首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study analyzed the environmental impacts of packaging‐derived changes in food production and consumer behavior to assist packaging designers in making environmentally conscious decisions. Packaging can be functionalized to prevent food loss and waste (FLW), for example, extending the expiration date and apportioning the package size, but it can generate additional environmental impacts from changes in food and packaging production. Previous studies assessed additional impacts from packaging production; however, the effects of packaging functionalization are yet to be connected with food production and consumer behavior. To examine the effect of functionalization on these aspects, we analyzed packaging‐derived changes in food production for milk and cabbage products. The case study compared products with functionalized packaging that permits a longer expiration date or a smaller portion size to their base‐case products. Our results showed that the packaging‐derived changes increased the global warming potential (GWP) of food production more than other processes did. Thus, changes in food production weakened the effectiveness of the packaging functionalization to decrease the GWP. Moreover, the analysis of consumer behavior scenarios showed that consumers’ perception of the expiration date decisively influences the effectiveness of packaging functionalization. When consumers discarded food after the expiration date, provided they consumed in small quantities, the packaging functionalization reduced FLW. From the scenario analysis, we identified appropriate combinations of packaging functionalization and consumer behaviors to effectively decrease total GWP. With our expanded analysis, packaging designers can understand the effectiveness of their decisions on the product life cycle in reducing FLW and environmental impacts.  相似文献   

2.
Carbon‐based materials (CBMs) for energetic and material purposes combine biogenic and anthropogenic carbon cycles. In the latter, numerous manufactured products with various in‐use lifespans accumulate as anthropogenic carbon stocks. Understanding the behavior of these stocks is an important requirement to estimate not only future waste amounts, source for secondary raw materials, but also the impacts and effects in carbon emissions and carbon management. Previous models have estimated material stock changes; however, a lack of research in carbon stocks is perceived. Moreover, studies follow in‐use lifespan estimation approaches, such as decay functions, which do not coincide with observed consumption and waste treatment patterns. In the first part of this article, we present a carbon stock‐flow model to analyze inter‐relationships between carbon flows and stocks from raw materials to waste treatment processes considering a consumer perspective, where the dynamics of anthropogenic carbon stocks are completely described. In the second part, we study the pulp and paper industry in Germany under a scenario approach to analyze the behavior, development, and impacts of paper stocks and flows between 2010 and 2040. The model provided coherent results, with industrial data estimating 33.9 million metric tons in 2010 in paper stocks, equivalent to 410 kilograms per person. Consumption per capita and in‐use lifespan of products were identified as the most significant variables in carbon stock building. Model simulations show a sustained growth in stocks for the next 30 years, with increase in waste and carbon emissions. But in combination with recycling and reuse mechanisms and consumption patterns, environmental impacts are reduced.  相似文献   

3.
4.
China produces and consumes a large amount of batteries annually, which leads to many waste batteries needing to be recycled. The collection and recycling system of primary, alkaline secondary, and lithium‐ion secondary batteries in China is particularly poor, and waste battery recycling enterprises generally sustain economic losses if they solely use waste batteries as raw materials. Increasing the profits of waste battery recycling systems is a key problem that needs to be considered. This article quantitatively analyzes waste battery generation in China by using annual sales data and probable lifetime distribution of various batteries. The results show that the rapid growth of battery usage has led to an increased generation of waste batteries and the percentage of different types of waste batteries is changing over time. In 2013, the total quantity of all waste batteries in the medium lifetime scenario reached 570 kilotons, of which primary, alkaline secondary, and lithium‐ion secondary waste batteries accounted for approximately 36%, 28%, and 35%, respectively. Based on a real‐world case study of a typical domestic waste battery recycling enterprise in China, material flow analysis and cost‐benefit analysis were conducted to study the development of the recycling process of comingled waste batteries. Through scenario analysis, we conclude that increasing the use of waste batteries as raw materials and the recycling of other materials that are less valuable reduces the profits of the waste battery recycling enterprise. Higher profits can be achieved by adding the production of high value‐added downstream products and government support. At the same time, the essential role of the government in developing a waste battery recycling system was identified. Finally, relevant suggestions are made for improvements in both the government and enterprise sectors.  相似文献   

5.
A species’ susceptibility to environmental change might be predicted by its ecological and life‐history traits. However, the effects of such traits on long‐term bird population trends have not yet been assessed using a comprehensive set of explanatory variables. Moreover, the extent to which phylogeny affects patterns in the interspecific variability of population changes is unclear. Our study focuses on the interspecific variability in long‐term population trends and annual population fluctuations of 68 passerine species in the Czech Republic, assessing the effects of eight life‐history and five ecological traits. Ordination of life‐history traits of 68 species revealed a life‐history gradient, from ‘r‐selected’ (e.g. small body mass, short lifespan, high fecundity, large clutch size) to ‘K‐selected’ species. r‐selected species had more negative population trends than K‐selected species, and seed‐eaters declined compared with insectivores. We suggest that the r‐selected species probably suffer from widespread environmental changes, and the seed‐eaters from current changes in agriculture and land use. Populations of residents fluctuated more than populations of short‐distance migrants, probably due to the effect of winter climatic variability. Variance partitioning at three taxonomic levels showed that whereas population trends, population fluctuations and habitat specialization expressed the highest variability at the species level, most life‐history traits were more variable at higher taxonomic levels. These results explain the loss of statistical power in the relationship between life histories and population trends after controlling for phylogeny. However, we argue that a lack of significance after controlling for phylogeny should not reduce the value of such results for conservation purposes.  相似文献   

6.
Population and per capita gross domestic product (GDP) projections are used to estimate total global municipal solid waste (MSW) generation over the twenty‐first century. Some projections for global population suggest that it will peak this century. Waste generation rates per capita generally increase with affluence, although in the most affluent countries there is also a trend toward dematerialization. The confluence of these factors means that at some point in the future total global waste generation could possibly peak. To determine when peak waste might occur, we used the shared‐socioeconomic pathway scenarios (used in Intergovernmental Panel on Climate Change [IPCC] studies) combined with estimates of municipal solid waste (MSW) generation rates, extrapolated from our work for the World Bank. Despite the expectation that total MSW generation in Organisation for Economic Co‐operation and Development (OECD) and high‐income countries will peak mid‐century, with current trajectories global peak waste is not expected before 2100. The peak could be moved forward to around 2075 and reduced in intensity by some 30% if a more aggressive sustainability growth scenario were followed, rather than the current business‐as‐usual scenario. Further, the magnitude of peak waste is sensitive to the intensity of waste generation; it could vary from 7.3 to 10.9 megatonnes per day under the sustainability scenario. The timing of peak waste will substantially depend on the development of cities in Sub‐Saharan Africa, where population growth rates are more than double the rest of the world.  相似文献   

7.
This study aims at quantifying and analyzing the waste footprint of French household consumption in 2020 with respect to different scenarios of economic growth. Three models are jointly used: (1) a multiregional unilateral input‐output model extended to waste, to quantify waste generation from economic activities induced by household consumption; (2) a coefficient‐based model dedicated to quantifying postconsumer waste as a function of household consumption; and (3) the New Econometric Model of Evaluation by Sectorial Interdependency and Supply (NEMESIS), a macroeconometric model used to elaborate different scenarios of growth in household consumption in the period 2008–2020. Three scenarios consider changes primarily in terms of household consumption volume, while one scenario additionally considers changes in the composition of consumption according to the past‐30‐year trend. First, this study suggests that if the trend in changes of composition is maintained, it will lead, by 2020, to a “relative” decoupling between French household consumption and waste footprint with respect to dry recyclables, mixed wastes, and organic wastes and to an “absolute” decoupling with respect to mineral wastes. Second, this study provides a mapping of the changes in French household waste footprints from 2008 to 2020 as a function of scenarios, with indications of where these changes would actually occur in the economy (waste from economic activities or postconsumer waste) and geographically (in France or abroad). In particular, for most of the scenarios considered, changes in French household consumption from 2008 to 2020 primarily induce changes in organic and mineral waste generation abroad rather than in France.  相似文献   

8.

ABSTRACT

Meal replacement products including protein bars, shakes and powdered drinks have increased in demand and sales. The objective of this study was to assess the consumer perception of protein content and type and product claims for meal replacement beverages and bars. The impact of exercise frequency on product perception was also investigated. Focus groups were conducted with exercisers and nonexercisers. An adaptive conjoint analysis survey was subsequently developed and conducted (n = 138 consumers, ages 18–35 years). Relative importance of product attributes was determined through a realistic trade‐off scenario. Utility scores were extracted and rescaled by the zero‐centered differences method, and two‐way analysis of variance was conducted to identify the differences between exercise frequency and product attributes. Both groups preferred bars to beverages, and no clear preferences were observed for protein type, which was consistent with focus group results of low knowledge/understanding of specific proteins. All respondents valued the products with low‐fat/fat‐free, calcium, all‐natural, protein, vitamin/mineral, heart health and muscle‐building claims. Exercisers viewed muscle‐building claims as more important than nonexercisers. Nonexercisers viewed heart health, calcium and vitamin/mineral claims as more important than exercisers. Three distinct consumer clusters were identified, and both exercise groups were found in all three clusters, although exercise frequency influenced membership in two of the three clusters (P < 0.05). These findings can be used to develop and market meal replacement products to specific consumer groups while leveraging their specific and unique needs.

PRACTICAL APPLICATIONS

Conjoint analysis provides a useful model of how consumers think during the purchase process and an understanding of the motivation for purchase through the testing of possible claims or product attributes. By applying this method to the purchase process of meal replacement bars and beverages, those in the field of development of these products can benefit from this information by being able to understand the motivation for purchase by the targeted consumer.  相似文献   

9.
Representing the greenhouse gas (GHG) emissions attributable to plug‐in electric vehicles (PEV) in vehicle GHG emissions regulations is complex because of spatial and temporal variation in fueling sources and vehicle use. Previous work has shown that the environmental performance of PEVs significantly varies depending on the characteristics of the electricity grid and how the vehicle is driven. This article evaluates the U.S. Environmental Protection Agency's (EPA's) GHG emissions accounting methodology in current and future standards for new electrified vehicles. The current approach employed by the EPA in their 2017–2025 model year light‐duty vehicle GHG regulation is compared with an accounting mechanism where the actual regional sales of PEVs, and the regional electricity emission factor in the year sold, are used to determine vehicle compliance value. Changes to the electricity grid over time and regional vehicle sales are included in the modeling efforts. A projection of a future GHG regulation past the 2017–2025 rule is used to observe the effect of such a regional regulation. The results showed that the complexity involved in tracking and accounting for regional PEV sales will not dramatically increase the effectiveness of the regulations to capture PEV electricity‐related GHG emissions in the absence of a major policy shift. A discussion of the feasibility and effectiveness of a regional standard for PEVs, and notable examples of region‐specific regulations instated in past energy policies, is also addressed.  相似文献   

10.
The mammalian (mechanistic) target of rapamycin (mTOR) regulates critical immune processes that remain incompletely defined. Interest in mTOR inhibitor drugs is heightened by recent demonstrations that the mTOR inhibitor rapamycin extends lifespan and healthspan in mice. Rapamycin or related analogues (rapalogues) also mitigate age‐related debilities including increasing antigen‐specific immunity, improving vaccine responses in elderly humans, and treating cancers and autoimmunity, suggesting important new clinical applications. Nonetheless, immune toxicity concerns for long‐term mTOR inhibition, particularly immunosuppression, persist. Although mTOR is pivotal to fundamental, important immune pathways, little is reported on immune effects of mTOR inhibition in lifespan or healthspan extension, or with chronic mTOR inhibitor use. We comprehensively analyzed immune effects of rapamycin as used in lifespan extension studies. Gene expression profiling found many and novel changes in genes affecting differentiation, function, homeostasis, exhaustion, cell death, and inflammation in distinct T‐ and B‐lymphocyte and myeloid cell subpopulations. Immune functions relevant to aging and inflammation, and to cancer and infections, and innate lymphoid cell effects were validated in vitro and in vivo. Rapamycin markedly prolonged lifespan and healthspan in cancer‐ and infection‐prone mice supporting disease mitigation as a mechanism for mTOR suppression‐mediated longevity extension. It modestly altered gut metagenomes, and some metagenomic effects were linked to immune outcomes. Our data show novel mTOR inhibitor immune effects meriting further studies in relation to longevity and healthspan extension.  相似文献   

11.
The current distribution of species, environmental conditions and their interactions represent only one snapshot of a planet that is continuously changing, in part due to human influences. To distinguish human impacts from natural factors, the magnitude and pace of climate shifts, since the Last Glacial Maximum, are often used to determine whether patterns of diversity today are artefacts of past climate change. In the absence of high‐temporal resolution palaeoclimate reconstructions, this is generally done by assuming that past climate change occurred at a linear pace between widely spaced (usually, ≥1,000 years) climate snapshots. We show here that this is a flawed assumption because regional climates have changed significantly across decades and centuries during glacial–interglacial cycles, likely causing rapid regional replacement of biota. We demonstrate how recent atmosphere‐ocean general circulation model (AOGCM) simulations of the climate of the past 21,000 years can provide credible estimates of the details of climate change on decadal to centennial timescales, showing that these details differ radically from what might be inferred from longer timescale information. High‐temporal resolution information can provide more meaningful estimates of the magnitude and pace of climate shifts, the location and timing of drivers of physiological stress, and the extent of novel climates. They also produce new opportunities to directly investigate whether short‐term climate variability is more important in shaping biodiversity patterns rather than gradual changes in long‐term climatic means. Together, these more accurate measures of past climate instability are likely to bring about a better understanding of the role of palaeoclimatic change and variability in shaping current macroecological patterns in many regions of the world.  相似文献   

12.
Plastics recycling, especially as prescribed by the German Ordinance on Packaging Waste (Verpackungsverordnung), is a conspicuous example of closing material loops on a large scale. In Germany, an industry‐financed system (Duales System Deutschland) was established in 1991 to collect and recycle packaging waste from households. To cope with mixed plastics, various “feedstock‐recycling” processes were developed. We discuss the environmental benefits and the cost‐benefit ratio of the system relative to municipal solid waste (MSW) incineration, based on previously published life‐cycle assessment (LCA) studies. Included is a first‐time investigation of energy recovery in all German incinerators, the optimization opportunities, the impact on energy production and substitution processes, an estimation of the costs, and a cost‐benefit assessment. In an LCA, the total environmental impact of MSW incineration is mainly determined by the energy recovery ratio, which was found on average to reach 39% in current German incineration plants. Due to low revenues from additional energy generation, it is not cost‐effective to optimize the plants energetically. Energy from plastic incineration substitutes for a specific mixture of electric base‐load power, district heating, and process steam generation. Any additional energy from waste incineration will replace, in the long term, mainly natural gas, rather than coal. Incineration of plastic is compared with feedstock recycling methods in different scenarios. In all scenarios, the incineration of plastic leads to an increase of CO2 emissions compared to landfill, whereas feedstock recycling reduces CO2 emissions and saves energy resources. The costs of waste incineration are assumed to decrease by about 30% in the medium term. Today, the calculated costs of CO2 reduction in feedstock recycling are very high, but are ex‐pected to decline in the near future. Relative to incineration, the costs for conserving energy via feedstock recycling are 50% higher, but this gap will close in the near future if automatic sorting and processing are implemented in Germany.  相似文献   

13.
Understanding the long‐term performance of global satellite leaf area index (LAI) products is important for global change research. However, few effort has been devoted to evaluating the long‐term time‐series consistencies of LAI products. This study compared four long‐term LAI products (GLASS, GLOBMAP, LAI3g, and TCDR) in terms of trends, interannual variabilities, and uncertainty variations from 1982 through 2011. This study also used four ancillary LAI products (GEOV1, MERIS, MODIS C5, and MODIS C6) from 2003 through 2011 to help clarify the performances of the four long‐term LAI products. In general, there were marked discrepancies between the four long‐term LAI products. During the pre‐MODIS period (1982–1999), both linear trends and interannual variabilities of global mean LAI followed the order GLASS>LAI3g>TCDR>GLOBMAP. The GLASS linear trend and interannual variability were almost 4.5 times those of GLOBMAP. During the overlap period (2003–2011), GLASS and GLOBMAP exhibited a decreasing trend, TCDR no trend, and LAI3g an increasing trend. GEOV1, MERIS, and MODIS C6 also exhibited an increasing trend, but to a much smaller extent than that from LAI3g. During both periods, the R2 of detrended anomalies between the four long‐term LAI products was smaller than 0.4 for most regions. Interannual variabilities of the four long‐term LAI products were considerably different over the two periods, and the differences followed the order GLASS>LAI3g>TCDR>GLOBMAP. Uncertainty variations quantified by a collocation error model followed the same order. Our results indicate that the four long‐term LAI products were neither intraconsistent over time nor interconsistent with each other. These inconsistencies may be due to NOAA satellite orbit changes and MODIS sensor degradation. Caution should be used in the interpretation of global changes derived from the four long‐term LAI products.  相似文献   

14.
A hybrid approach combining life cycle assessment and input‐output analysis was used to demonstrate the economic and environmental benefits of current and future improvements in agricultural and industrial technologies for ethanol production in Brazilian biorefineries. In this article, three main scenarios were evaluated: first‐generation ethanol production with the average current technology; the improved current technology; and the integration of improved first‐ and second‐generation ethanol production. For the improved first‐generation scenario, a US$1 million increase in ethanol demand can give rise to US$2.5 million of total economic activity in the Brazilian economy when direct and indirect purchases of inputs are considered. This value is slightly higher than the economic activity (US$1.8 million) for an energy equivalent amount of gasoline. The integration of first‐ and second‐generation technologies significantly reduces the total greenhouse gas emissions of ethanol production: 14.6 versus 86.4 grams of carbon dioxide equivalent per megajoule (g CO2‐eq/MJ) for gasoline. Moreover, emissions of ethanol can be negative (–10.5 g CO2‐eq/MJ) when the system boundary is expanded to account for surplus bioelectricity by displacement of natural gas thermal electricity generation considering electricity produced in first‐generation optimized biorefineries.  相似文献   

15.
Electronic textiles are a vanguard of an emerging generation of smart products. They consist of small electronic devices that are seamlessly embedded into clothing and technical textiles. E‐textiles provide enhanced functions in a variety of unobtrusive and convenient ways. Like many high‐tech products, e‐textiles may evolve to become a mass market in the future. In this case, large amounts of difficult‐to‐recycle products will be discarded. That can result in new waste problems. This article examines the possible end‐of‐life implications of textile‐integrated electronic waste. As a basis for assessment, the innovation trends of e‐textiles are reviewed, and an overview of their material composition is provided. Next, scenarios are developed to estimate the magnitude of future e‐textile waste streams. On that base, established disposal and recycling routes for e‐waste and old textiles are assessed in regard to their capabilities to process a blended feedstock of electronic and textile materials. The results suggest that recycling old e‐textiles will be difficult because valuable materials are dispersed in large amounts of heterogeneous textile waste. Moreover, the electronic components can act as contaminants in the recycling of textile materials. We recommend scrutinizing the innovation trend of technological convergence from the life cycle perspective. Technology developers and product designers should implement waste preventative measures at the early phases in the development process of the emerging technology.  相似文献   

16.
Prospective environmental assessment of emerging technology is necessary in order to inform designers of beneficial changes early in a technology's development, and policy makers looking to fund projects and nudge manufacturers toward the most sustainable application of a technology. Existing analyses often have shortcomings such as failing to consider the environmental impacts in all stages of a product's life cycle; implicitly assuming that the emerging technology will be cost‐effective wherever it is technically viable; and assuming optimistic application scenarios that discontinue long‐established trends in human behavior. In this article, we propose a new approach, complementary to the prospective and anticipatory life cycle assessment literature, addressing the above concerns and attempting to make sense of the large uncertainties inherent in such analyses by using distributions to model all the inputs. The paper focuses on emerging manufacturing technologies, such as incremental sheet forming (ISF), but the issues examined are also applicable to new end‐use products, such as autonomous vehicles. This paper makes use of approaches (such as Bass modeling and product cannibalization considerations) familiar to those in the business community who anticipate market diffusion of a new technology and the effect on existing technology sales. The proposed methodology is demonstrated by estimating the potential environmental impacts in the U.S. car industry by 2030 of an emerging double‐sided ISF process. Energy and cost models of ISF and drawing are used to estimate potential mean savings of around 100 TJprimary and 60 million U.S. dollars per year by 2030.  相似文献   

17.
Interventions that extend lifespan in mice can show substantial sexual dimorphism. Here, we show that male‐specific lifespan extension with two pharmacological treatments, acarbose (ACA) and 17‐α estradiol (17aE2), is associated, in males only, with increased insulin sensitivity and improved glucose tolerance. Females, which show either smaller (ACA) or no lifespan extension (17aE2), do not derive these metabolic benefits from drug treatment. We find that these male‐specific metabolic improvements are associated with enhanced hepatic mTORC2 signaling, increased Akt activity, and phosphorylation of FOXO1a – changes that might promote metabolic health and survival in males. By manipulating sex hormone levels through gonadectomy, we show that sex‐specific changes in these metabolic pathways are modulated, in opposite directions, by both male and female gonadal hormones: Castrated males show fewer metabolic responses to drug treatment than intact males, and only those that are also observed in intact females, while ovariectomized females show some responses similar to those seen in intact males. Our results demonstrate that sex‐specific metabolic benefits occur concordantly with sexual dimorphism in lifespan extension. These sex‐specific effects can be influenced by the presence of both male and female gonadal hormones, suggesting that gonadally derived hormones from both sexes may contribute to sexual dimorphism in responses to interventions that extend mouse lifespan.  相似文献   

18.

Purpose

In the light of anthropogenic resource depletion and the resulting influences on the greenhouse effect as well as globally occurring famine, food waste has garnered increased public interest in recent years. The aim of this study is to analyze the environmental impacts of food waste and to determine to what extent consumers’ behavior influences the environmental burden of food consumption in households.

Methods

A life cycle assessment (LCA) study of three food products is conducted, following the ISO 14040/44 life cycle assessment guidelines. This study addresses the impact categories climate change (GWP100), eutrophication (EP), and acidification (AP). Primary energy demand (PED) is also calculated. For adequate representation of consumer behavior, scenarios based on various consumer types are generated in the customer stage. The customer stage includes the food-related activities: shopping, storage, preparation, and disposal of food products as well as the disposal of the sales packaging.

Results and discussion

If the consumer acts careless towards the environment, the customer stage appears as the main hotspot in the LCA of food products. The environmental impact of food products can be reduced in the customer stage by an environmentally conscious consumer. Shopping has the highest effect on the evaluated impact categories and the PED. Additionally, consumers can reduce the resulting emissions by decreasing the electric energy demand, particularly concerning food storage or preparation. Moreover, results show that the avoidance of wasting unconsumed food can reduce the environmental impact significantly.

Conclusions

Results of this study show that the influence of consumer behavior on the LCA results is important. The customer stage of food products should not be overlooked in LCA studies. To enable comparison among results of other LCA studies, the LCA community needs to develop a common methodology for modeling consumer behavior.
  相似文献   

19.
Refurbishing products, which are increasingly sold in business‐to‐consumer markets, is a key strategy to reduce waste. Nevertheless, research finds that consumers’ willingness to pay (WTP) for refurbished products is low. Strategies for a higher WTP are needed in order to grow consumer markets for refurbished products. Eco‐certification of refurbished products may be a key strategy here. Drawing on the consumer WTP literature concerning “green” products, we investigate the impact of independent eco‐certificates. Our analysis is based on a survey of 231 potential customers. The results suggest that, across various product categories, the WTP for products with refurbished components is significantly lower. Adding an eco‐certificate tends to return the WTP toward the virgin product level. We show that consumers with proenvironmental attitudes particularly exhibit green buying behavior. Our findings indicate that eco‐certification is often worthwhile because it enhances the business rationale for producing products with refurbished components.  相似文献   

20.
Phosphorus (P) is a major agricultural nutrient and, in its mineable form, a potentially scarce resource. Countries with limited physical access to P should hence develop an effective national P governance. This requires analyses of trends and variations in P flows and stocks over time. Here, we present a long‐term P flow analysis for the Indian agri‐food sector from 1988 to 2011. Major P flows are imports of mineral P, fertilizer application, and uptake of animal fodder. The mineral P import dependency ratio is constant at around 93%. On average, 20% of P inputs to soils are lost through erosion. Key drivers of changes in P flows include population growth, dietary change, and agricultural intensification. To reduce its P fertilizer import dependence, India could, for example, substitute up to 19% of the presently applied mineral P if manure used as a household fuel were recycled, and up to 21% if P was fully recovered from wastewater and household waste. Comparing selected indicators for P use in agriculture with China and the European Union (EU) reveals that there are structural similarities, such as increasing fertilizer application rates and P accumulation in soils, with the first but large differences compared to the latter. The analyses highlight that in contrast to static indicators, the time‐continuous tracking of P flows provides substantial advantages, such as the identification of long‐term trends, drivers, and intervention options for sustainable P management, given that it allows for the interpretation of present indicators in the context of past trends and legacies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号