首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies focusing on the development of morphological novelties suggest that patterning genes underlying traditional appendage development (i.e. mouthparts, legs, and wings) also play important roles in patterning novel morphological structures. In this study, we examine whether the expression and function of a member of the TGF-β signaling pathway, decapentaplegic (dpp), promotes development of a morphologically novel structure: beetle horns. Beetle horns are complex secondary sexual structures that develop in the head and/or prothorax, lack obvious homology to other insect outgrowths, and vary remarkably between species and sexes. We studied dpp expression through in situ hybridization, performed functional analyses with RNA interference, and gathered allometric measurements to determine the role of dpp during both pronotal and head horn development in both sexes of two morphologically dissimilar species in the Onthophagus genus, Onthophagus binodis and Onthophagus sagittarius. Our findings show that in addition to affecting growth and patterning of traditional appendages, dpp regulates beetle horn growth and remodeling.  相似文献   

2.
Beetle horns represent an evolutionary novelty exhibiting remarkable diversity above and below the species level. Here, we show that four typical appendage patterning genes, extradenticle (exd), homothorax (hth), dachshund (dac), and Distal-less (Dll) are expressed in the context of the development of sexually dimorphic thoracic horns in three Onthophagus species. At least two of these genes, Dll and hth, exhibited expression patterns consistent with a conservation of patterning function during horn development relative to their known roles in the development of insect legs. exd, hth, and dac expression patterns during horn development were largely invariable across species or sexes within species. In contrast, Dll expression was far more discrete and exhibited consistent differences between sexes and species. Most importantly, differences in location and domain size of Dll expression tightly correlated with the degree to which prepupal horn primordia were retained or resorbed before the final adult molt. Our results lend further support to the hypothesis that the origin of beetle horns relied, at least in part, on the redeployment of already existing developmental mechanisms, such as appendage patterning processes and that changes in the exact location and domain size of Dll expression may represent important modifier mechanisms that modulate horn expression in different species or sexes. If correct, this would imply that certain components of genetic basis of horn development may be able to diversify rapidly within lineages and largely independent of phylogenetic distance. We present a first model that integrates presently available data on the genetic regulation of horn development and diversity.  相似文献   

3.
Sexual and male horn dimorphism in Copris ochus (Coleoptera: Scarabaeidae)   总被引:1,自引:0,他引:1  
Copris ochus (Coleoptera: Scarabaeidae), an endangered species, is the largest dung beetle in Japan. In C. ochus, males have a long head horn, while females lack this long horn (sexual dimorphism). Very large males of C. ochus have disproportionately longer head horns than small males, suggesting male horn dimorphism, although the dimorphism has not been investigated quantitatively. To clarify sexual and male horn dimorphism in C. ochus quantitatively, we examined the scaling relationship between body size (prothorax width) and head horn length in 94 females and 76 males. These beetles were captured during July 1978 from a natural population on Mt. Aso in southwestern Japan using a light trap. Although the horn length of the females and males scaled with prothorax width, the scaling relationship differed between the sexes, i.e., the relationship was linear in females and nonlinear in males. Statistical tests for dimorphism in male horn length showed a significant discontinuous relationship, thus indicating distinct sexual and male dimorphism in head horns. Long- and short-horned C. ochus males may have different reproductive behaviors, as described in other horned dung beetles.  相似文献   

4.
5.
Elaborate horns or horn‐like structures in male scarab beetles commonly scale with body size either (a) in a linear fashion with horn size increasing relatively faster than body size or (b) in a threshold‐dependent, sigmoid fashion; that is, males smaller than a certain critical body size develop no or only rudimentary horns, whereas males larger than the threshold size express fully developed horns. The development of linear vs. sigmoid scaling relationships is thought to require fundamentally different regulatory mechanisms. Here we show that such disparate regulatory mechanisms may co‐occur in the same individual. Large males of the south‐east Asian Onthophagus (Proagoderus) watanabei (Ochi & Kon) (Scarabaeidae, Onthophagini) develop a pair of long, curved head horns as well as a single thoracic horn. We show that unlike paired head horns in a large number of Onthophagus species, in O. watanabei the relationship between head horns and body size is best explained by a linear model. Large males develop disproportionately longer horns than small males, but the difference in relative horn sizes across the range of body sizes is small compared to other Onthophagus species. However, the scaling relationship between the thoracic horn and body size is best explained by a strongly sigmoid model. Only males above a certain body size threshold express a thoracic horn and males smaller than this threshold express no horn at all. We found a significant positive correlation between head and thoracic horn length residuals, contrary to what would be expected if a resource allocation tradeoff during larval development would influence the length of both horn types. Our results suggest that the scaling relationship between body size and horn length, and the developmental regulation underlying these scaling relationships, may be quite different for different horns, even though these horns may develop in the same individual. We discuss our results in the context of the developmental biology of secondary sexual traits in beetles. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 473–480.  相似文献   

6.
7.
Horned beetles are emerging models in the study of coevolution between novel morphologies and behavior. In Onthophagus beetles, large males use horns to fight other males in brood tunnels while small males with higher mobility sneak around the large males to gain access to females. Mating tactics have rarely been described in other dung beetle genera. We studied the horned dung beetle Sulcophanaeus velutinus that exhibits two parallel horns on the prothorax and one on the head. We put two males of different horn lengths, but similar mass, in observation chambers and found that the large male with longer horns won access to the female in physical competition. Speed tests in artificial tunnels show that locomotion is impeded in large males, suggesting an advantage in mobility for males with small horns. This work contributes to the limited existing evidence on the function of alternative morphologies in horned dung beetles taxa.  相似文献   

8.
Sexual dimorphism, the difference between the sexes in secondary sexual characters, is in general driven by processes of sexual selection. The horn-headed cricket, Loxoblemmus doenitzi, exhibits sexual dimorphism in head shape. Males have flat heads and triangular horns on both sides of their heads, whereas females have rounded heads and no horns. We hypothesized that male horns have evolved due to intra-sexual selection, in which males use these horns as weapons in aggressive interactions. We tested two predictions of this hypothesis by conducting agonistic trials with field-caught males of L. doenitzi: (1) the horns should be used in agonistic interactions between males, and (2) the asymmetry in horn size or horn use may determine contest outcome. Horn length was significantly correlated with thorax length and hind femur length. During agonistic interactions, males aggressively used their horns by beating the opponent’s horns with their own or by poking the opponent’s body. However, logistic regression analysis revealed that neither horn length nor horn use were significant factors for contest outcome. Instead, body size was significant for determining contest outcome. We discuss possible scenarios for evolution of male horns in L. doenitzi.  相似文献   

9.
The causes and consequences of sexual dimorphism are major themes in biology. Here we explore the endocrine regulation of sexual dimorphism in horned beetles. Specifically, we explore the role of juvenile hormone (JH) in regulating horn expression in females of two species with regular sexual dimorphism for pronotal horns (females have much shorter horns than males) and a third species with a rare reversed sexual dimorphism for both pronotal and head horns (females have much larger horns in both body regions compared with males). Applications of the JH analog methoprene caused females of the two more typical species to grow significantly shorter pronotal horns than control females, whereas no consistent effect on pronotal horn development was detected in the third, sex-reversed species. Instead, females in this species showed an unexpected and significant increase in head horn expression in response to methoprene treatment. Lastly, horn shape was also affected in females of one of the regularly sexually dimorphic species, but in the opposite direction than horn length. Although methoprene exerted a feminizing effect on female horn length in this species, it significantly masculinized horn shape by inducing a peculiar shape change observed naturally only in males. Our results suggest that JH influences both overall size and shape of female horns, but does so flexibly and as a function of species, sex and horn location. We use our results to review current models on the role of endocrine mechanisms in development and evolution of horned beetle diversity.  相似文献   

10.
Beetle horns are extraordinarily diversified secondary sexual structures used for mate choice and male–male combat. Due to an interaction of nutritional, hormonal and genetic factors, their polyphenic development is metabolically expensive and occurs in the virtually closed system of the pre-pupal stage, after the developing larva has stopped feeding. Previous studies showed the occurrence of resource competition resulting in a trade-off between horns and other morphological structures. These studies also revealed functional associations between autoecology and horns, as a function of their physical location (i.e. head versus pronotum), and suggested that constraints imposed by trade-offs on adult morphology may have profound evolutionary consequences, such as ecological and reproductive isolation. In this study, we compared trade-off patterns between horns and other functional traits (eyes, antennae, legs, head, epipharynges and genitalia) in two congeneric species bearing horns located in the same anatomical area, but with different morphologies. Specifically, we considered Onthophagus taurus, characterised by a pair of long, lunated cephalic horns, and Onthophagus fracticornis, expressing a single cephalic horn. We demonstrated that, even when horns are located in the same physical position on the insect’s body, differences in horn morphology can bring about differences in how functional traits respond to horn investment. These differences are interpretable in the light of the hierarchy of functions carried out by these structures and their component parts in each species.  相似文献   

11.
Large insect horns function as antipredator armaments, digging implements and intraspecific combat weapons. The sand‐living anthicid beetle Mecynotarsus tenuipes possesses a large horn on the pronotum. Allometric relationships between body size and horn size did not show either a slope of more than 1 or sexual dimorphism, suggesting another function of the horn other than sexual selection via combat. Behavioral observation of individuals using a microvideo camera indicated that the horn is used to dig and move forward in loose sand. Only the horned M. tenuipes could dig into sand, in contrast to the hornless anthicid beetles Stricticollis valgipes and Clavicollis fugiens, which could not dig. When moving in sand, M. tenuipes joins its pronotal horn and head to form a conical shape, with which it pierces into the sand. Then, it opens its horn and head outward to create a space in the sand for forward motion. Although it can dig deeply into sand by repeating these behaviors sequentially, digging speed tends to slow with depth, probably because the weight of the substrate increases.  相似文献   

12.
13.
Field cricket species are ideal model organisms for the study of sexual selection because cricket calling songs, used to attract mating partners, are pronouncedly sexually dimorphic. However, few studies have focused on other sexually dimorphic traits of field crickets. The horn‐headed cricket, Loxoblemmus doenitzi, exhibits exaggerated sexual dimorphism in head shape: males have flat heads with triangular horns, while females lack horns. This study examines the relationship between horn length, male calling efforts and diet quality. Horn length was not found to be significantly correlated with calling efforts. When diet was manipulated for late‐stage nymphs, calling efforts in the group with poor‐quality diet treatment was significantly lower than that of crickets in the group with high‐quality diet treatment. However, horn length was not affected by diet quality. The implication of these results in the context of the evolution of multiple signals and sexual dimorphism is discussed.  相似文献   

14.
Niche construction occurs when organisms modify their environments and alter selective conditions through their physiology and behaviours. Such modifications can bias phenotypic variation and enhance organism–environment fit. Yet few studies exist that experimentally assess the degree to which environmental modifications shape developmental and fitness outcomes, how their influences may differ among species and identify the underlying proximate mechanisms. Here, we experimentally eliminate environmental modifications from the developmental environment of Onthophagus dung beetles. We show that these modifications (1) differentially influence growth among species, (2) consistently shape scaling relationships in fitness‐related traits, (3) are necessary for the maintenance of sexual dimorphism, (4) influence reproductive success among females of at least one species and (5) implicate larval cultivation of an external rumen as a possible mechanism for environmental modification. Our results present evidence that Onthophagus larvae engage in niche construction, and that this is a fundamental component of beetle development and fitness.  相似文献   

15.
Rhinos are the only modern perissodactyls that possess cranial weapons similar to the horns, antlers and ossicones of modern ruminants. Yet, unlike ruminants, there is no clear relationship between sexual dimorphism and sociality. It is possible to extend the study of the coevolution of sociality and sexual dimorphism into extinct rhinos by examining the demographic patterns in large fossil assemblages. An assemblage of the North American early Miocene (∼22 million years ago) rhino, Menoceras arikarense, from Agate Springs National Monument, Nebraska, exhibits dimorphism in incisor size and nasal bone size, but there is no detectible dimorphism in body size. The degree of dimorphism of the nasal horn is greater than the degree of sexual dimorphism of any living rhino and more like that of modern horned ruminants. The greater degree of sexual dimorphism in Menoceras horns may relate to its relatively small body size and suggests that the horn had a more sex-specific function. It could be hypothesized that Menoceras evolved a more gregarious type of sociality in which a fewer number of males were capable of monopolizing a larger number of females. Demographic patterns in the Menoceras assemblage indicate that males suffered from a localized risk of elevated mortality at an age equivalent to the years of early adulthood. This mortality pattern is typical of living rhinos and indicates that young males were susceptible to the aggressive behaviors of dominant individuals in areas conducive to fossilization (e.g., ponds, lakes, rivers). Menoceras mortality patterns do not suggest a type of sociality different from modern rhinos although a group forming type of sociality remains possible. Among both living and extinct rhinos, the severity of socially mediated mortality seems unrelated to the degree of sexual dimorphism. Thus, sexual dimorphism in rhinos is not consistent with traditional theories about the co-evolution of sexual dimorphism and sociality.  相似文献   

16.
Sexual selection has equipped male rhinoceros beetles with large horns on their head and prothorax to aid in battle over access to females. Horns are used to pry and dislodge opponents from resource sites that attract females, so an optimal horn should be able both to withstand the high stresses imposed during fights, and to resist deflection in response to these loads. We examined the cross‐sectional morphology of horns using micro‐computed tomography scanning to determine how horn structure changes with horn length to withstand the different fighting loads. Specifically, we measured the second moment of area of horns within and among rhinoceros beetle species to assess whether changes in cross‐sectional morphology accompany changes in body size in order to maintain high strength and stiffness during fights. We find that the second moment of area of horns increases with body size both intra‐specifically and inter‐specifically, and that these relationships closely fit those predicted if horns have been selected to be strong and stiff fighting structures. Our results therefore support the hypothesis that rhinoceros beetle horns are structurally adapted for combat.  相似文献   

17.
Allometric scaling of male horn morphologies of Copris acutidens, including the head and prothoracic horns, was analyzed. The analyses of scaling relationships indicated a discontinuous increase in head horn length and prothoracic horn height but a linear increase in prothoracic horn length relative to body size. The different results for length and height of the prothoracic horn suggest that the height is functionally more important for ensuring mates in the nests. Furthermore, both the head and prothoracic horns were dimorphic, and this characteristic was not found in the scarabaeoid beetle Onthophagus. Similarity in the switch point values for the head and prothoracic horns suggests that the dimorphism of the two kinds of horns may result from the same developmental threshold mechanism.  相似文献   

18.
The hypothesis that population density can affect sexual selection on male horn size was tested in a three-year study of a fungus beetle, Bolitotherus cornutus. Males of this species have horns that vary greatly in length. These horns are used in fights over females; longer-horned males win the majority of fights, regardless of population density. However, density does affect the relationship between horn length and access to females. In six populations of naturally and experimentally varying densities, longer-horned males gained a greater advantage in access to females in low-density populations than at high density. This increase in access to females causes an increase in the number of females inseminated by longer-horned males; thus, sexual selection for longer horns is stronger at lower densities.  相似文献   

19.
Male‐specific exaggerated horns are an evolutionary novelty and have diverged rapidly via intrasexual selection. Here, we investigated the function of the conserved sex‐determination gene doublesex (dsx) in the Japanese rhinoceros beetle (Trypoxylus dichotomus) using RNA interference (RNAi). Our results show that the sex‐specific T. dichotomus dsx isoforms have an antagonistic function for head horn formation and only the male isoform has a role for thoracic horn formation. These results indicate that the novel sex‐specific regulation of dsx during horn morphogenesis might have been the key evolutionary developmental event at the transition from sexually monomorphic to sexually dimorphic horns.  相似文献   

20.
Sexual selection imposed by mating preferences is often implicated in the evolution of both sexual dimorphism and divergence between species in signalling traits. Epicuticular compounds (ECs) are important signalling traits in insects and show extensive variability among and within taxa. Here, we investigate whether variation in the multivariate EC profiles of two sex role‐reversed beetle species, Megabruchidius dorsalis and Megabruchidius tonkineus, predicts mate attractiveness and mating success in males and females. The two species had highly distinct EC profiles and both showed significant sexual dimorphism in ECs. Age and mating status in both species were also distinguishable by EC profile. Males and females of both species showed significant association between their EC profile and attractiveness, measured both as latency to mating and as success in mate‐choice trials. Remarkably, the major multivariate vector describing attractiveness was correlated in both species, both sexes, and in both choice and no‐choice experiments such that increased attractiveness was in all cases associated with a similar multivariate modification of EC composition. Furthermore, in both sexes this vector of attractiveness was associated with more male‐like EC profiles, as well as those characterizing younger and nonvirgin individuals, which might reflect a general preference for individuals of high condition in both sexes. Despite significant sexual selection on EC composition, however, we found no support for the proposition that sexual selection is responsible for divergence in ECs between these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号