首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the nucleosomal core particle has been extensively studied as the basic building block of chromatin, the biological significance of a unit carrying exactly 146 bp of DNA remains unclear. Herein, we present data to show that the histone octamer can stably accommodate anywhere from about 100 to 170 bp of DNA. The unfolded structures containing less than 146 bp may well be of greater biological importance than the canonical core particle. BioEssays 21:776–780, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

2.
1. Chondromucoprotein from bovine nasal cartilage was purified by cetylpyridinium chloride or by bismuth nitrate in acetone. 2. Amino acid compositions of crude and purified preparations were compared and few differences were found, in spite of the decrease in protein content on purification. 3. Amino acid analysis of bismuth-purified material revealed the existence of four groups of amino acids. Within each group, the amino acids were present in approximately equimolar concentrations. 4. Amino end-group assay on the same material showed six alpha-DNP derivatives. 5. A molecular weight of 6.3x10(5) for the protein-polysaccharide complex was calculated from the latter analysis.  相似文献   

3.
Geng F  Shi BZ  Yuan YF  Wu XZ 《Cell research》2004,14(5):423-433
It is well documented that the glycosylation of E-cadherin is correlated with cancer metastasis, but whether E-cadherin could be core fucosylated remains largely unknown. We found that E-cadherin was core fucosylated in highly metastatic lung cancer cells while absent in lowly metastatic lung cancer cells. Sinceα-1,6 Fucosyltransferase (α-1,6 FucT) is known to catalyze the reaction of core fucosylation, we investigated the biological function of core fucosylation on E-cadherin by α-1,6 FucT targeted RNAi and transfecting α-1,6 FucT expression vector. As a result, calcium dependent cell-cell adhesion mediated by E-cadherin was strengthened with the reduction of core fucosylation on E-cadherin after RNAi and was weakened with the elevated core fucosylation on E-cadherin after α-1,6 FucT over expression. Our data indicated that α-1,6 FucT could regulate E-cadherin mediated cell adhesion and thus play an important role in cancer development and progression. Computermodeling showed that core fucosylation on E-cadherin could significantly impair three-dimensional conformation of N-glycan on E-cadherin and produce conformational asymmetry so as to suppress the function of E-cadherin. Furthermore, the relationship between the expression of core fucosylated E-cadherin and clinicopathological background of lung cancer patients was explored in lung cancer tissue of patients. It turns out to demonstrate that core fucosylated E-cadherin could serve as a promising prognostic indicator for lung cancer patients.  相似文献   

4.
5.
Minimal photosynthetic catalytic F1() core complexes, containing equimolar ratios of the and subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-33 hexamer and RrF1-11 dimer, which were purified from the respective F1() complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the 11 dimer is consistant with the view that the dimer contains only a single catalytic site. The 33 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-33 can bind tentoxin and is stimulated by it suggests that the F1 subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.Abbreviations CF0F1 chloroplast F0F1 - CF1 chloroplast F1 - CF1 chloroplast F1 subunit - CF1 chloroplast F1 subunit - CF1() a complex containing equal amounts of the CF1 and subunits - MF1 mitochondrial F1 - RrF0F1 Rhodospirillum rubrum F0F1 - RrF1 R. rubrum F1 - RrF1 R. rubrum F1 subunit - RrF1 R. rubrum F1 subunit - RrF1() a complex containing equal amounts of the RrF1 and subunits - Rubisco Ribulose-1,5-bisphosphate carboxylase - TF1 thermophilic bacterium PS3 F1  相似文献   

6.
Clinical trials, systematic reviews and guidelines compare beneficial and non-beneficial outcomes following interventions. Often, however, various studies on a particular topic do not address the same outcomes, making it difficult to draw clinically useful conclusions when a group of studies is looked at as a whole. This problem was recently thrown into sharp focus by a systematic review of interventions for preterm birth prevention, which found that among 103 randomised trials, no fewer than 72 different outcomes were reported. There is a growing recognition among clinical researchers that this variability undermines consistent synthesis of the evidence, and that what is needed is an agreed standardised collection of outcomes - a "core outcomes set" - for all trials in a specific clinical area. Recognising that the current inconsistency is a serious hindrance to progress in our specialty, the editors of over 50 journals related to women's health have come together to support The CROWN (CoRe Outcomes in WomeN's health) Initiative.  相似文献   

7.
A heteroglycan responsible for the binding of the enzyme β-1,4-d-glucosidase (EC 3.2.1.21) to fungal cell walls was isolated from cell walls of the filamentous fungusTrichoderma reesei. The heteroglycan, composed of mannose, galactose, glucose, and glucuronic acid, also activated β-1,4-d-glucosidase, β-1,4-d-xylosidase andN-acetyl-β-1,4-d-glucosaminidase activity in vitro. The structural backbone of this heteroglycan was prepared by acid hydrolysis and gel filtration. The molecular structure of the core of the heteroglycan was determined by NMR studies as a linear α-1,6-d-mannan. The mannan core obtained by acid degradation stimulated the β-glucosidase activity by 90%. Several glycosidases fromAspergillus niger were also activated by theT. reesei heteroglycan. The β-glucosidase ofTrichoderma was activated by mannan fromSaccharomyces cerevisiae to a comparable extent.  相似文献   

8.
αB-Crystallin (HSPB5) is a small heat-shock protein that is composed of dimers that then assemble into a polydisperse ensemble of oligomers. Oligomerisation is mediated by heterologous interactions between the C-terminal tail of one dimer and the core “α-crystallin” domain of another and stabilised by interactions made by the N-terminal region. Comparatively little is known about the latter contribution, but previous studies have suggested that residues in the region 54–60 form contacts that stabilise the assembly. We have generated mutations in this region (P58A, S59A, S59K, R56S/S59R and an inversion of residues 54–60) to examine their impact on oligomerisation and chaperone activity in vitro. By using native mass spectrometry, we found that all the αB-crystallin mutants were assembly competent, populating similar oligomeric distributions to wild-type, ranging from 16-mers to 30-mers. However, circular dichroism spectroscopy, intrinsic tryptophan and bis-ANS fluorescence studies demonstrated that the secondary structure differs to wild type, the 54–60 inversion mutation having the greatest impact. All the mutants exhibited a dramatic decrease in exposed hydrophobicity. We also found that the mutants in general were equally active as the wild-type protein in inhibiting the amorphous aggregation of insulin and seeded amyloid fibrillation of α-synuclein in vitro, except for the 54–60 inversion mutant, which was significantly less effective at inhibiting insulin aggregation. Our data indicate that alterations in the part of the N-terminal region proximal to the core domain do not drastically affect the oligomerisation of αB-crystallin, reinforcing the robustness of αB-crystallin in functioning as a molecular chaperone.  相似文献   

9.
Soil core and root ingrowth core methods for assessing fine-root (< 2 mm) biomass and production were compared in a 38-year-old Scots pine (Pinus sylvestris L) stand in eastern Finland. 140 soil cores and 114 ingrowth cores were taken from two mineral soil layers (0–10 cm and 10–30 cm) during 1985–1988. Seasonal changes in root biomass (including both Scots pine and understorey roots) and necromass were used for calculating fine-root production. The Scots pine fine-root biomass averaged annually 143 g/m2 and 217 g/m2 in the upper mineral soil layer, and 118 g/m2 and 66 g/m2 in the lower layer of soil cores and ingrowth cores, respectively. The fine-root necromass averaged annually 601 g/m2 and 311 g/m2 in the upper mineral soil layer, and 196 g/m2 and 159 g/m2 in the lower layer of soil cores and ingrowth cores, respectively. The annual fine-root production in a Scots pine stand in the 30 cm thick mineral soil layer, varied between 370–1630 g/m2 in soil cores and between 210 – 490 g/m2 in ingrowth cores during three years. The annual production calculated for Scots pine fine roots, varied between 330–950 g/m2 in soil cores and between 110 – 610 g/m2 in ingrowth cores. The horizontal and vertical variation in fine-root biomass was smaller in soil cores than in ingrowth cores. Roots in soil cores were in the natural dynamic state, while the roots in the ingrowth cores were still expanding both horizontally and vertically. The annual production of fine-root biomass in the Scots pine stand was less in root ingrowth cores than in soil cores. During the third year, the fine-root biomass production of Scots pine, when calculated by the ingrowth core method, was similar to that calculated by the soil core method. Both techniques have sources of error. In this research the sampling interval in the soil core method was 6–8 weeks, and thus root growth and death between sampling dates could not be accurately estimated. In the ingrowth core method, fine roots were still growing into the mesh bags. In Finnish conditions, after more than three growing seasons, roots in the ingrowth cores can be compared with those in the surrounding soil. The soil core method can be used for studying both the annual and seasonal biomass variations. For estimation of production, sampling should be done at short intervals. The ingrowth core method is more suitable for estimating the potential of annual fine-root production between different site types.  相似文献   

10.
11.
A series of analogues of the PPARγ ligand 15-deoxy-Δ12,14-PGJ2 have been synthesized by functionalization of a 5-alkyl-4-hydroxycyclopentenone core structure obtained by Piancatelli rearrangement of precursor furylcarbinol. Transient transactivation assays indicate that analogues 18 and 20 are selective nanomolar agonists of PPARγ. This subtype selectivity is lost in derivatives (23, 24) with an alkynyl (oct-1-yn) chain at the C3 position, although the cyclopentenone derivative with cis relative configuration (23) showed greater affinity for PPARα.  相似文献   

12.
Intracellular fibril formation by Ure2p produces the non-Mendelian genetic element [URE3] in Saccharomyces cerevisiae, making Ure2p a prion protein. We show that solid-state NMR spectra of full-length Ure2p fibrils, seeded with infectious prions from a specific [URE3] strain and labeled with uniformly 15N-13C-enriched Ile, include strong, sharp signals from Ile residues in the globular C-terminal domain (CTD) with both helical and nonhelical 13C chemical shifts. Treatment with proteinase K eliminates these CTD signals, leaving only nonhelical signals from the Gln-rich and Asn-rich N-terminal segment, which are also observed in the solid-state NMR spectra of Ile-labeled fibrils formed by residues 1-89 of Ure2p. Thus, the N-terminal segment, or “prion domain” (PD), forms the fibril core, while CTD units are located outside the core. We additionally show that, after proteinase K treatment, Ile-labeled Ure2p fibrils formed without prion seeding exhibit a broader set of solid-state NMR signals than do prion-seeded fibrils, consistent with the idea that structural variations within the PD core account for prion strains. Measurements of 13C-13C magnetic dipole-dipole couplings among 13C-labeled Ile carbonyl sites in full-length Ure2p fibrils support an in-register parallel β-sheet structure for the PD core of Ure2p fibrils. Finally, we show that a model in which CTD units are attached rigidly to the parallel β-sheet core is consistent with steric constraints.  相似文献   

13.
Microbiological analysis of samples of sedimentary rocks from various eras of the geological history of the Baikal rift has enabled us to isolate a large number of microorganisms that can be classified into new, previously undescribed species. The present work deals with the identification and study of the morphological, biochemical, and physiological properties of one such strain, Che 82, isolated from sample C-29 of 3.4-3.5 Ma-old sedimentary rocks taken at a drilling depth of 146.74 m. As a result of our investigations, strain Che 82 is described as a new bacterial species, Roseomonas baikalica sp. nov., belonging to the genus Roseomonas within the family Methylobacteriaceae, class Alphaproteobacteria.  相似文献   

14.
15.
Here, we present a study of polar residues within the membrane core of alpha-helical membrane proteins. As expected, polar residues are less frequent in the membrane than expected. Further, most of these residues are buried within the interior of the protein and are only rarely exposed to lipids. However, the polar groups often border internal water filled cavities, even if the rest of the sidechain is buried. A survey of their functional roles in known structures showed that the polar residues are often directly involved in binding of small compounds, especially in channels and transporters, but other functions including proton transfer, catalysis, and selectivity have also been attributed to these proteins. Among the polar residues histidines often interact with prosthetic groups in photosynthetic- and oxidoreductase-related proteins, whereas prolines often are required for conformational changes of the proteins. Indeed, the polar residues in the membrane core are more conserved than other residues in the core, as well as more conserved than polar residues outside the membrane. The reason is twofold; they are often (i) buried in the interior of the protein and (ii) directly involved in the function of the proteins. Finally, a method to identify which polar residues are present within the membrane core directly from protein sequences was developed. Applying the method to the set of all human membrane proteins the prediction indicates that polar residues were most frequent among active transporter proteins and GPCRs, whereas infrequent in families with few transmembrane regions, such as non-GPCR receptors.  相似文献   

16.
The hydrophobic core, when subjected to analysis based on the fuzzy oil drop model, appears to be a universal structural component of proteins irrespective of their secondary, supersecondary, and tertiary conformations. A study has been performed on a set of nonhomologous proteins representing a variety of CATH categories. The presence of a well-ordered hydrophobic core has been confirmed in each case, regardless of the protein’s biological function, chain length or source organism. In light of fuzzy oil drop (FOD) analysis, various supersecondary forms seem to share a common structural factor in the form of a hydrophobic core, emerging either as part of the whole protein or a specific domain. The variable status of individual folds with respect to the FOD model reflects their propensity for conformational changes, frequently associated with biological function. Such flexibility is expressed as variable stability of the hydrophobic core, along with specific encoding of potential conformational changes which depend on the properties of helices and β-folds.  相似文献   

17.
18.
The Volta phase plate is a recently developed electron cryo-microscopy (cryo-EM) device that enables contrast enhancement of biological samples. Here we have evaluated the potential of combining phase-plate imaging and single particle analysis to determine the structure of a small protein–DNA complex. To test the method, we made use of a 200 kDa Nucleosome Core Particle (NCP) reconstituted with 601 DNA for which a high-resolution X-ray crystal structure is known. We find that the phase plate provides a significant contrast enhancement that permits individual NCPs and DNA to be clearly identified in amorphous ice. The refined structure from 26,060 particles has an overall resolution of 3.9 Å and the density map exhibits structural features consistent with the estimated resolution, including clear density for amino acid side chains and DNA features such as the phosphate backbone. Our results demonstrate that phase-plate cryo-EM promises to become an important method to determine novel near-atomic resolution structures of small and challenging samples, such as nucleosomes in complex with nucleosome-binding factors.  相似文献   

19.
Full or partial burial of ionizable groups in the hydrophobic interior of proteins underlies the large modulation in group properties (modified pK value, high nucleophilicity, enhanced capability of interaction with chemical moieties of the substrate, etc.) linked to biological function. Indeed, the few internal ionizable residues found in proteins are known to play important functional roles in catalysis and, in general, in energy transduction processes. However, ionizable‐group burial is expected to be seriously disruptive and, it is important to note, most functional sites contain not just one, but several ionizable residues. Hence, the adaptations involved in the development of function in proteins (through in vitro engineering or during the course of natural evolution) are not fully understood. Here, we explore experimentally how proteins respond to the accumulation of hydrophobic‐to‐ionizable residue substitutions. For this purpose, we have constructed a combinatorial library targeting a hydrophobic cluster in a consensus‐engineered, stabilized form of a small model protein. Contrary to naïve expectation, half of the variants randomly selected from the library are soluble, folded, and active, despite including up to four mutations. Furthermore, for these variants, the dependence of stability with the number of mutations is not synergistic and catastrophic, but smooth and approximately linear. Clearly, stabilized protein scaffolds may be robust enough to withstand many disruptive hydrophobic‐to‐ionizable residue mutations, even when they are introduced in the same region of the structure. These results should be relevant for protein engineering and may have implications for the understanding of the early evolution of enzymes. Proteins 2012; © 2011 Wiley Periodicals, Inc.  相似文献   

20.
We report the synthesis and evaluation of a series of N-benzoylindole derivatives as novel potential imaging agents for β-amyloid plaques. In vitro binding studies using Aβ(1-40) aggregates versus [(125)I]TZDM showed that all these derivatives demonstrated high binding affinities (K(i) values ranged from 8.4 to 121.6 nM). Moreover, two radioiodinated compounds [(125)I]7 and [(125)I]14 were prepared. Autoradiography for [(125)I]14 displayed intense and specific labeling of Aβ plaques in the brain sections of AD model mice (C57, APP/PS1) with low background. In vivo biodistribution in normal mice exhibited sufficient initial brain uptake for imaging (2.19% and 2.00%ID/g at 2 min postinjection for [(125)I]7 and [(125)I]14, respectively). Although additional modifications are necessary to improve brain uptake and clearance from the brain, the N-benzoylindole may be served as a backbone structure to develop novel β-amyloid imaging probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号