首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
From the mitochondrial Ca2+-transporting glycolipoprotein (GLP) the lipid was isolated which induced Ca2+-translocation through bilayer lipid membranes. Electroconductivity of modified phospholipid membranes in the presence of CaCl2 is increased 150-200 times. At 10-fold CaCl2 gradient a generation of membrane potential is observed close to its theoretical value. It is shown that the lipid forms separate conductivity channels of 10 and 20 pS in the bilayer. The mode of action of GLP in the membrane is proposed. It is assumed that the carbohydrate part of GLP is a selective receptor-accumulator for Ca2+, whereas the function of the lipid component consists in forming channels in the bilayer.  相似文献   

2.
Summary From the mitochondrial Ca2+-transporting glycolipoprotein (GLP) the lipid was isolated which induced Ca2+-translocation through bilayer lipid membranes. Electroconductivity of modified phospholipid membranes in the presence of CaCl2 is increased 150-200 times. At 10-fold CaCl2 gradient a generation of membrane potential is observed close to its theoretical value. It is shown that the lipid forms separate conductivity channels of 10 and 20 pS in the bilayer. The mode of action of GLP in the membrane is proposed It is assumed that the carbohydrate part of GLP is a selective receptor-accumulator for Ca2−, whereas the function of the lipid component consists in forming channels in the bilayer.  相似文献   

3.
Lecithin monolayer liposomes (1000 A in diameter) loaded with cytochrome c were placed into the external solution, in which O2 superoxide radicals were regenerated by the xanthine-xanthine oxidase system. The penetration of superoxide radicals across the liposomal membranes was followed by cytochrome c reduction in the interval volume of the liposomes. The effects of lipid membrane modifiers and temperature on this process were investigated. The results obtained were used for calculation of the permeability coefficients of bilayer lipid membranes for O(2) (P'O(2) = (7.6 +/- 0.3) . 10(-8) cm . s-1) or HO . 2(P'HO(2) = 4.9 x 10(-4) cm . s-1). The effect of the transmembrane electric potential (concentration gradient of H+, valinomycin) on the permeability of liposomal membranes for the superoxide radical was studied. The superoxide radical was down to penetrate across the bilayer lipid membranes in an unloaded state. Using an intramolecular cholesterol-amphotericin B-complex, the superoxide radicals were shown to penetrate across the bilayer lipid membranes, predominantly via the anionic channels.  相似文献   

4.
Mechanoelectrical transduction in gramicidin A channels was studied in macroscopic planar lipid bilayer membranes bulged at constant tension. We found a supralinear increase in the single channel activity, which was proportional to the square of membrane radius but could not be accounted for by the increase in membrane surface area or by recruitment of new channels. When being extrapolated to biological membranes, these observations may suggest that the activity of permeability of ion channels can be influenced simply by changing the shape of the membrane, with or without stretching.  相似文献   

5.
The hormones of thyroid gland thyroxine and triiodothyronine were shown to increase the permeability of bilayer lipid membrane (BLM) and inner mitochondrial membrane for hydrophobic positively charged complex K+-nonactine and to decrease the permeability of these membranes for hydrophobic anion FCCP-. These facts imply that the thyroid hormones affect the phospholipid membranes like the dipole modifyers decreasing the positive potential of hydrophobic region of the membranes in respect to the water phase.  相似文献   

6.
Polymyxin B in micromolar concentrations induces current fluctuations in liquid crystalline bilayer lipid membranes from dipalmitoylphosphatidic acid identified as ion channels. The appearance of ion channels correlates with phase separation of the lipid in the presence of peptide polycations detected by differential scanning calorimetry. Ca2+ also induces the formation of ion channels in liquid crystalline bilayer lipid membranes from dipalmitoylphosphatidic acid followed by the phase transition of the phospholipid. The capacitive current, which indicates the possibility of structural transformations of bilayer-non-bilayer type (hexagonal phase II), precedes the formation of Ca(2+)-induced channels in bilayer lipid membranes from dipalmitoylphosphatidic acid.  相似文献   

7.
The mechanism of membrane permeabilization by the antimicrobial peptide distinctin was investigated by using two different mercury-supported biomimetic membranes, namely a lipid self-assembled monolayer and a lipid bilayer tethered to the mercury surface through a hydrophilic spacer (tethered bilayer lipid membrane: tBLM). Incorporation of distinctin into a lipid monolayer from its aqueous solution yields rapidly ion channels selective toward inorganic cations, such as Tl(+) and Cd(2+). Conversely, its incorporation in a tBLM allows the formation of ion channels permeable to potassium ions only at non-physiological transmembrane potentials, more negative than -340mV. These channels, once formed, are unstable at less negative transmembrane potentials. The kinetics of their formation is consistent with the disruption of distinctin clusters adsorbed on top of the lipid bilayer, incorporation of the resulting monomers and their aggregation into hydrophilic pores by a mechanism of nucleation and growth. Comparing the behavior of distinctin in tBLMs with that in conventional black lipid membranes strongly suggests that distinctin channel formation in lipid bilayer requires the partitioning of distinctin molecules between the two sides of the lipid bilayer. We can tentatively hypothesize that an ion channel is formed when one distinctin cluster on one side of the lipid bilayer matches another one on the opposite side.  相似文献   

8.
Evidence is accumulating that lipids play important roles in permeabilization of the mitochondria outer membrane (MOM) at the early stage of apoptosis. Lamellar phosphatidylcholine (PC) and nonlamellar phosphatidylethanolamine (PE) lipids are the major membrane components of the MOM. Cardiolipin (CL), the characteristic lipid from the mitochondrial inner membrane, is another nonlamellar lipid recently shown to play a role in MOM permeabilization. We investigate the effect of these three key lipids on the gating properties of the voltage-dependent anion channel (VDAC), the major channel in MOM. We find that PE induces voltage asymmetry in VDAC current-voltage characteristics by promoting channel closure at cis negative applied potentials. Significant asymmetry is also induced by CL. The observed differences in VDAC behavior in PC and PE membranes cannot be explained by differences in the insertion orientation of VDAC in these membranes. Rather, it is clear that the two nonlamellar lipids affect VDAC gating. Using gramicidin A channels as a tool to probe bilayer mechanics, we show that VDAC channels are much more sensitive to the presence of CL than could be expected from the experiments with gramicidin channels. We suggest that this is due to the preferential insertion of VDAC into CL-rich domains. We propose that the specific lipid composition of the mitochondria outer membrane and/or of contact sites might influence MOM permeability by regulating VDAC gating.  相似文献   

9.
Ceramide-induced cell death is thought to be mediated by change in mitochondrial function, although the precise mechanism is unclear. Proposed models suggest that ceramide induces cell death through interaction with latent binding sites on the outer or inner mitochondrial membranes, followed by an increase in membrane permeability, as an intermediate step in ceramide signal propagation. To investigate these models, we developed a new generation of positively charged ceramides that readily accumulate in isolated and in situ mitochondria. Accumulated, positively charged ceramides increased inner membrane permeability and triggered release of mitochondrial cytochrome c. Furthermore, the positively charged ceramide-induced permeability increase was suppressed by cyclosporin A (60%) and 1,3-dicyclohexylcarbodiimide (90%). These observations suggest that the inner membrane permeability increase is due to activation of specific ion transporters, not the generalized loss of lipid bilayer barrier functions. The difference in sensitivity of ceramide-induced ion fluxes to inhibitors of mitochondrial transporters suggests activation of at least two transport systems: the permeability transition pore and the electrogenic H(+) channel. Our results indicate the presence of specific ceramide targets in the mitochondrial matrix, the occupation of which triggers permeability alterations of the inner and outer mitochondrial membranes. These findings also suggest a novel therapeutic role for positively charged ceramides.  相似文献   

10.
Minocycline (an anti-inflammatory drug approved by the FDA) has been reported to be effective in mouse models of amyotrophic lateral sclerosis and Huntington disease. It has been suggested that the beneficial effects of minocycline are related to its ability to influence mitochondrial functioning. We tested the hypothesis that minocycline directly inhibits the Ca2+-induced permeability transition in rat liver mitochondria. Our data show that minocycline does not directly inhibit the mitochondrial permeability transition. However, minocycline has multiple effects on mitochondrial functioning. First, this drug chelates Ca2+ ions. Secondly, minocycline, in a Ca2+-dependent manner, binds to mitochondrial membranes. Thirdly, minocycline decreases the proton-motive force by forming ion channels in the inner mitochondrial membrane. Channel formation was confirmed with two bilayer lipid membrane models. We show that minocycline, in the presence of Ca2+, induces selective permeability for small ions. We suggest that the beneficial action of minocycline is related to the Ca2+-dependent partial uncoupling of mitochondria, which indirectly prevents induction of the mitochondrial permeability transition.  相似文献   

11.
Two channels were observed in extracts of whole Mycobacterium bovis BCG cells using organic solvents and detergents. The channels derived from organic solvent treatment had a single-channel conductance of about 4.0 nS in 1 M KCl in lipid bilayer membranes with properties similar to those of the channels discovered previously in Mycobacterium smegmatis and Mycobacterium chelonae. The channel was in its open configuration only at low transmembrane potentials. At higher voltages it switched to closed states that were almost impermeable for ions. Lipid bilayer experiments in the presence of detergent extracts of whole cells revealed another channel with a single-channel conductance of only 780 pS in 1 M KCl. Our results indicate that the mycolic acid layer of M. bovis BCG contains two channels, one is cation-selective and its permeability properties can be finely controlled by cell wall asymmetry or potentials. The other one is anion-selective, has a rather small single-channel conductance and is voltage-insensitive. The concentration of channel-forming proteins in the cell wall seems to be small, which is in agreement with the low cell wall permeability for hydrophilic solutes.  相似文献   

12.
Mechanoelectrical transduction in gramicidin A channels was studied in macroscopic planar lipid bilayer membranes bulged at constant tension. We found a supralinear increase in the single channel activity that was proportional to the square of membrane radius, but could not be accounted for by the increase in membrane surface area, or by recruitment of new channels. Extrapolated to biological membranes, these observations may suggest that the permeability of ion channels can be influenced simply by changing shape of the membrane, with or without stretching. Published in Russian in Biofizika, 2006, Vol. 51, No. 6, pp. 1014–1018. The text was submitted by the authors in English.  相似文献   

13.
The interaction of phenethyl alcohol with model membranes and its effect on translocation of the chemically prepared mitochondrial precursor protein apocytochrome c across a lipid bilayer was studied. Phenethyl alcohol efficiently penetrates into monolayers and causes acyl chain disordering judged from deuterium nuclear magnetic resonance measurements with specific acyl chain-deuterated phospholipids. Translocation of apocytochrome c across a phospholipid bilayer was stimulated on addition of phenethyl alcohol indicating that the efficiency of translocation of this precursor protein is enhanced due to a disorder of the acyl chain region of the bilayer.  相似文献   

14.
Recently we have shown that maltoporin channels reconstituted into black lipid membranes have pronounced asymmetric properties in both ion conduction and sugar binding. This asymmetry revealed also that maltoporin insertion is directional. However, the orientation in the lipid bilayer remained an open question. To elucidate the orientation, we performed point mutations at each side of the channel and analyzed the ion current fluctuation caused by an asymmetric maltohexaose addition. In a second series we used a chemically modified maltohexaose sugar molecule with inhibited entry possibility from the periplasmic side. In contrast to the natural outer cell wall of bacteria, we found that the maltoporin inserts in artificial lipid bilayer in such a way that the long extracellular loops are exposed to the same side of the membrane than protein addition. Based on this orientation, the directional properties of sugar binding were correlated to physiological conditions. We found that nature has optimized maltoporin channels by lowering the activation barriers at each extremity of the pore to trap sugar molecules from the external medium and eject them most efficiently to the periplasmic side.  相似文献   

15.
The results of spectroscopic examination of mitochondria and lysosomes indicate that freeze-thawing leads to alterations of different character and extent in membrane structural organization which manifest as changes in the molecular packing of the organelle membrane lipid bilayer, lateral separation of lipids into individual domains, and impairment of membrane permeability. Supercooling of organelle suspensions without crystallization of external water has been found not to affect membrane barrier function markedly; however, such a decrease in the temperature results in a slight loosening of the membrane with an increase in the volume of subcellular structures. The crystallization of external water causes dehydration of organelles, which favors a decrease in their volume, increasing the viscosity of the liquid phase inside subcellular structures and packing the lipid bilayer. Changes in the permeability of mitochondrial and lysosomal membranes manifest during thawing after the formation of an external liquid phase and might be due to the sharp rehydration of these membranes through latent membrane defects formed upon freezing.  相似文献   

16.
《Free radical research》2013,47(3-6):161-170
Ehrlich ascites cell mitochondria are highly resistant to lipid peroxidation as compared to liver mitochondria from host animals. Succinate protects mitochondria from peroxidative damage, proteins from crosslinks, enzymes from inactivation of the enzymes and membranes from permeability changes. The sensitivity of Ehrlich ascites cell mitochondrial membranes to lipid peroxidation is significantly increased in sub-mitochondrial particles. Lipid peroxidation in tumour mitochondrial membranes can not be diminished by succinate as effectively as in liver mitochondria. Ascites cell mitochondria seems to be protected very efficiently from peroxidative damage by a glutathione-dependent mechanism.  相似文献   

17.
The 40,000-dalton glycoprotein and 2000-dalton peptide inducing selective Ca2+-transport through bilayer lipid membranes were isolated from beef heart homogenate and mitochondria. Micromolar concentrations of these substances were found to increase the conductivity of membranes by 3–4 orders. Transmembrane Ca2+ gradient induces an electric potential difference whose magnitude is close to the theoretical for ideal Ca2+ selectivity. The inhibitor of mitochondrial Ca2+ transport, ruthenium red, abolishes both the glycoprotein-and peptide-induced Ca2+ transport in bilayer lipid membranes. Thiol groups essential for Ca2+ transport activity were revealed in the glycoprotein and peptide. Addition of these substances to rat liver mitochondria induces Ca2+-dependent inhibition of the state 3 respiration that can be released by uncouplers (oligomycin-like effect).  相似文献   

18.
In an open circuit there can be no net cation flux through membranes containing only cation-selective channels, because electroneutrality must be maintained. If the channels are so narrow that water and cations cannot pass by each other, then the net water flux through those "single-file" channels that contain a cation is zero. It is therefore possible to determine the cation binding constants from the decrease in the average water permeability per channel as the cation concentration in the solution is increased. Three different methods were used to determine the osmotic water permeability of gramicidin channels in lipid bilayer membranes. The osmotic water permeability coefficient per gramicidin channel in the absence of cations was found to be 6 x 10(-14) cm3/s. As the cation concentration was raised, the water permeability decreased and a binding constant was determined from a quantitative fit to the data. When the data were fitted assuming a maximum of one ion per channel, the dissociation constant was 115 mM for Li+, 69 mM for K+, and 2 mM for Tl+.  相似文献   

19.
Protein (M. m. 60 000) inducing selective potassium conductance of bilayer lipid membranes (BLM) was isolated from mitochondria and homogenate of the beef heart. This protein was obtained by means of alcohol (ethanol) extraction and was purified by gel-filtration on Sephadex G-15 and G-50 followed by electrophoresis in the 10% polyacrylamide gel. 6-10 g/ml of the protein produced the conductivity channels on BLM with amplitude divisible of 24 +/- 4 pmho. The channels of 175 +/- 7 pmho were the most typical ones. The modification of BLM by K+-transport in protein under the conditions of potassium gradient resulted in the appearance of the membrane potential close to the theoretical Nernst potential.  相似文献   

20.
The enhanced permeability of lipid bilayer membranes at their gel-to-liquid phase transition has been explained using a "bilayer lipid heterogeneity" model, postulating leaky interfacial regions between still solid and melting liquid phases. The addition of lysolipid to dipalmitoylphosphatidylcholine bilayers dramatically enhances the amount of, and speed at which, encapsulated markers or drugs are released at this, already leaky, phase transition through these interfacial regions. To characterize and attempt to determine the mechanism behind lysolipid-generated permeability enhancement, dithionite permeability and doxorubicin release were measured for lysolipid and non-lysolipid, containing membranes. Rapid release of contents from lysolipid-containing membranes appears to occur through lysolipid-stabilized pores rather than a simple enhancement due to increased drug solubility in the bilayer. A dramatic enhancement in the permeability rate constant begins about two degrees below the calorimetric peak of the thermal transition, and extends several degrees past it. The maximum permeability rate constant coincides exactly with this calorimetric peak. Although some lysolipid desorption from liquid state membranes cannot be dismissed, dialyzation above T(m) and mass spectrometry analysis indicate lysolipid must, and can, remain in the membrane for the permeability enhancement, presumably as lysolipid stabilized pores in the grain boundary regions of the partially melted solid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号