首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations.  相似文献   

2.
In species with large geographic ranges, genetic diversity of different populations may be well studied, but differences in loci and sample sizes can make the results of different studies difficult to compare. Yet, such comparisons are important for assessing the status of populations of conservation concern. We propose a simple approach of using a single well-studied reference population as a ‘yardstick'' to calibrate results of different studies to the same scale, enabling comparisons. We use a well-studied large carnivore, the brown bear (Ursus arctos), as a case study to demonstrate the approach. As a reference population, we genotyped 513 brown bears from Slovenia using 20 polymorphic microsatellite loci. We used this data set to calibrate and compare heterozygosity and allelic richness for 30 brown bear populations from 10 different studies across the global distribution of the species. The simplicity of the reference population approach makes it useful for other species, enabling comparisons of genetic diversity estimates between previously incompatible studies and improving our understanding of how genetic diversity is distributed throughout a species range.  相似文献   

3.
Understanding how geographical and environmental features affect genetic variation at both the population and individual levels is crucial in biology, especially in the case of pathogens. However, distinguishing between these factors and the effects of historical range expansion on spatial genetic structure remains challenging. In the present study, we investigated the case of Mycosphaerella fijiensis—a plant pathogenic fungus that has recently colonized an agricultural landscape characterized by the presence of potential barriers to gene flow, including several commercial plantations in which disease control practises such as the use of fungicides are applied frequently, and low host density areas. We first genotyped 300 isolates sampled at a global scale on untreated plants in two dimensions over a 50 × 80-km area. Using two different clustering algorithms, no genetic structure was detected in the studied area, suggesting expansion of large populations and/or no influence of potential barriers. Second, we investigated the potential effect of disease control practises on M. fijiensis diversity by comparing populations sampled in commercial vs food-crop plantations. At this local scale, we detected significantly higher allelic richness inside commercial plantations compared with the surrounding food-crop plantation populations. Analysis of molecular variance indicated that 99% of the total genetic variance occurred within populations. We discuss the suggestion that high population size and/or high migration rate between populations might be responsible for the absence of any effect of disease control practises on genetic diversity and differentiation.  相似文献   

4.
Brown bears have lost most of their range on the European continent. The remaining western populations are small, isolated and highly endangered. The Dinaric-Pindos brown bear population is the western-most stable population and the fourth largest in Europe. It has been recognized as a potential source for recolonization of populations whose survival is at risk. Indeed, several translocations of Dinaric bears to Italy, Austria and France have recently been made. Despite the importance of the Dinaric bear population, its genetic status remains poorly understood. Using tissue samples from 156 hunted or accidentally killed Dinaric bears in Croatia, this study analysed genetic diversity at 12 microsatellite loci, as well as population structure and past reductions in size. In addition, a subset of 59 samples was used to assess diversity of the mitochondrial DNA control region. The results indicate that Dinaric bears have high nuclear genetic diversity, as compared to other extant brown bear populations, despite genetic evidence of a bottleneck caused by past persecutions. However, haplotype diversity was low, probably as a result of male-biased dispersal and female philopatry. Not surprisingly, no evidence of population sub-structure was found using nuclear markers, as the bear habitat has remained continuous and the highway network has been built only recently. Management should focus on maintaining habitat connectivity and keeping the effective population size as large as possible. In addition, when removing individuals, care should be taken not to further deplete the population of rare haplotypes. A coordinated transboundary management of the entire Dinaric-Pindos brown bear population should be a priority for its long-term conservation.  相似文献   

5.
R Y Shirk  J L Hamrick  C Zhang  S Qiang 《Heredity》2014,112(5):497-507
Genetic diversity, and thus the adaptive potential of invasive populations, is largely based on three factors: patterns of genetic diversity in the species'' native range, the number and location of introductions and the number of founding individuals per introduction. Specifically, reductions in genetic diversity (‘founder effects'') should be stronger for species with low within-population diversity in their native range and few introductions of few individuals to the invasive range. We test these predictions with Geranium carolinianum, a winter annual herb native to North America and invasive in China. We measure the extent of founder effects using allozymes and microsatellites, and ask whether this is consistent with its colonization history and patterns of diversity in the native range. In the native range, genetic diversity is higher and structure is lower than expected based on life history traits. In China, our results provide evidence for multiple introductions near Nanjing, Jiangsu province, with subsequent range expansion to the west and south. Patterns of genetic diversity across China reveal weak founder effects that are driven largely by low-diversity populations at the expansion front, away from the introduction location. This suggests that reduced diversity in China has resulted from successive founder events during range expansion, and that the loss of genetic diversity in the Nanjing area was mitigated by multiple introductions from diverse source populations. This has implications for the future of G. carolinianum in China, as continued gene flow among populations should eventually increase genetic diversity within the more recently founded populations.  相似文献   

6.
Rapid range expansions can cause pervasive changes in the genetic diversity and structure of populations. The postglacial history of the Balsam Poplar, Populus balsamifera, involved the colonization of most of northern North America, an area largely covered by continental ice sheets during the last glacial maximum. To characterize how this expansion shaped genomic diversity within and among populations, we developed 412 SNP markers that we assayed for a range‐wide sample of 474 individuals sampled from 34 populations. We complemented the SNP data set with DNA sequence data from 11 nuclear loci from 94 individuals, and used coalescent analyses to estimate historical population size, demographic growth, and patterns of migration. Bayesian clustering identified three geographically separated demes found in the Northern, Central, and Eastern portions of the species’ range. These demes varied significantly in nucleotide diversity, the abundance of private polymorphisms, and population substructure. Most measures supported the Central deme as descended from the primary refuge of diversity. Both SNPs and sequence data suggested recent population growth, and coalescent analyses of historical migration suggested a massive expansion from the Centre to the North and East. Collectively, these data demonstrate the strong influence that range expansions exert on genomic diversity, both within local populations and across the range. Our results suggest that an in‐depth knowledge of nucleotide diversity following expansion requires sampling within multiple populations, and highlight the utility of combining insights from different data types in population genomic studies.  相似文献   

7.
Intentional or accidental introduction of species to new locations is predicted to result in loss of genetic variation and increase the likelihood of inbreeding, thus reducing population viability and evolutionary potential. However, multiple introductions and large founder numbers can prevent loss of genetic diversity and may therefore facilitate establishment success and range expansion. Based on a meta‐analysis of 119 introductions of 85 species of plants and animals, we here show a quantitative effect of founding history on genetic diversity in introduced populations. Both introduction of large number of individuals and multiple introduction events significantly contribute to maintaining or even increasing genetic diversity in introduced populations. The most consistent loss of genetic diversity is seen in insects and mammals, whereas introduced plant populations tend to have higher genetic variation than native populations. However, loss or gain of genetic diversity does not explain variation in the extent to which plant or animal populations become invasive outside of their native range. These results provide strong support for predictions from population genetics theory with respect to patterns of genetic diversity in introduced populations, but suggest that invasiveness is not limited by genetic bottlenecks.  相似文献   

8.
Cave bears (Ursus spelaeus) existed in Europe and western Asiauntil the end of the last glaciation some 10,000 years ago.To investigate the genetic diversity, population history, andrelationship among different cave bear populations, we havedetermined mitochondrial DNA sequences from 12 cave bears thatrange in age from about 26,500 to at least 49,000 years andoriginate from nine caves. The samples include one individualfrom the type specimen population, as well as two small-sizedhigh-Alpine bears. The results show that about 49,000 yearsago, the mtDNA diversity among cave bears was about 1.8-foldlower than the current species-wide diversity of brown bears(Ursus arctos). However, the current brown bear mtDNA gene poolconsists of three clades, and cave bear mtDNA diversity is similarto the diversity observed within each of these clades. The resultsalso show that geographically separated populations of the high-Alpinecave bear form were polyphyletic with respect to their mtDNA.This suggests that small size may have been an ancestral traitin cave bears and that large size evolved at least twice independently.  相似文献   

9.
Numerous plant species are shifting their range polewards in response to ongoing climate change. Range shifts typically involve the repeated establishment and growth of leading-edge populations well ahead of the main species range. How these populations recover from founder events and associated diversity loss remains poorly understood. To help fill this gap, we exhaustively investigated a newly established population of holm oak (Quercus ilex) growing more than 30 km ahead of the nearest larger stands. Pedigree reconstructions showed that plants belong to two non-overlapping generations and that the whole population originates from only two founder trees. The four first-generation trees that have reached maturity showed disparate mating patterns despite being full-sibs. Long-distance pollen immigration was notable despite the strong isolation of the stand: 6 per cent gene flow events in acorns collected on the trees (n = 255), and as much as 27 per cent among their established offspring (n = 33). Our results show that isolated leading-edge populations of wind-pollinated forest trees can rapidly restore their genetic diversity through the interacting effects of efficient long-distance pollen flow and purging of inbred individuals during recruitment. They imply that range expansions of these species are primarily constrained by initial propagule arrival rather than by subsequent gene flow.  相似文献   

10.
We aimed to reveal the effects of range expansion and subsequent lineage admixture from separated glacial refugia on genetic diversity of Kalopanax septemlobus in Japan, by combining nuclear microsatellite data and ecological niche modelling. Allelic richness and gene diversity were compared at the population and regional level. We also statistically examined these indices as a function of population accessibility to the last glacial maximum (LGM) palaeodistribution reconstructed by ecological niche modelling to test a simple range expansion scenario from glacial refugia. Genetic diversity was highest in the populations of southern Japan and gradually decreased towards the north. However, an additional centre of genetic diversity, when measured as gene diversity, was found in northern Honshu Island, where distinct lineages were shown to be in contact. Positive effects of population accessibility to the LGM range were detected in both diversity indices at different spatial scales. The combined data support independent postglacial range expansions towards the north from the edge populations on the exposed coastal shelf of Pacific and Sea of Japan in northern Honshu during the LGM, which subsequently resulted in markedly low genetic diversity in the northernmost extant range, Hokkaido. The regional increase in gene diversity in northern Honshu is likely to be the result of postglacial lineage admixture. Relative difference in the spatial scales best relating population genetic diversity with the LGM distribution can be explained by a higher rate of allelic richness diversity loss during range expansions and stronger effects of lineage admixture on gene diversity.  相似文献   

11.

Background and Aims

Ongoing and previous range expansions have a strong influence on population genetic structure of plants. In turn, genetic variation in the new range may affect the population dynamics and the expansion process. The annual Ceratocapnos claviculata (Papaveraceae) has expanded its Atlantic European range in recent decades towards the north and east. Patterns of genetic diversity were investigated across the native range to assess current population structure and phylogeographical patterns. A test was then made as to whether genetic diversity is reduced in the neophytic range and an attempt was made to identify source regions of the expansion.

Methods

Samples were taken from 55 populations in the native and 34 populations in the neophytic range (Sweden, north-east Germany). Using amplified fragment length polymorphism markers an analysis was made of genetic variation and population structure (Bayesian statistical modelling) and population differentiation was quantified. Pollen/ovule ratio was analysed as a proxy for the breeding system.

Key Results

Genetic diversity at population level was very low (mean He = 0·004) and two multilocus genotypes dominated large parts of the new range. Population differentiation was strong (FST = 0·812). These results and a low pollen/ovule ratio are consistent with an autogamous breeding system. Genetic variation decreased from the native to the neophytic range. Within the native range, He decreased towards the north-east, whereas population size increased. According to the Bayesian cluster analysis, the putative source regions of the neophytic range are situated in north-west Germany and adjacent regions.

Conclusions

Ceratocapnos claviculata shows a cline of genetic variation due to postglacial recolonization from putative Pleistocene refugia in south-west Europe. Nevertheless, the species has expanded successfully during the past 40 years to southern Sweden and north-east Germany where it occurs as an opportunistic neophyte. Recent expansion was mainly human-mediated by single long-distance diaspore transport and was facilitated by habitat modification.  相似文献   

12.
Identifying mechanisms of population change is fundamental for conserving small and declining populations and determining effective management strategies. Few studies, however, have measured the demographic components of population change for small populations of mammals (<50 individuals). We estimated vital rates and trends in two adjacent but genetically distinct, threatened brown bear (Ursus arctos) populations in British Columbia, Canada, following the cessation of hunting. One population had approximately 45 resident bears but had some genetic and geographic connectivity to neighboring populations, while the other population had <25 individuals and was isolated. We estimated population‐specific vital rates by monitoring survival and reproduction of telemetered female bears and their dependent offspring from 2005 to 2018. In the larger, connected population, independent female survival was 1.00 (95% CI: 0.96–1.00) and the survival of cubs in their first year was 0.85 (95% CI: 0.62–0.95). In the smaller, isolated population, independent female survival was 0.81 (95% CI: 0.64–0.93) and first‐year cub survival was 0.33 (95% CI: 0.11–0.67). Reproductive rates did not differ between populations. The large differences in age‐specific survival estimates resulted in a projected population increase in the larger population (λ = 1.09; 95% CI: 1.04–1.13) and population decrease in the smaller population (λ = 0.84; 95% CI: 0.72–0.95). Low female survival in the smaller population was the result of both continued human‐caused mortality and an unusually high rate of natural mortality. Low cub survival may have been due to inbreeding and the loss of genetic diversity common in small populations, or to limited resources. In a systematic literature review, we compared our population trend estimates with those reported for other small populations (<300 individuals) of brown bears. Results suggest that once brown bear populations become small and isolated, populations rarely increase and, even with intensive management, recovery remains challenging.  相似文献   

13.
High‐resolution, male‐inherited Y‐chromosomal markers are a useful tool for population genetic analyses of wildlife species, but to date have only been applied in this context to relatively few species besides humans. Using nine Y‐chromosomal STRs and three Y‐chromosomal single nucleotide polymorphism markers (Y‐SNPs), we studied whether male gene flow was important for the recent recovery of the brown bear (Ursus arctos) in Northern Europe, where the species declined dramatically in numbers and geographical distribution during the last centuries but is expanding now. We found 36 haplotypes in 443 male extant brown bears from Sweden, Norway, Finland and northwestern Russia. In 14 individuals from southern Norway from 1780 to 1920, we found two Y chromosome haplotypes present in the extant population as well as four Y chromosome haplotypes not present among the modern samples. Our results suggested major differences in genetic connectivity, diversity and structure between the eastern and the western populations in Northern Europe. In the west, our results indicated that the recovered population originated from only four male lineages, displaying pronounced spatial structuring suggestive of large‐scale population size increase under limited male gene flow within the western subpopulation. In the east, we found a contrasting pattern, with high haplotype diversity and admixture. This first population genetic analysis of male brown bears shows conclusively that male gene flow was not the main force of population recovery.  相似文献   

14.
The shell colour of many pulmonate land snail species is highly diverse. Besides a genetic basis, environmentally triggered epigenetic mechanisms including stress proteins as evolutionary capacitors are thought to influence such phenotypic diversity. In this study, we investigated the relationship of stress protein (Hsp70) levels with temperature stress tolerance, population structure and phenotypic diversity within and among different populations of a xerophilic Mediterranean snail species (Xeropicta derbentina). Hsp70 levels varied considerably among populations, and were significantly associated with shell colour diversity: individuals in populations exhibiting low diversity expressed higher Hsp70 levels both constitutively and under heat stress than those of phenotypically diverse populations. In contrast, population structure (cytochrome c oxidase subunit I gene) did not correlate with phenotypic diversity. However, genetic parameters (both within and among population differences) were able to explain variation in Hsp70 induction at elevated but non-pathologic temperatures. Our observation that (1) population structure had a high explanatory potential for Hsp70 induction and that (2) Hsp70 levels, in turn, correlated with phenotypic diversity while (3) population structure and phenotypic diversity failed to correlate provides empirical evidence for Hsp70 to act as a mediator between genotypic variation and phenotype and thus for chaperone-driven evolutionary capacitance in natural populations.  相似文献   

15.
We provide an expansive analysis of polar bear (Ursus maritimus) circumpolar genetic variation during the last two decades of decline in their sea-ice habitat. We sought to evaluate whether their genetic diversity and structure have changed over this period of habitat decline, how their current genetic patterns compare with past patterns, and how genetic demography changed with ancient fluctuations in climate. Characterizing their circumpolar genetic structure using microsatellite data, we defined four clusters that largely correspond to current ecological and oceanographic factors: Eastern Polar Basin, Western Polar Basin, Canadian Archipelago and Southern Canada. We document evidence for recent (ca. last 1–3 generations) directional gene flow from Southern Canada and the Eastern Polar Basin towards the Canadian Archipelago, an area hypothesized to be a future refugium for polar bears as climate-induced habitat decline continues. Our data provide empirical evidence in support of this hypothesis. The direction of current gene flow differs from earlier patterns of gene flow in the Holocene. From analyses of mitochondrial DNA, the Canadian Archipelago cluster and the Barents Sea subpopulation within the Eastern Polar Basin cluster did not show signals of population expansion, suggesting these areas may have served also as past interglacial refugia. Mismatch analyses of mitochondrial DNA data from polar and the paraphyletic brown bear (U. arctos) uncovered offset signals in timing of population expansion between the two species, that are attributed to differential demographic responses to past climate cycling. Mitogenomic structure of polar bears was shallow and developed recently, in contrast to the multiple clades of brown bears. We found no genetic signatures of recent hybridization between the species in our large, circumpolar sample, suggesting that recently observed hybrids represent localized events. Documenting changes in subpopulation connectivity will allow polar nations to proactively adjust conservation actions to continuing decline in sea-ice habitat.  相似文献   

16.
Remote populations are predicted to be vulnerable owing to their isolation from potential source reefs, and usually low population size and associated increased extinction risk. We investigated genetic diversity, population subdivision and connectivity in the brooding reef coral Seriatopora hystrix at the limits of its Eastern Australian (EA) distribution and three sites in the southern Great Barrier Reef (GBR). Over the approximately 1270 km survey range, high levels of population subdivision were detected (global FST = 0.224), with the greatest range in pairwise FST values observed among the three southernmost locations: Lord Howe Island, Elizabeth Reef and Middleton Reef. Flinders Reef, located between the GBR and the more southerly offshore reefs, was highly isolated and showed the signature of a recent bottleneck. High pairwise FST values and the presence of multiple genetic clusters indicate that EA subtropical coral populations have been historically isolated from each other and the GBR. One putative first-generation migrant was detected from the GBR into the EA subtropics. Occasional long-distance dispersal is supported by changes in species composition at these high-latitude reefs and the occurrence of new species records over the past three decades. While subtropical populations exhibited significantly lower allelic richness than their GBR counterparts, genetic diversity was still moderately high. Furthermore, subtropical populations were not inbred and had a considerable number of private alleles. The results suggest that these high-latitude S. hystrix populations are supplemented by infrequent long-distance migrants from the GBR and may have adequate population sizes to maintain viability and resist severe losses of genetic diversity.  相似文献   

17.
  • 1 We review the genetics research that has been conducted on the European brown bear Ursus arctos, one of the genetically best‐studied mammalian species.
  • 2 The first genetics studies on European brown bears were on phylogeography, as a basis for proposed population augmentations. Two major mitochondrial DNA lineages, western and eastern, and two clades within the western lineage were found. This led to a hypothesis that brown bears had contracted to southern refugia during the last glacial maximum. More recent results suggest that gene flow among brown bears blurred this structure and they survived north of these putative refugia. Thus, today's structure might be a result of population fragmentation caused by humans.
  • 3 The nuclear diversity of European brown bears is similar in range to that in North American bears: low levels occur in the small populations and high levels in the large populations.
  • 4 Many non‐invasive genetic methods, developed during research on brown bears, have been used for individual identification, censusing populations, monitoring migration and gene flow, and testing methods that are easier to use in endangered populations and over large areas.
  • 5 Genetics has been used to study many behavioural and population ecological questions that have relevance for the conservation and management of brown bears.
  • 6 The European brown bear has served, and will continue to serve, as a model for the development of methods, analyses and hypotheses in conservation genetics.
  相似文献   

18.
K Inoue  E M Monroe  C L Elderkin  D J Berg 《Heredity》2014,112(3):282-290
Freshwater organisms of North America have had their contemporary genetic structure shaped by vicariant events, especially Pleistocene glaciations. Life history traits promoting dispersal and gene flow continue to shape population genetic structure. Cumberlandia monodonta, a widespread but imperiled (IUCN listed as endangered) freshwater mussel, was examined to determine genetic diversity and population genetic structure throughout its range. Mitochondrial DNA sequences and microsatellite loci were used to measure genetic diversity and simulate demographic events during the Pleistocene using approximate Bayesian computation (ABC) to test explicit hypotheses explaining the evolutionary history of current populations. A phylogeny and molecular clock suggested past isolation created two mtDNA lineages during the Pleistocene that are now widespread. Two distinct groups were also detected with microsatellites. ABC simulations indicated the presence of two glacial refugia and post-glacial admixture of them followed by simultaneous dispersal throughout the current range of the species. The Ouachita population is distinct from others and has the lowest genetic diversity, indicating that this is a peripheral population of the species. Gene flow within this species has maintained high levels of genetic diversity in most populations; however, all populations have experienced fragmentation. Extirpation from the center of its range likely has isolated remaining populations due to the geographic distances among them.  相似文献   

19.
As researchers collect spatiotemporal population and genetic data in tandem, models that connect demography and dispersal to genetics are increasingly relevant. The dominant spatiotemporal model of invasion genetics is the stepping-stone model which represents a gradual range expansion in which individuals jump to uncolonized locations one step at a time. However, many range expansions occur quickly as individuals disperse far from currently colonized regions. For these types of expansion, stepping-stone models are inappropriate. To more accurately reflect wider dispersal in many organisms, we created kernel-based models of invasion genetics based on integrodifference equations. Classic theory relating to integrodifference equations suggests that the speed of range expansions is a function of population growth and dispersal. In our simulations, populations that expanded at the same speed but with spread rates driven by dispersal retained more heterozygosity along axes of expansion than range expansions with rates of spread that were driven primarily by population growth. To investigate surfing we introduced mutant alleles in wave fronts of simulated range expansions. In our models based on random mating, surfing alleles remained at relatively low frequencies and surfed less often compared to previous results based on stepping-stone simulations with asexual reproduction.  相似文献   

20.
In human‐dominated landscapes, connectivity is crucial for maintaining demographically stable mammalian populations. Here, we provide a comprehensive noninvasive genetic study for the brown bear population in the Hellenic Peninsula. We analyze its population structuring and connectivity, estimate its population size throughout its distribution, and describe its phylogeography in detail for the first time. Our results, based on 150 multilocus genotypes and on 244‐bp sequences of the mtDNA control region, show the population is comprised by three highly differentiated genetic clusters, consistent with geographical populations of Pindos, Peristeri, and Rhodope. By detecting two male bears with Rhodopean ancestry in the western demes, we provide strong evidence for the ongoing genetic connectivity of the geographically fragmented eastern and western distributions, which suggests connectivity of the larger East Balkan and Pindos‐Dinara populations. Total effective population size (N e) was estimated to be 199 individuals, and total combined population size (N C) was 499, with each cluster showing a relatively high level of genetic variability, suggesting that migration has been sufficient to counteract genetic erosion. The mtNDA results were congruent with the microsatellite data, and the three genetic clusters were matched predominantly with an equal number of mtDNA haplotypes that belong to the brown bear Western mitochondrial lineage (Clade 1), with two haplotypes being globally new and endemic. The detection of a fourth haplotype that belongs to the Eastern lineage (Clade 3a1) in three bears from the western distribution places the southernmost secondary contact zone between the Eastern and Western lineages in Greece and generates new hypotheses about postglacial maxima migration routes. This work indicates that the genetic composition and diversity of Europe''s low‐latitude fringe population are the outcome of ancient and historical events and highlight its importance for the connectivity and long‐term persistence of the species in the Balkans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号