomata and division of guard cells with persistent or degenerating nuclei are seen in GA. One or more divisions of guard cells, displaced guard cells and single guard cells with or without pore are noticed in SUC. Formation of single guard cells is a common feature in TIBA. Paracytic stomata, one and a half stomata and persistent stomatal initials are seen in SUL. COUM seems to be not inhibitory inCucumis sativus. In COL stomata with unequal guard cells, unequal stomatal cells with thickening in between but without intervening pore, stoma with double pores, persistent stomatal initials which may be solitary or in groups with varying shapes and with one or two nuclei of different shapes are noticed. The growth regulators affect the frequency of stomata, epidermal cells; stomatal index; size of guard and epidermal cells.  相似文献   

5.
6.
7.
盾叶秋海棠叶表皮气孔簇的发育及分布格局   总被引:4,自引:0,他引:4  
气孔是植物控制气体交换和调节水分散失的门户。大部分高等植物气孔的分布格局是相邻气孔之间被一至多个表皮细胞所间隔。而在有限分布的几个科属的植物种中发现气孔成簇分布的现象 ,即由 2至多个紧密相邻的气孔器组成相对独立的单元 ,称为气孔簇 (stomatalcluster)。以中国原产的盾叶秋海棠 (BegoniapeltatifoliaLi)为研究对象 ,探讨了叶表皮气孔簇的发育机制及其分布格局。结果表明 :气孔发育初期 ,气孔拟分生组织的成簇 (相邻紧密 )排列可能是气孔簇形成的主要机制 ;气孔副卫细胞恢复分裂形成的卫星拟分生组织也对气孔簇的形成起一定的作用。把气孔簇和单个气孔视为一个气孔单元发现 ,盾叶秋海棠气孔单元密度 (单位面积中气孔单元数 )和气孔单元大小 (气孔单元所包含气孔数 )在叶片上呈有规律的分布 :前者由叶片中部向叶尖、叶缘逐圈增多 ,而后者逐圈减少。对这种分布格局的成因进行了讨论  相似文献   

8.
Stomata are turgor-driven epidermal valves on the surface of plants that allow for efficient gas and water exchange between the plant and its environment. The Arabidopsis thaliana basic helix-loop-helix (bHLH) protein, MUTE, is a master regulator of stomatal differentiation where it is required for progression through the stomatal lineage and the differentiation of stomata. The genetic control of stomatal spacing across the epidermal surface is variable in different organs. For instance, a distinct suite of genes from those in leaves regulates stomatal patterning in hypocotyls. Here we report that regardless of organ type, MUTE controls downstream events directing stomatal differentiation, specifically the transition from meristemoid to guard mother cell. Ectopic MUTE expression is sufficient to over-ride cell fate specification in cell types that do not normally differentiate stomata. Furthermore, MUTE is required for the production of the structure evolutionarily related to stomata, the hydathode pore. Consistently, MUTE displays expression at the tip of cotyledons and leaves, thus co-localizing with the auxin maxima. However, MUTE itself was not regulated by the auxin, and the absence of hydathode pores in mute did not affect the auxin maxima. Surprisingly, our analysis revealed that the requirement for MUTE could be partially circumvented under conditions of compromised inhibitory signaling.  相似文献   

9.
Given that stomatal movement is ultimately a mechanical process and that stomata are morphologically and mechanically diverse, we explored the influence of stomatal mechanical diversity on leaf gas exchange and considered some of the constraints. Mechanical measurements were conducted on the guard cells of four different species exhibiting different stomatal morphologies, including three variants on the classical "kidney" form and one "dumb-bell" type; this information, together with gas-exchange measurements, was used to model and compare their respective operational characteristics. Based on evidence from scanning electron microscope images of cryo-sectioned leaves that were sampled under full sun and high humidity and from pressure probe measurements of the stomatal aperture versus guard cell turgor relationship at maximum and zero epidermal turgor, it was concluded that maximum stomatal apertures (and maximum leaf diffusive conductance) could not be obtained in at least one of the species (the grass Triticum aestivum) without a substantial reduction in subsidiary cell osmotic (and hence turgor) pressure during stomatal opening to overcome the large mechanical advantage of subsidiary cells. A mechanism for this is proposed, with a corollary being greatly accelerated stomatal opening and closure. Gas-exchange measurements on T. aestivum revealed the capability of very rapid stomatal movements, which may be explained by the unique morphology and mechanics of its dumb-bell-shaped stomata coupled with "see-sawing" of osmotic and turgor pressure between guard and subsidiary cells during stomatal opening or closure. Such properties might underlie the success of grasses.  相似文献   

10.
The effect of different growth substances on the development of normal and abnormal stomata are presented. Anomocytic, paracytic, anisocytic and stoma with a single subsidiary cell are observed. Abnormal developments like persistent stomatal cells, degeneration of guard cells, unusual thickening, unequal guard cells, single guard cells and size and shape of the pore are noticed in various growth substances. The growth substances also affect the stomatal frequency, stomatal index, epidermal frequency and size of guard and epidermal cells in both the plants. The highest meristematic activity is found in MOR 100 ppm in brinjal and in GA 25 ppm in tomato. The largest size of stomata is found in COL 25 ppm in brinjal and in MH 50 ppm in tomato. The same growth substance responds differently in the two plants.  相似文献   

11.
In Mimosa pudica L., heat stimulation triggers leaflet folding in local, neighbouring and distant leaves. Stomatal movements were observed microscopically during this folding reaction and electrical potentials, chlorophyll fluorescence, and leaf CO(2)/H(2)O-gas exchange were measured simultaneously. Upon heat stimulation of a neighbouring pinna, epidermal cells depolarized and the stomata began a rapid and pronounced transient opening response, leading to an approximately 2-fold increase of stomatal aperture within 60 s. At the same time, net CO(2) exchange showed a pronounced transient decrease, which was followed by a similar drop in photochemical quantum yield at photosystem (PS) II. Subsequently, CO(2)-gas exchange and photochemical quantum yield recovered and stomata closed partly or completely. The transient and fast stomatal opening response is interpreted as a hydropassive stomatal movement caused by a sudden loss of epidermal turgor. Thus, epidermal cells appear to respond in a similar manner to heat-induced signals as the pulvinar extensor cells. The subsequent closing of the stomata confirms earlier reports that stomatal movements can be induced by electrical signals. The substantial delay (several minutes) of guard cell turgor loss compared with the immediate response of the extensor and epidermal cells suggests a different, less direct mechanism for transmission of the propagating signal to the guard cells.  相似文献   

12.
The structure and ontogeny of foliar stomata were studied in 50 species of 28 genera belonging to 17 tribes of the family Euphorbiaceae. The epidermal cells are either polygonal, trapezoidal, or variously elongated in different directions and diffusely arranged. The epidermal anticlinal walls are either straight, arched or sinuous. The architecture of cuticular striations varies with species. The mature stomata are paracytic (most common), anisocytic, anomocytic and diacytic. Occasionally a stoma may be tetracytic, cyclocytic or with a single subsidiary cell. The ontogeny of paracytic stomata is mesogenous dolabrate or trilabrate, mesoperigenous dolabrate; that of diacytic stomata is mesogenous dolabrate, whereas that of anisocytic stomata is mesogenous trilabrate; rarely an anisocytic stoma may be mesoperigenous. Hemiparacytic stomata are mesoperigenous unilabrate; tetracytic stomata are mesoperigenous dolabrate and anomocytic stomata perigenous. Abnormalities encountered include four types of contiguous stomata, stomata with a single or both guard cells aborted and persistent stomatal initials. Cytoplasmic connections between the guard cells of two adjacent stomata or the guard cell of a stoma and an adjacent epidermal/subsidiary cell, or both types occurring in a species, were noticed. The stomatal development, distribution, diversity and basic stomatal type with reference to systematics are discussed.  相似文献   

13.
Kim M  Hepler PK  Eun SO  Ha KS  Lee Y 《Plant physiology》1995,109(3):1077-1084
Stomatal movements, which regulate gas exchange in plants, involve pronounced changes in the shape and volume of the guard cell. To test whether the changes are regulated by actin filaments, we visualized microfilaments in mature guard cells and examined the effects of actin antagonists on stomatal movements. Immunolocalization on fixed cells and microinjection of fluorescein isothiocyanate-phalloidin into living guard cells of Commelina communis L. showed that cortical microfilaments were radially distributed, fanning out from the stomatal pore site, resembling the known pattern of microtubules. Treatment of epidermal peels with phalloidin prior to stabilizing microfilaments with m-maleimidobenzoyl N-hydroxysuccimimide caused dense packing of radial microfilaments and an accumulation of actin around many organelles. Both stomatal closing induced by abscisic acid and opening under light were inhibited. Treatment of guard cells with cytochalasin D abolished the radial pattern of microfilaments; generated sparse, poorly oriented arrays; and caused partial opening of dark-closed stomata. These results suggest that microfilaments participate in stomatal aperture regulation.  相似文献   

14.
《Flora》2007,202(4):261-267
Although stomatal ontogeny is closely related to the development and maturation of the epidermal tissue, stomatal patterns in relation to cuticle construction and cuticular material deposition during leaf development have not received adequate attention. We observed the deposition of blue-fluorescing cuticular phenolics over guard and epidermal cells, as well as stomatal formation and patterning using the alkali-induced blue fluorescence of the cuticle of Prunus persica leaves. Stomata of different stages of maturity occurred together during leaf development, mainly at the tip of the lamina. The deposition of fluorescing compounds initially appeared over the guard cells of the developing stomata complexes and gradually extended to the neighbouring epidermal cells. Based on the blue fluorescence emitted by the cuticular layers, we constructed digital maps of leaves of different developmental stages, showing the pattern of stomatal formation and deposition of fluorescing compounds. A longitudinal tip-to-base gradient in the formation of stomata, as well as in the deposition of fluorescing compounds was observed in young developing leaves. The deposition of blue-fluorescing phenolic compounds seems to be coordinated with stomatal development.  相似文献   

15.
Summary Microtubule (MT) arrays in stomatal complexes ofLolium have been studied using cryosectioning and immunofluorescence microscopy. This in situ analysis reveals that the arrangement of MTs in pairs of guard cells (GCs) or subsidiary cells (SCs) within a complex is very similar, indicating that MT deployment is closely coordinated during development. In premitotic guard mother cells (GMCs), MTs of the transverse interphase MT band (IMB) are reorganized into a longitudinal array via a transitory array in which the MTs appear to radiate from the cell edges towards the centre of the walls. Following the longitudinal division of GMCs, cortical MTs are reinstated in the GCs at the edge of the periclinal and ventral walls. The MTs become organized into arrays which radiate across the periclinal walls, initially from along the length of the ventral wall and later only from the pore site. As the GCs elongate, the organization of MTs and the patterns of wall expansion differ on the internal and external periclinal walls. A final reorientation of MTs from transverse to longitudinal is associated with the elongation and constriction of GCs to produce mature complexes. During cytokinesis in the subsidiary mother cells (SMCs), MTs appear around the reforming nucleus in the daughter epidermal cells but appear in the cortex of the SC once division is complete. Our results are thus consistent with the idea that interphase MTs are nucleated in the cell cortex in all cells of the stomatal complex but not in adjacent epidermal cells.Abbreviations GMC guard mother cell - GC guard cell - IMB interphase microtubule band - MT microtubule - PPB preprophase band - SMC subsidiary mother cell - SC subsidiary cell  相似文献   

16.
Cuticle micromorphology of 34 taxa of Pinus from Mexico and Central America was studied with scanning electron microscopy, and leaf morphology was described. In total, 29 characters, 22 from the inner cuticular surfaces and seven from the outer, were described in detail. These characters have value either for testing infragenerie classifications or for identifying individual taxa. Characters relating to the periclinal wall texture of the epidermal cells, the shape and degree of development of the anticlinal walls of the epidermal cells, the basal and apical shapes of anticlinal epidermal cell walls, the continuity of the epidermal cells, the size ratio of the polar to lateral subsidiary cells, the grooves on subsidiary cells, the cuticular flanges between guard and subsidiary cells, the groove near the bristles and the elevation of the Florin ring ridge and striations on the Florin ring are particularly useful for infrageneric classification. The agreement between these characters and infrageneric classifications is discussed. Characters relating to the end wall shapes of the epidermal cells, the relative length of epidermal cells, the shape of the stomatal apparatus, the texture of guard and lateral subsidiary cell surfaces, the polar extensions, the number of subsidiary cells and epidermal cell layers between stomatal rows, the integrity of stomatal rows, cell numbers between stomata in a row, cuticular flanges between guard cells, bristle flanges and surface textures, epicuticular waxes, striations on Florin rings and stomatal shapes, contain some important information for identifying Mexican pines. The distribution of the states of each character is compared with that of the Asian pines. Cuticular characters are used to help determine the affinities of taxonomically difficult taxa.  相似文献   

17.
Evidence of the mechanical advantage of subsidiary cells wasobtained by simultaneous measurements of turgor pressure potentialsin adjacent subsidiary and guard cells using injection circuitswith two separate needles. In Tradescantia virginiana the mechanicaladvantage approaches two. Using the same technique evidencewas obtained that the Spannungsphase is, in the first place,a turgor relations phenomenon due to the mechanical advantageof epidermal or subsidiary cells. In addition, the evidenceindicated that the elastic properties of guard cell walls mayundergo changes during the Spannungsphase when potassium iontransport commences. During these measurements it was confirmedthat the optimum leaf water deficit for maximum stomatal openingoccurs when the epidermal turgor is near zero. Under these conditionsthe width of the stomatal pore is a function of the turgor pressureof the guard cells, since at zero turgor of the subsidiary cellstheir mechanical advantage has disappeared.  相似文献   

18.
The structure and ontogeny of stomata have been studied in 33species of the Labiatae. The mature stomata are diacytic, transitionalbetween paracytic and diacytic, and anomocytic. The anomocyticstomata are haplocheilic or perigenous. The diacytic and thetransitional type of stomata are syndetocheilic or mesogenousas the two subsidiary cells and a pair of guard cells arisefrom the same meristemoid. The diacytic and the transitionalstomata are formed through three successive mitotic divisions.Abnormal stomata with single guard cells, arrested developments,and contiguous stomata have been observed. Contiguous stomataare formed either from two adjacently placed meristemoids orare the result of spatial readjustment during maturation ofthe leaf.  相似文献   

19.
In the evergreen leaves of Quercus suber, stomata play a major role in adaptation to drought and temperature stress. The leaf is of zygostomic type and has about 430 stomata per square milimeter of abaxial leaf surface. The stomatal complex is of the anomocytic type. The guard cells protrude from the epidermal plane. The guard cell nucleus contains heterochromatin in small granules. The guard cell cytoplasm is characterised by a large number of well developed mitochondria, amyloplasts with stroma and grana, and a well developed cytoskeleton with a cortical array of microtubules oriented pa railed to the slit axis that persist even in mature cells. Guard cell walls are asymmetrically thickened and devoid of plasmodesmata. No area of cell walls was free of cuticle or covered by a thin cuticular layer and apparently no area of limited cuticular development provides evaporation when the stomata are closed.  相似文献   

20.
Yang M  Sack FD 《The Plant cell》1995,7(12):2227-2239
Stomata regulate gas exchange through the aerial plant epidermis by controlling the width of a pore bordered by two guard cells. Little is known about the genes that regulate stomatal development. We screened cotyledons from ethyl methanesulfonate-mutagenized seeds of Arabidopsis by light microscopy to identify mutants with altered stomatal morphology. Two mutants, designated too many mouths (tmm) and four lips (flp), were isolated with extra adjacent stomata. The tmm mutation results in stomatal clustering and increased precursor cell formation in cotyledons and a virtual absence of stomata in the inflorescence stem. The flp mutation results in many paired stomata and a small percentage of unpaired guard cells in cotyledons. The double mutant (tmm flp) exhibits aspects of both parental phenotypes. Both mutations appear to affect stomatal production more than patterning or differentiation. tmm regulates stomatal production by controlling the formation, and probably the activity, of the stomatal precursor cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号