首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We earlier developed a novel method to detect translocation of the glucose transporter (GLUT) directly and simply using c-MYC epitope-tagged GLUT (GLUTMYC). To define the effect of platelet-derived growth factor (PDGF) on glucose transport in 3T3-L1 adipocytes, we investigated the PDGF- and insulin-induced glucose uptake, translocation of glucose transporters, and phosphatidylinositol (PI) 3-kinase activity in 3T3-L1, 3T3-L1GLUT4MYC, and 3T3-L1GLUT1MYC adipocytes. Insulin and PDGF stimulated glucose uptake by 9-10- and 5.5-6.5-fold, respectively, in both 3T3-L1 and 3T3-L1GLUT4MYC adipocytes. Exogenous GLUT4MYC expression led to enhanced PDGF-induced glucose transport. In 3T3-L1GLUT4MYC adipocytes, insulin and PDGF induced an 8- and 5-fold increase in GLUT4MYC translocation, respectively, determined in a cell-surface anti-c-MYC antibody binding assay. This PDGF-induced GLUT4MYC translocation was further demonstrated with fluorescent detection. In contrast, PDGF stimulated a 2-fold increase of GLUT1MYC translocation and 2.5-fold increase of glucose uptake in 3T3-L1GLUT1MYC adipocytes. The PDGF-induced GLUT4MYC translocation, glucose uptake, and PI 3-kinase activity were maximal (100%) at 5-10 min and thereafter rapidly declined to 40, 30, and 12%, respectively, within 60 min, a time when effects of insulin were maximal. Wortmannin (0.1 microM) abolished PDGF-induced GLUT4MYC translocation and glucose uptake in 3T3-L1GLUT4MYC adipocytes. These results suggest that PDGF can transiently trigger the translocation of GLUT4 and stimulate glucose uptake by translocation of both GLUT4 and GLUT1 in a PI 3-kinase-dependent signaling pathway in 3T3-L1 adipocytes.  相似文献   

2.
Insulin activates glucose transport by promoting translocation of the insulin-sensitive fat/muscle-specific glucose transporter GLUT4 from an intracellular storage compartment to the cell surface. Here we report that an optimal insulin effect on glucose uptake in 3T3-L1 adipocytes is dependent upon expression of both PIKfyve, the sole enzyme for PtdIns 3,5-P(2) biosynthesis, and the PIKfyve activator, ArPIKfyve. Small-interfering RNAs that selectively ablated PIKfyve or ArPIKfyve in this cell type depleted the PtdIns 3,5-P(2) pool and reduced insulin-activated glucose uptake to a comparable degree. Combined loss of PIKfyve and ArPIKfyve caused further PtdIns 3,5-P(2) ablation that correlated with greater attenuation in insulin responsiveness. Loss of PIKfyve-ArPIKfyve reduced insulin-stimulated Akt phosphorylation and the cell surface accumulation of GLUT4 or IRAP, but not GLUT1-containing vesicles without affecting overall expression of these proteins. ArPIKfyve and PIKfyve were found to physically associate in 3T3-L1 adipocytes and this was insulin independent. In vitro labeling of membranes isolated from basal or insulin-stimulated 3T3-L1 adipocytes documented substantial insulin-dependent increases of PtdIns 3,5-P(2) production on intracellular membranes. Together, the data demonstrate for the first time a physical association between functionally related PIKfyve and ArPIKfyve in 3T3-L1 adipocytes and indicate that the novel ArPIKfyve-PIKfyve-PtdIns 3,5-P(2) pathway is physiologically linked to insulin-activated GLUT4 translocation and glucose transport.  相似文献   

3.
Choi SB  Wha JD  Park S 《Life sciences》2004,75(22):2653-2664
In the present study, we screened candidates for enhancing insulin action, using glucose uptake as an indicator, from Liriope platyphylla Wang et Tang (LPWT) extract, Liliaceae, in 3T3-L1 adipocytes. The mechanism of insulin sensitizing action in the fractions was also investigated. LPWT extract with 70% MeOH was sequentially separated with Diaion HP-20 and silica gel column chromatography. The 9:1 fraction from silica gel column chromatography increased glucose uptake with 1 ng/mL up to glucose uptake with 50 ng/mL insulin. The 9:1 fraction, determined as homoisoflavone-enriched fraction, worked as an insulin sensitizer. It increased insulin stimulated glucose uptake in 3T3-L1 adipocytes, insulin responsive cells, through increased glucose transporter 4 (GLUT4) contents in the plasma membrane. GLUT4 translocation was increased through insulin receptor substrate 1 (IRS1)-PI3 kinase-Akt signaling mechanism. Thus, homoisoflavone-enriched fraction in LPWT extract played an important role as an insulin sensitizer in adipocytes.  相似文献   

4.
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 levels in insulin-stimulated cells. At a 5% concentration, DMSO also increased cell surface levels of the transferrin receptor and GLUT1. Glucose uptake experiments indicated that while DMSO enhanced cell surface glucose transporter levels, it also inhibited glucose transporter activity. Our studies further demonstrated that DMSO did not sensitize the adipocytes for insulin and that its effect on GLUT4 was readily reversible (t1/2∼12 min) and maintained in insulin-resistant adipocytes. An enhancement of insulin-induced GLUT4 translocation was not observed in 3T3-L1 preadipocytes and L6 myotubes, indicating cell specificity. DMSO did not enhance insulin signaling nor exocytosis of GLUT4 vesicles, but inhibited GLUT4 internalization. While other chemical chaperones (glycerol and 4-phenyl butyric acid) also acutely enhanced insulin-induced GLUT4 translocation, these effects were not mediated via changes in GLUT4 endocytosis. We conclude that DMSO is the first molecule to be described that instantaneously enhances insulin-induced increases in cell surface GLUT4 levels in adipocytes, at least in part through a reduction in GLUT4 endocytosis.  相似文献   

5.
目的 研究灵芝多糖对3T3-L1胰岛素抵抗细胞模型PI-3K p85和GLUT4蛋白表达的影响,探讨灵芝多糖改善胰岛素抵抗的分子机制.方法 3T3-L1前脂肪细胞经1-甲基-3-异丁基-黄嘌呤、地塞米松、胰岛素诱导分化成3T3-L1脂肪细胞,以葡萄糖氧化酶法测定培养液中残余的葡萄糖含量.比较二甲双胍组,检测培养液中葡萄糖含量及PI-3K p85和GLUT4蛋白表达变化.结果 地塞米松联合胰岛素诱导3T3-L1脂肪细胞产生胰岛素抵抗,细胞对葡萄糖的摄取量减少.灵芝多糖可改善3T3-L1脂肪细胞胰岛素抵抗.胰岛素抵抗细胞的PI-3K p85和GLUT4蛋白表达明显减少;应用灵芝多糖后,相关蛋白表达增加.结论 灵芝多糖通过提高PI-3K p85和GLUT4蛋白的表达,参与胰岛素抵抗状态下3T3-L1细胞的葡萄糖代谢.  相似文献   

6.
PACSIN family members regulate intracellular vesicle trafficking via their ability to regulate cytoskeletal rearrangement. These processes are known to be involved in trafficking of GLUT1 and GLUT4 in adipocytes. In this study, PACSIN3 was observed to be the only PACSIN isoform that increases in expression during 3T3-L1 adipocyte differentiation. Overexpression of PACSIN3 in 3T3-L1 adipocytes caused an elevation of glucose uptake. Subcellular fractionation revealed that PACSIN3 overexpression elevated GLUT1 plasma membrane localization without effecting GLUT4 distribution. In agreement with this result, examination of GLUT exofacial presentation at the cell surface by photoaffinity labeling revealed significantly increased GLUT1, but not GLUT4, after overexpression of PACSIN3. These results establish a role for PACSIN3 in regulating glucose uptake in adipocytes via its preferential participation in GLUT1 trafficking. They are consistent with the proposal, which is supported by a recent study, that GLUT1, but not GLUT4, is predominantly endocytosed via the coated pit pathway in unstimulated 3T3-L1 adipocytes.  相似文献   

7.
Endothelin-1 (ET-1) is a 21-amino acid peptide that binds to G-protein-coupled receptors to evoke biological responses. This report studies the effect of ET-1 on regulating glucose transport in 3T3-L1 adipocytes. ET-1, but not angiotensin II, stimulated glucose uptake in a dose-dependent manner with an EC50 value of 0.29 nM and a 2.47-fold stimulation at 100 nM. ET-1 stimulated glucose uptake in differentiated 3T3-L1 cells but had no effect in undifferentiated cells, although ET-1 stimulated phosphatidylinositol hydrolysis to a similar degree in both. The 3T3-L1 cells expressed approximately 560,000 sites/cell of ETA receptor, which was not altered during differentiation. Western blot analysis and immunofluorescence staining show that ET-1 stimulated the translocation of insulin-responsive aminopeptidase and GLUT4 to the plasma membrane. The effect of ET-1 on glucose uptake was blocked by A-216546, an antagonist selective for the ETA receptor. ET-1 treatment did not induce phosphorylation of insulin receptor beta-subunit, insulin receptor substrate-1, or Akt but stimulated the tyrosyl phosphorylation of a 75-kDa protein. Genistein (100 microM), an inhibitor of tyrosine kinases, inhibited ET-1-stimulated glucose uptake. Our results show that ET-1 stimulates GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes via activation of ETA receptor.  相似文献   

8.
Glucose entry into mammalian cells is facilitated by a family of glucose transport proteins known as GLUTs. Treatment of 3T3‐L1 adipocytes with the Cdk5 inhibitor roscovitine strongly inhibits insulin‐stimulated/GLUT4‐mediated glucose transport. Inhibition of glucose uptake occurs within 2–6 min of the addition of roscovitine and is slowly reversed. The roscovitine treatment interferes with neither the translocation nor the insertion of GLUT4 into the plasma membrane. These studies support recent evidence showing that insulin‐stimulated Cdk5 is implicated in the regulation of GLUT4‐mediated glucose uptake in 3T3‐L1 adipocytes. J. Cell. Physiol. 220: 238–244, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
We used nigericin, a K+/H+ exchanger, to test whether glucose transport in 3T3-L1 adipocytes was modulated by changes in intracellular pH. Our results showed that nigericin increased basal but decreased insulin-stimulated glucose uptake in a time- and dose-dependent manner. Whereas the basal translocation of GLUT1 was enhanced, insulin-stimulated GLUT4 translocation was inhibited by nigericin. On the other hand, the total amount of neither transporter protein was altered. The finding that insulin-stimulated phosphoinositide 3-kinase (PI 3-kinase) activity was not affected by nigericin implies that nigericin exerted its inhibition at a step downstream of PI 3-kinase activation. At maximal dose, nigericin rapidly lowered cytosolic pH to 6.7; however, this effect was transient and cytosolic pH was back to normal in 20 min. Removal of nigericin from the incubation medium after 20 min abolished its enhancing effect on basal but had little influence on its inhibition of insulin-stimulated glucose transport. Moreover, lowering cytosolic pH to 6.7 with an exogenously added HCl solution had no effect on glucose transport. Taken together, it appears that nigericin may inhibit insulin-stimulated glucose transport mainly by interfering with GLUT4 translocation, probably by a mechanism not related to changes in cytosolic pH.  相似文献   

10.
Silybin, the major flavonoid of Silybum marianum, is widely used to treat liver diseases such as hepatocellular carcinoma and cirrhosis-associated insulin resistance. Research so far has focused on its anti-oxidant properties. Here, we demonstrate that silybin and its derivative dehydrosilybin inhibit glucose uptake in several model systems. Both flavonoids dose-dependently reduce basal and insulin-dependent glucose uptake of 3T3-L1 adipocytes, with dehydrosilybin showing significantly stronger inhibition. However, insulin signaling was not impaired, and immunofluorescence and subcellular fractionation showed that insulin-induced translocation of GLUT4 to the plasma membrane is also unchanged. Likewise, hexokinase activity was not affected suggesting that silybin and dehydrosilybin interfere directly with glucose transport across the PM. Expression of GLUT4 in CHO cells counteracted the inhibition of glucose uptake by both flavonoids. Moreover, treatment of CHO cells with silybin and dehydrosilybin reduced cell viability which was partially rescued by GLUT4 expression. Kinetic analysis revealed that silybin and dehydrosilybin inhibit GLUT4-mediated glucose transport in a competitive manner with K(i)=60 and 116 μM, respectively. We conclude that silybin and dehydrosilybin inhibit cellular glucose uptake by directly interacting with GLUT transporters. Glucose starvation offers a novel explanation for the anti-cancer effects of silybin.  相似文献   

11.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

12.
To promote glucose uptake into fat and muscle cells, insulin causes the translocation of GLUT4 glucose transporters from intracellular vesicles to the cell surface. Previous data support a model in which TUG traps GLUT4-containing vesicles and tethers them intracellularly in unstimulated cells and in which insulin mobilizes this pool of vesicles by releasing this tether. Here we show that TUG undergoes site-specific endoproteolytic cleavage, which separates a GLUT4-binding, N-terminal region of TUG from a C-terminal region previously suggested to bind an intracellular anchor. Cleavage is accelerated by insulin stimulation in 3T3-L1 adipocytes and is highly dependent upon adipocyte differentiation. The N-terminal TUG cleavage product has properties of a novel 18-kDa ubiquitin-like modifier, which we call TUGUL. The C-terminal product is observed at the expected size of 42 kDa and also as a 54-kDa form that is released from membranes into the cytosol. In transfected cells, intact TUG links GLUT4 to PIST and also binds Golgin-160 through its C-terminal region. PIST is an effector of TC10α, a GTPase previously shown to transmit an insulin signal required for GLUT4 translocation, and we show using RNAi that TC10α is required for TUG proteolytic processing. Finally, we demonstrate that a cleavage-resistant form of TUG does not support highly insulin-responsive GLUT4 translocation or glucose uptake in 3T3-L1 adipocytes. Together with previous results, these data support a model whereby insulin stimulates TUG cleavage to liberate GLUT4 storage vesicles from the Golgi matrix, which promotes GLUT4 translocation to the cell surface and enhances glucose uptake.  相似文献   

13.
In 3T3-L1 adipocytes, both insulin and endothelin 1 stimulate glucose transport via translocation of the GLUT4 glucose carrier from an intracellular compartment to the cell surface. Yet it remains uncertain as to whether both hormones utilize identical pathways and to what extent each depends on the heterotrimeric G protein Galphaq as an intermediary signaling molecule. In this study, we used a novel inducible system to rapidly and synchronously activate expression of a dominant inhibitory form of ADP-ribosylation factor 6, ARF6(T27N), in 3T3-L1 adipocytes and assessed its effects on insulin- and endothelin-stimulated hexose uptake. Expression of ARF6(T27N) in 3T3-L1 adipocytes was without effect on the ability of insulin to stimulate either 2-deoxyglucose uptake or the translocation of GLUT4 or GLUT1 to the plasma membrane. However, the same ARF6 inhibitory mutant blocked the stimulation of hexose uptake and GLUT4 translocation in response to either endothelin 1 or an activated form of Galphaq, Galphaq(Q209L). These results suggest that endothelin stimulates glucose transport through a pathway that is distinct from that utilized by insulin but is likely to depend on both a heterotrimeric G protein from the Gq family and the small G protein ARF6. These data are consistent with the interpretation that endothelin and insulin stimulate functionally different pools of glucose transporters to be redistributed to the plasma membrane.  相似文献   

14.
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.  相似文献   

15.
The isoflavone-derivative genistein is commonly applied as an inhibitor of tyrosine kinases. In this report we analyze the effect of genistein on insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In these cells insulin-induced glucose uptake is primarily mediated by the GLUT4 glucose transporter. We observed that pre-treatment with genistein did not affect insulin-induced tyrosine kinase activity of the insulin receptor or activation of protein kinase B. On the other hand, genistein acted as a direct inhibitor of insulin-induced glucose uptake in 3T3-L1 adipocytes with an IC(50) of 20 microM. We conclude that apart from acting as a general tyrosine kinase inhibitor, genistein also affects the function of other proteins such as the GLUT4 transporter. These data suggest that caution must be applied when interpreting data on the involvement of tyrosine kinase activity in glucose uptake in 3T3-L1 adipocytes.  相似文献   

16.
Insulin stimulates glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3K) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt, a downstream target of PI3K in regulation of GLUT4 translocation, has been controversial. Here we report that microinjection of a PKB substrate peptide or an antibody to PKB inhibited insulin-stimulated GLUT4 translocation to the plasma membrane by 66 or 56%, respectively. We further examined the activation of PKB isoforms following treatment of cells with insulin or platelet-derived growth factor (PDGF) and found that PKBbeta is preferentially expressed in both rat and 3T3-L1 adipocytes, whereas PKBalpha expression is down-regulated in 3T3-L1 adipocytes. A switch in growth factor response was also observed when 3T3-L1 fibroblasts were differentiated into adipocytes. While PDGF was more efficacious than insulin in stimulating PKB phosphorylation in fibroblasts, PDGF did not stimulate PKBbeta phosphorylation to any significant extent in adipocytes, as assessed by several methods. Moreover, insulin, but not PDGF, stimulated the translocation of PKBbeta to the plasma membrane and high-density microsome fractions of 3T3-L1 adipocytes. These results support a role for PKBbeta in insulin-stimulated glucose transport in adipocytes.  相似文献   

17.
Chromium picolinate (CrPic) has been indicated to activate glucose transporter 4 (GLUT4) trafficking to the plasma membrane (PM) to enhance glucose uptake in 3T3-L1 adipocytes. In skeletal and heart muscle cells, insulin directs the intracellular trafficking of the fatty acid translocase/CD36 to induce the uptake of cellular long-chain fatty acid (LCFA). The current study describes the effects of CrPic and insulin on the translocation of CD36 from intracellular storage pools to the PM in 3T3-L1 adipocytes in comparison with that of GLUT4. Immunofluorescence microscopy and immunoblotting revealed that both CD36 and GLUT4 were expressed and primarily located intracellularly in 3T3-L1 adipocytes. Upon insulin or CrPic stimulation, PM expression of CD36 increased in a similar manner as that for GLUT4; the CrPic-stimulated PM expression was less strong than that of insulin. The increase in PM localization for these two proteins by insulin paralleled LCFA ([1-14C]palmitate) or [3H]deoxyglucose uptake in 3T3-L1 adipocytes. The induction of the PM expression of GLUT4, but not CD36, or substrate uptake by insulin and CrPic appears to be additive in adipocytes. Furthermore, wortmannin completely inhibited the insulin-stimulated translocation of GLUT4 or CD36 and prevented the increased uptake of glucose or LCFA in these cells. Taken together, for the first time, these findings suggest that both insulin and CrPic induce CD36 translocation to the PM in 3T3-L1 adipocytes and that their translocation-inducing effects are not additive. The signaling pathway inducing the translocations is different, apparently resulting in a differential activity of CD36.  相似文献   

18.
Insulin stimulates glucose uptake in fat and muscle by redistributing GLUT4 glucose transporters from intracellular membranes to the cell surface. We previously proposed that, in 3T3-L1 adipocytes, TUG retains GLUT4 within unstimulated cells and insulin mobilizes this retained GLUT4 by stimulating its dissociation from TUG. Yet the relative importance of this action in the overall control of glucose uptake remains uncertain. Here we report that transient, small interfering RNA-mediated depletion of TUG causes GLUT4 translocation and enhances glucose uptake in unstimulated 3T3-L1 adipocytes, similar to insulin. Stable TUG depletion or expression of a dominant negative fragment likewise stimulates GLUT4 redistribution and glucose uptake, and insulin causes a 2-fold further increase. Microscopy shows that TUG governs the accumulation of GLUT4 in perinuclear membranes distinct from endosomes and indicates that it is this pool of GLUT4 that is mobilized by TUG disruption. Interestingly, in addition to translocating GLUT4 and enhancing glucose uptake, TUG disruption appears to accelerate the degradation of GLUT4 in lysosomes. Finally, we find that TUG binds directly and specifically to a large intracellular loop in GLUT4. Together, these findings demonstrate that TUG is required to retain GLUT4 intracellularly in 3T3-L1 adipocytes in the absence of insulin and further implicate the insulin-stimulated dissociation of TUG and GLUT4 as an important action by which insulin stimulates glucose uptake.  相似文献   

19.
Insulin activates signaling pathways in target tissues through the insulin receptor and Tyr phosphorylation of intracellular proteins. Vanadate mimics insulin and enhances its actions through inhibition of protein Tyr phosphatases. Chromium is a micronutrient that enhances insulin action to normalize blood glucose, but the mechanism is not understood. Here we show that either vanadate or chromium stimulates Tyr phosphorylation of insulin receptor in mouse 3T3-L1 adipocytes compared to insulin alone, but a combination of vanadate and chromium is not additive. Phosphorylation of MAPK or 4E-BP1 as markers for insulin signaling is stimulated by vanadate plus insulin, and chromium does not enhance the effects. Vanadate robustly activates glucose uptake by 3T3-L1 adipocytes even without added insulin and increases insulin-stimulated glucose uptake. Chromium pretreatment of adipocytes slightly enhances glucose uptake in response to insulin, but significantly increases glucose uptake above that induced by insulin plus vanadate. These data show that chromium enhances glucose uptake even when Tyr phosphorylation levels are elevated by vanadate plus insulin, suggesting separate mechanisms of action for vanadate and chromium.  相似文献   

20.
Insulin stimulates glucose uptake in fat and muscle primarily by stimulating the translocation of vesicles containing facilitative glucose transporters, GLUT4, from intracellular compartments to the plasma membrane. Although cell surface externalization of GLUT4 is critical for glucose transport, the mechanism regulating cell surface GLUT4 remains unknown. Using a yeast two-hybrid screening system, we have screened GLUT4-binding proteins, and identified a novel glycosyl phosphatidyl inositol (GPI)-linked proteoglycan, Glypican3 (GPC3). We confirmed their interaction using immunoprecipitation and a GST pull-down assay. We also revealed that GPC3 and GLUT4 to co-localized at the plasma membrane, using immunofluorescent microscopy. Furthermore, we observed that glucose uptake in GPC3-overexpressing adipocytes was increased by 30% as compared to control cells. These findings suggest that GPC3 may play roles in glucose transport through GLUT4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号