首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
Studies focusing on the development of morphological novelties suggest that patterning genes underlying traditional appendage development (i.e. mouthparts, legs, and wings) also play important roles in patterning novel morphological structures. In this study, we examine whether the expression and function of a member of the TGF-β signaling pathway, decapentaplegic (dpp), promotes development of a morphologically novel structure: beetle horns. Beetle horns are complex secondary sexual structures that develop in the head and/or prothorax, lack obvious homology to other insect outgrowths, and vary remarkably between species and sexes. We studied dpp expression through in situ hybridization, performed functional analyses with RNA interference, and gathered allometric measurements to determine the role of dpp during both pronotal and head horn development in both sexes of two morphologically dissimilar species in the Onthophagus genus, Onthophagus binodis and Onthophagus sagittarius. Our findings show that in addition to affecting growth and patterning of traditional appendages, dpp regulates beetle horn growth and remodeling.  相似文献   

2.
Discovering the mechanisms that underlie the origin of novel features represents a major frontier in developmental and evolutionary biology. Here we begin to characterize the role of the Hox gene Sex combs reduced (Scr) during the development and evolution of a morphologically novel trait: beetle horns. Beetle horns develop as epidermal outgrowths from the prothorax and/or head, and size and location vary dramatically across species and between sexes. Using both comparative gene expression and larval RNA interference in two species of the horned beetle genus Onthophagus, we show that Scr functions in patterning adult labial mouthpart identity and suppressing wing development in the prothorax. At the same time, however, our results illustrate that Scr has acquired, within its ancestral domain of expression, additional new functions including the regulation of prepupal growth and pupal remodeling of pronotal horn primordia. Furthermore, comparative analyses of our results across both Onthophagus species, which differ in location of horn development (thoracic horns vs. thoracic and head horns) as well as patterns of sexual dimorphism (traditional vs. reversed sexual dimorphism), reveal surprising differences in exactly when, where, and to what degree Scr regulates horn formation in different sexes. These observations suggest that the interactions between Scr and its targets in the regulation of horn development can diversify quickly over remarkably short phylogenetic distances. More generally, our results suggest that the Hox complex can play an integral role in the development and evolution of novel complex traits while maintaining traditional patterning responsibilities.  相似文献   

3.
4.
Pattern formation by the genes dachshund (dac), Distal-less (Dll), extradenticle (exd) and homothorax (hth) in spider appendages has been studied previously only in members of the higher spiders (Araneomorphae). In order to study the diversity and conservation of pattern formation in spiders as a whole, we studied homologs of these genes in embryos of the bird spider Acanthoscurria geniculata, which belongs to the Mygalomorphae, a more primitive spider group. We show that the patterns of dac and Dll are largely conserved in all spiders studied so far. We find a duplication of hth and exd genes as previously identified in the higher spider Cupiennius salei. These data suggest that pattern formation shows little diversity in all spiders, including the duplication of hth and exd that likely occurred before the split of Mygalomorphae and Araneomorphae. We also find that the legs and pedipalps bear endites of which only the pedipalpal endite expresses Dll and is retained in the adult. Similarly, the limb buds of the posterior spinnerets express Dll and become segmented appendages in the adult, whereas the anterior spinnerets lack Dll expression and are absent in postembryonic stages. In both cases, the expression of Dll or the lack of it indicates structures which will be retained as adult traits or rudimentary structures that degenerate, respectively. The presence of embryonic rudiments of leg endites in Acanthoscurria and the leg-like pattern formation in the posterior spinnerets are interpreted as primitive traits that have been lost in the Araneomorphae.  相似文献   

5.
Arthropod appendages are among the most diverse animal organs and have been adapted to a variety of functions. Due to this diversity, it can be difficult to recognize homologous parts in different appendage types and different species. Gene expression patterns of appendage development genes have been used to overcome this problem and to identify homologous limb portions across different species and their appendages. However, regarding the largest arthropod group, the hexapods, most of these studies focused on members of the winged insects (Pterygota), but primitively wingless groups like the springtails (Collembola) or silverfish and allies (Zygentoma) are underrepresented. We have studied the expression of a set of appendage patterning genes in the firebrat Thermobia domestica and the white springtail Folsomia candida. The expressions of Distal-less (Dll) and dachshund (dac) are generally similar to the patterns reported for pterygote insects. Modifications of gene regulation, for example, the lack of Dll expression in the palp of F. candida mouthparts, however, point to changes in gene function that can make the use of single genes and specific expression domains problematic for homology inference. Such hypotheses should therefore not rely on a small number of genes and should ideally also include information about gene function. The expression patterns of homothorax (hth) and extradenticle (exd) in both species are similar to the patterns of crustaceans and pterygote insects, but differ from those in chelicerates and myriapods. The proximal specificity of hth thus appears to trace from a common hexapod ancestor and also provides a link to the regulation of this gene in crustaceans.  相似文献   

6.
Our understanding of the developmental mechanisms underlying the vast diversity of arthropod appendages largely rests on the peculiar case of the dipteran Drosophila melanogaster. In this insect, homothorax (hth) and extradenticle (exd) together play a pivotal role in appendage patterning and identity. We investigated the role of the hth homologue in the cricket Gryllus bimaculatus by parental RNA interference. This species has a more generalized morphology than Oncopeltus fasciatus, the one other insect besides Drosophila where homothorax function has been investigated. The Gryllus head appendages represent the morphologically primitive state including insect-typical mandibles, maxillae and labium, structures highly modified or missing in Oncopeltus and Drosophila. We depleted Gb’hth function through parental RNAi to investigate its requirement for proper regulation of other appendage genes (Gb’wingless, Gb’dachshund, Gb’aristaless and Gb’Distalless) and analyzed the terminal phenotype of Gryllus nymphs. Gb’hth RNAi nymphs display homeotic and segmentation defects similar to hth mutants or loss-of-function clones in Drosophila. Intriguingly, however, we find that in Gb’hth RNAi nymphs not only the antennae but also all gnathal appendages are homeotically transformed, such that all head appendages differentiate distally as legs and proximally as antennae. Hence, Gb’hth is not specifically required for antennal fate, but fulfills a similar role in the specification of all head appendages. This suggests that the role of hth in the insect antenna is not fundamentally different from its function as cofactor of segment-specific homeotic genes in more posterior segments.  相似文献   

7.
8.
A major prerequisite to understanding the evolution of developmental programs includes an appreciation of gene function in a comparative context. RNA interference (RNAi) represents a powerful method for reverse genetics analysis of gene function. However, RNAi protocols exist for only a handful of arthropod species. To extend functional analysis in basal arthropods, we developed a RNAi protocol for the two-spotted spider mite Tetranychus urticae focusing on Distal-less (Dll), a conserved gene involved in appendage specification in metazoans. First, we describe limb morphogenesis in T. urticae using confocal and scanning electron microscopy. Second, we examine T. urticae Dll (Tu-Dll) mRNA expression patterns and correlate its expression with appendage development. We then show that fluorescently labeled double-stranded RNA (dsRNA) and short interfering RNA (siRNA) molecules injected into the abdomen of adult females are incorporated into the oviposited eggs, suggesting that dsRNA reagents can be systemically distributed in spider mites. Injection of longer dsRNA as well as siRNA induced canonical limb truncation phenotypes as well as the fusion of leg segments. Our data suggest that Dll plays a conserved role in appendage formation in arthropods and that such conserved genes can serve as reliable starting points for the development of functional protocols in nonmodel organisms.  相似文献   

9.
Distalless expression in crustaceans and the patterning of branched limbs   总被引:2,自引:2,他引:0  
 In Drosophila, Distalless (Dll) is critical in establishing the proximal/distal axis of the leg. Lack of proper Dll expression causes distal limb structures to be truncated or lost. Dll expression was examined through the course of development in the limbs of two crustaceans, Triops and Nebalia. Because the limbs of these two species are branched, they provide a comparison to the uniramous (unbranched) leg of Drosophila. In Triops and Nebalia, development of limb branches is not tightly coupled with Dll expression: in some cases, branches can arise prior to Dll expression and in others, certain branches never express Dll. These data suggest that, while Dll may indeed initiate overall limb outgrowth, limb branches are unlikely to be patterned by a simple iteration of the mechanism patterning the unbranched leg of Drosophila. Received: 14 May 1997 / Accepted: 25 September 1997  相似文献   

10.
The putative regulatory relationships between Antennapedia (Antp), spalt major (salm) and homothorax (hth) are tested with regard to the sensitive period of antenna-to-leg transformations. Although Antp expression repressed hth as predicted, contrary to expectations, hth did not show increased repression at higher Antp doses, whereas salm, a gene downstream of hth, did show such a dose response. Loss of hth allowed antenna-to-leg transformations but the relative timing of proximal-distal transformations was reversed, relative to transformations induced by ectopic Antp. Finally, overexpression of Hth was only partially able to rescue transformations induced by ectopic Antp. These results indicate that there may be additional molecules involved in antenna/leg identity and that spatial, temporal and dosage relationships are more subtle than suspected and must be part of a robust understanding of molecular network behaviour involved in determining appendage identity in Drosophila melanogaster.  相似文献   

11.
The dramatic transformation from a larva to an adult must be accompanied by a coordinated activity of genes and hormones that enable an orchestrated transformation from larval to pupal/adult tissues. The maintenance of larval appendages and their subsequent transformation to appendages in holometabolous insects remains elusive at the developmental genetic level. Here the role of a key appendage patterning gene Distal-less (Dll) was examined in mid- to late-larval stages of the flour beetle, Tribolium castaneum. During late larval development, Dll was expressed in appendages in a similar manner as previously reported for the tobacco hornworm, Manduca sexta. Removal of this late Dll expression resulted in disruption of adult appendage patterning. Intriguingly, earlier removal resulted in dramatic loss of structural integrity and identity of larval appendages. A large amount of variability in appendage morphology was observed following Dll dsRNA injection, unlike larvae injected with dachshund dsRNA. These Dll dsRNA-injected larvae underwent numerous supernumerary molts, which could be terminated with injection of either JH methyltransferase or Methoprene-tolerant dsRNA. Apparently, the partial dedifferentiation of the appendages in these larvae acts to maintain high JH and, hence, prevents metamorphosis.  相似文献   

12.
During early brain development in Drosophila a highly stereotyped pattern of axonal scaffolds evolves by precise pioneering and selective fasciculation of neural fibers in the newly formed brain neuromeres. Using an axonal marker, Fasciclin II, we show that the activities of the extradenticle (exd) and homothorax (hth) genes are essential to this axonal patterning in the embryonic brain. Both genes are expressed in the developing brain neurons, including many of the tract founder cluster cells. Consistent with their expression profiles, mutations of exd and hth strongly perturb the primary axonal scaffolds. Furthermore, we show that mutations of exd and hth result in profound patterning defects of the developing brain at the molecular level including stimulation of the orthodenticle gene and suppression of the empty spiracles and cervical homeotic genes. In addition, expression of a Drosophila Pax6 gene, eyeless, is significantly suppressed in the mutants except for the most anterior region. These results reveal that, in addition to their homeotic regulatory functions in trunk development, exd and hth have important roles in patterning the developing brain through coordinately regulating various nuclear regulatory genes, and imply molecular commonalities between the developmental mechanisms of the brain and trunk segments, which were conventionally considered to be largely independent. Received: 4 October 1999 / Accepted: 10 January 2000  相似文献   

13.
SUMMARY In arthropods, such as Drosophila melanogaster, the leg gap genes homothorax (hth), extradenticle (exd), dachshund (dac), and Distal‐less (Dll) regionalize the legs in order to facilitate the subsequent segmentation of the legs. We have isolated homologs of all four leg gap genes from the onychophoran Euperipatoides kanangrensis and have studied their expression. We show that leg regionalization takes place in the legs of onychophorans even though they represent simple and nonsegmented appendages. This implies that leg regionalization evolved for a different function and was only later co‐opted for a role in leg segmentation. We also show that the leg gap gene patterns in onychophorans (especially of hth and exd) are similar to the patterns in crustaceans and insects, suggesting that this is the plesiomorphic state in arthropods. The reversed hth and exd patterns in chelicerates and myriapods are therefore an apomorphy for this group, the Myriochelata, lending support to the Myriochelata and Tetraconata clades in arthropod phylogeny.  相似文献   

14.
The expression of the Hox gene Distal-less (Dll) directs the development of appendages in a wide variety of animals. In Drosophila, its expression is subjected to a complex developmental control. In the present work we have studied a 17 kb genomic region in the Dll locus which lies downstream of the coding sequence and found control elements of primary functional importance for the expression of Dll in the leg and in other tissues. Of particular interest is a control element, which we have called LP, which drives expression of Dll in the leg primordium from early embryonic development, and whose deletion causes severe truncation and malformation of the adult leg. This is the first Dll enhancer for which, in addition to the ability to drive expression of a reporter, a role can be demonstrated in the expression of the endogenous Dll gene and in the development of the leg. In addition, our results suggest that some enhancers, contrary to the widely accepted notion, may require a specific 5′ or 3′ position with respect to the transcribed region.  相似文献   

15.
The remarkable diversity of form in arthropods reflects flexible genetic programs deploying many conserved genes. In the insect model Drosophila melanogaster, diversity of form can be observed between serially homologous appendages or when a single appendage is transformed by homeotic mutations, such as the adult labial mouthparts that can present alternative antennal, prothoracic, or maxillary identities. We have examined the roles of the Hox selector genes proboscipedia (pb) and Sex combs reduced (Scr), and the antennal selectors homothorax (hth) and spineless (ss) in labial specification, by tissue-directed mitotic recombination. Whereas loss of pb function transforms labium to prothoracic leg, loss of Scr, hth, or ss functions results in little or no change in labial specification. Results of analysis of single and multiple mutant combinations support a genetic hierarchy in which the homeotic pb gene possesses a primary role. It is surprising to note that while loss of ss activity alone had no detected effect, all mutant combinations lacking both pb and ss yielded the most severe phenotype observed: stunted, apparently tripartite legs that may correspond to a default state. The roles of the four selector genes are functionally linked to a cell nonautonomous mechanism involving the coupled activities of the decapentaplegic (dpp)/TGF-β and wingless (wg)/Wnt signaling pathways. Accordingly, several mutant combinations impaired in dpp signaling were seen to reorient labial-to-leg transformations toward antennal aristae. A crucial aspect of selector function in development and evolution may be in regulating diffusible signals, including those emitted by dpp and wg.  相似文献   

16.
The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.  相似文献   

17.
The Drosophila spineless (ss) gene is regulated downstream of the appendage gene Distal-less (Dll) and is involved in leg and antenna development. Specifically, loss of ss leads to the homeotic transformation of the arista, the distalmost antennal segment, into tarsal identity, and the loss or fusion of distal leg segments. Here we show that the ss homolog from the red flour beetle Tribolium castaneum also homeotically transforms the beetle antenna into leg, but the extent of the transformation is significantly larger than in Drosophila, as the entire antenna (except for the basal antennifer) is transformed into pretarsal, tibiotarsal, and femoral identity; i.e., the transformation comprises the Dll positive area in both appendages. We interpret the antennal phenotype in Tribolium as evidence for a more exclusive role of ss in antennal determination downstream of Dll in the beetle. By contrast, the fact that, in Drosophila ss mutants, only a small portion of the Dll positive area in the antenna is homeotically transformed indicates that Dll uses additional targets to govern the development of the other antennal segments in the fly.  相似文献   

18.
19.
20.
Beetle horns are extraordinarily diversified secondary sexual structures used for mate choice and male–male combat. Due to an interaction of nutritional, hormonal and genetic factors, their polyphenic development is metabolically expensive and occurs in the virtually closed system of the pre-pupal stage, after the developing larva has stopped feeding. Previous studies showed the occurrence of resource competition resulting in a trade-off between horns and other morphological structures. These studies also revealed functional associations between autoecology and horns, as a function of their physical location (i.e. head versus pronotum), and suggested that constraints imposed by trade-offs on adult morphology may have profound evolutionary consequences, such as ecological and reproductive isolation. In this study, we compared trade-off patterns between horns and other functional traits (eyes, antennae, legs, head, epipharynges and genitalia) in two congeneric species bearing horns located in the same anatomical area, but with different morphologies. Specifically, we considered Onthophagus taurus, characterised by a pair of long, lunated cephalic horns, and Onthophagus fracticornis, expressing a single cephalic horn. We demonstrated that, even when horns are located in the same physical position on the insect’s body, differences in horn morphology can bring about differences in how functional traits respond to horn investment. These differences are interpretable in the light of the hierarchy of functions carried out by these structures and their component parts in each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号