首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schröder M  Baran M  Bowie AG 《The EMBO journal》2008,27(15):2147-2157
Viruses are detected by different classes of pattern recognition receptors (PRRs), such as Toll-like receptors and RIG-like helicases. Engagement of PRRs leads to activation of interferon (IFN)-regulatory factor 3 (IRF3) and IRF7 through IKKepsilon and TBK1 and consequently IFN-beta induction. Vaccinia virus (VACV) encodes proteins that manipulate host signalling, sometimes by targeting uncharacterised proteins. Here, we describe a novel VACV protein, K7, which can inhibit PRR-induced IFN-beta induction by preventing TBK1/IKKepsilon-mediated IRF activation. We identified DEAD box protein 3 (DDX3) as a host target of K7. Expression of DDX3 enhanced Ifnb promoter induction by TBK1/IKKepsilon, whereas knockdown of DDX3 inhibited this, and virus- or dsRNA-induced IRF3 activation. Further, dominant-negative DDX3 inhibited virus-, dsRNA- and cytosolic DNA-stimulated Ccl5 promoter induction, which is also TBK1/IKKepsilon dependent. Both K7 binding and enhancement of Ifnb induction mapped to the N-terminus of DDX3. Furthermore, virus infection induced an association between DDX3 and IKKepsilon. Therefore, this study shows for the first time the involvement of a DEAD box helicase in TBK1/IKKepsilon-mediated IRF activation and Ifnb promoter induction.  相似文献   

2.
3.
4.
V accessory proteins from Paramyxoviruses are important in viral evasion of the innate immune response. Here, using a cell survival assay that identifies both inhibitors and activators of interferon regulatory factor 3 (IRF3)-mediated gene induction, we identified select paramyxoviral V proteins that inhibited double-stranded RNA-mediated signaling; these are encoded by mumps virus (MuV), human parainfluenza virus 2 (hPIV2), and parainfluenza virus 5 (PIV5), all members of the genus Rubulavirus. We showed that interaction between V and the IRF3/7 kinases, TRAF family member-associated NFkappaB activator (TANK)-binding kinase 1 (TBK1)/inhibitor of kappaB kinase epsilon (IKKe), was essential for this inhibition. Indeed, V proteins were phosphorylated directly by TBK1/IKKe, and this, intriguingly, resulted in lowering of the cellular level of V. Thus, it appears that V mimics IRF3 in both its phosphorylation by TBK1/IKKe and its subsequent degradation. Finally, a PIV5 mutant encoding a V protein that could not inhibit IKKe was much more susceptible to the antiviral effects of double-stranded RNA than the wild-type virus. Because many innate immune response signaling pathways, including those initiated by TLR3, TLR4, RIG-I, MDA5, and DNA-dependent activator of IRFs (DAI), use TBK1/IKKe as the terminal kinases to activate IRFs, rubulaviral V proteins have the potential to inhibit all of them.  相似文献   

5.
Low shear stress (LSS) plays a critical role in the development of atherosclerotic plaques and vascular inflammation. Previous studies have reported Akt phosphorylation induced by LSS. However, the mechanism and role of Akt activation remains unclear in LSS-induced endothelial dysfunction. In this study, our results demonstrated the increased phosphorylation of IKKε, TBK1 and Akt in HUVECs exposed to LSS. Furthermore, IKKε silencing using small interfering RNAs significantly reduced LSS-induced Akt phosphorylation. In contrast, silencing of TBK1 or inhibition of PI3K and mTORC2 had no effect on LSS-induced Akt phosphorylation. Notably, Akt inhibition markedly diminished LSS-induced expression of ICAM-1, VCAM-1 and MCP-1, as well as LSS-induced IRF3 phosphorylation and nuclear translocation, without affecting the activation of NF-κB and STAT1. Moreover, endothelial cell specific Akt overexpression mediated by adeno-associated virus markedly increased intimal ICAM-1 and IRF3 expression at LSS area of partially ligated carotid artery in mice. In brief, our findings suggest that LSS-induced Akt phosphorylation is positively regulated by IKKε and promotes IRF3 activation, leading to endothelial inflammation.  相似文献   

6.
Adaptor proteins allow temporal and spatial coordination of signalling. In this study, we show SUMOylation of the adaptor protein TANK and its interacting kinase TANK‐binding kinase 1 (TBK1). Modification of TANK by the small ubiquitin‐related modifier (SUMO) at the evolutionarily conserved Lys 282 is triggered by the kinase activities of IκB kinase ε (IKKε) and TBK1. Stimulation of TLR7 leads to inducible SUMOylation of TANK, which in turn weakens the interaction with IKKε and thus relieves the negative function of TANK on signal propagation. Reconstitution experiments show that an absence of TANK SUMOylation impairs inducible expression of distinct TLR7‐dependent target genes, providing a molecular mechanism that allows the control of TANK function.  相似文献   

7.
Q Liang  B Fu  F Wu  X Li  Y Yuan  F Zhu 《Journal of virology》2012,86(18):10162-10172
Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus (KSHV) is an immediate-early and tegument protein that plays critical roles in antagonizing host antiviral responses. We have previously shown (Zhu et al, Proc. Natl. Acad. Sci. U. S. A., 99:5573-5578, 2002) that ORF45 suppresses activation of interferon regulatory factor 7 (IRF7), a crucial regulator of type I interferon gene expression, by blocking its virus-induced phosphorylation and nuclear accumulation. We report here further characterization of the mechanisms by which ORF45 inhibits IRF7 phosphorylation. In most cell types, IRF7 is phosphorylated and activated by IKKε and TBK1 after viral infection. We found that phosphorylation of IRF7 on Ser477 and Ser479 by IKKε or TBK1 is inhibited by ORF45. The inhibition is specific to IRF7 because phosphorylation of its close relative IRF3 is not affected by ORF45, implying that ORF45 does not inactivate the kinases directly. In fact, we found that ORF45 is phosphorylated efficiently on Ser41 and Ser162 by IKKε and TBK1. We demonstrated that ORF45 competes with the associated IRF7 and inhibits its phosphorylation by IKKε or TBK1 by acting as an alternative substrate.  相似文献   

8.
9.
The IkappaB kinases (IKKs) IKK-alpha and IKK-beta, and the IKK-related kinases TBK1 and IKK-epsilon, have essential roles in innate immunity through signal-induced activation of NF-kappaB, IRF3 and IRF7, respectively. Although the signaling events within these pathways have been extensively studied, the mechanisms of IKK and IKK-related complex assembly and activation remain poorly defined. Recent data provide insight into the requirement for scaffold proteins in complex assembly; NF-kappaB essential modulator coordinates some IKK complexes, whereas TANK, NF-kappaB-activating kinase-associated protein 1 (NAP1) or similar to NAP1 TBK1 adaptor (SINTBAD) assemble TBK1 and IKK-epsilon complexes. The different scaffold proteins undergo similar post-translational modifications, including phosphorylation and non-degradative polyubiquitylation. Moreover, increasing evidence indicates that distinct scaffold proteins assemble IKK, and potentially TBK1 and IKK-epsilon subcomplexes, in a stimulus-specific manner, which might be a mechanism to achieve specificity.  相似文献   

10.
The activation of NF-kappaB by receptors in the tumor necrosis factor (TNF) receptor and Toll/interleukin-1 (IL-1) receptor families requires the TRAF family of adaptor proteins. Receptor oligomerization causes the recruitment of TRAFs to the receptor complex, followed by the activation of a kinase cascade that results in the phosphorylation of IkappaB. TANK is a TRAF-binding protein that can inhibit the binding of TRAFs to receptor tails and can also inhibit NF-kappaB activation by these receptors. However, TANK also displays the ability to stimulate TRAF-mediated NF-kappaB activation. In this report, we investigate the mechanism of the stimulatory activity of TANK. We find that TANK interacts with TBK1 (TANK-binding kinase 1), a novel IKK-related kinase that can activate NF-kappaB in a kinase-dependent manner. TBK1, TANK and TRAF2 can form a ternary complex, and complex formation appears to be required for TBK1 activity. Kinase-inactive TBK1 inhibits TANK-mediated NF-kappaB activation but does not block the activation mediated by TNF-alpha, IL-1 or CD40. The TBK1-TANK-TRAF2 signaling complex functions upstream of NIK and the IKK complex and represents an alternative to the receptor signaling complex for TRAF-mediated activation of NF-kappaB.  相似文献   

11.
12.
13.
Type I interferon gene induction relies on IKK-related kinase TBK1 and IKKepsilon-mediated phosphorylations of IRF3/7 through the Toll-like receptor-dependent signaling pathways. The scaffold proteins that assemble these kinase complexes are poorly characterized. We show here that TANK/ITRAF is required for the TBK1- and IKKepsilon-mediated IRF3/7 phosphorylations through some Toll-like receptor-dependent pathways and is part of a TRAF3-containing complex. Moreover, TANK is dispensable for the early phase of double-stranded RNA-mediated IRF3 phosphorylation. Interestingly, TANK is heavily phosphorylated by TBK1-IKKepsilon upon lipopolysaccharide stimulation and is also subject to lipopolysaccharide- and TBK1-IKKepsilon-mediated Lys(63)-linked polyubiquitination, a mechanism that does not require TBK1-IKKepsilon kinase activity. Thus, we have identified TANK as a scaffold protein that assembles some but not all IRF3/7-phosphorylating TBK1-IKKepsilon complexes and demonstrated that these kinases possess two functions, namely the phosphorylation of both IRF3/7 and TANK as well as the recruitment of an E3 ligase for Lys(63)-linked polyubiquitination of their scaffold protein, TANK.  相似文献   

14.
15.
CARD14/CARMA2sh (CARMA2sh) is a scaffold protein whose mutations are associated with the onset of human genetic psoriasis and other inflammatory skin disorders. Here we show that the immunomodulatory adapter protein TRAF family member-associated NF-κB activator (TANK) forms a complex with CARMA2sh and MALT1 in a human keratinocytic cell line. We also show that CARMA2 and TANK are individually required to activate the nuclear factor κB (NF-κB) response following exposure to polyinosinic-polycytidylic (poly [I:C]), an agonist of toll-like receptor 3. Finally, we present data indicating that TANK is essential for activation of the TBK1/IRF3 pathway following poly (I:C) stimulation, whereas CARMA2sh functions as a repressor of it. More important, we report that two CARMA2sh mutants associated with psoriasis bind less efficiently to TANK and are therefore less effective in suppressing the TBK1/IRF3 pathway. Overall, our data indicate that TANK and CARMA2sh regulate TLR3 signaling in human keratinocytes, which could play a role in the pathophysiology of psoriasis.  相似文献   

16.
Toll-like receptors are a group of pattern-recognition receptors that play a crucial role in "danger" recognition and induction of the innate immune response against bacterial and viral infections. TLR3 has emerged as a key sensor of viral dsRNA, resulting in the induction of the anti-viral molecule, IFN-β. Thus, a clearer understanding of the biological processes that modulate TLR3 signaling is essential. Previous studies have shown that the TLR adaptor, Mal/TIRAP, an activator of TLR4, inhibits TLR3-mediated IFN-β induction through a mechanism involving IRF7. In this study, we sought to investigate whether the TLR adaptor, MyD88, an activator of all TLRs except TLR3, has the ability to modulate TLR3 signaling. Although MyD88 does not significantly affect TLR3 ligand-induced TNF-α induction, MyD88 negatively regulates TLR3-, but not TLR4-, mediated IFN-β and RANTES production; this process is mechanistically distinct from that employed by Mal/TIRAP. We show that MyD88 inhibits IKKε-, but not TBK1-, induced activation of IRF3. In doing so, MyD88 curtails TLR3 ligand-induced IFN-β induction. The present study shows that while MyD88 activates all TLRs except TLR3, MyD88 also functions as a negative regulator of TLR3. Thus, MyD88 is essential in restricting TLR3 signaling, thereby protecting the host from unwanted immunopathologies associated with the excessive production of IFN-β. Our study offers a new role for MyD88 in restricting TLR3 signaling through a hitherto unknown mechanism whereby MyD88 specifically impairs IKKε-mediated induction of IRF3 and concomitant IFN-β and RANTES production.  相似文献   

17.
IKK-i and TBK1 were recently identified as IKK-related kinases that are activated by toll-like receptors TLR3 and TLR4. These kinases were identified as essential components of the virus-activated as well as LPS-MyD88 independent kinase complex that phosphorylates IRF3 and results in the production of cytokines involved in innate immunity. Both IKK-i and TBK1 have also been implicated in the activation of the NFkappaB pathway but the precise mechanism is not clear. Although the literature to date suggests that IKK-i and TBK1 play redundant roles in TLR3 and TLR4 signaling, recent data suggest that there may be subtle differences in the signaling pathways affected by these kinases. We have generated tetracycline-inducible stable cell lines that express a wild type or kinase-inactive mutant form of IKK-i. Our data suggest that expression of IKK-i can activate both NFkappaB and IRF3, leading to the production of several cytokines including interferon beta. IKK-i most likely acts upstream of IKK2 to activate NFkappaB in these cells since expression of the kinase-inactive version of IKK-i did not inhibit TNFalpha mediated production of inflammatory cytokines. The data suggest that IKK-i is not involved in TNF-alpha mediated signaling but instead could likely play a role in activating IKK2 downstream of Toll-like receptor signaling. We also identified STAT1, Tyk2, and JAK1 as secondary mediators of IKK-i signaling as a result of interferon beta production in these cells.  相似文献   

18.
19.
TANK-binding kinase 1 (TBK1) is an important enzyme in the regulation of cellular antiviral effects. TBK1 regulates the activity of the interferon regulatory factors IRF3 and IRF7, thereby playing a key role in type I interferon (IFN) signaling pathways. The structure of TBK1 consists of an N-terminal kinase domain, a middle ubiquitin-like domain (ULD), and a C-terminal elongated helical domain. It has been reported that the ULD of TBK1 regulates kinase activity, playing an important role in signaling and mediating interactions with other molecules in the IFN pathway. In this study, we present the crystal structure of the ULD of human TBK1 and identify several conserved residues by multiple sequence alignment. We found that a hydrophobic patch in TBK1, containing residues Leu316, Ile353, and Val382, corresponding to the “Ile44 hydrophobic patch” observed in ubiquitin, was conserved in TBK1, IκB kinase epsilon (IKK?/IKKi), IκB kinase alpha (IKKα), and IκB kinase beta (IKKβ). In comparison with the structure of the IKKβ ULD domain of Xenopus laevis, we speculate that the Ile44 hydrophobic patch of TBK1 is present in an intramolecular binding surface between ULD and the C-terminal elongated helices. The varying surface charge distributions in the ULD domains of IKK and IKK-related kinases may be relevant to their specificity for specific partners.  相似文献   

20.
Studies involving limited numbers of rotavirus (RV) strains have shown that the viral gene 5 product, NSP1, can antagonize beta interferon (IFN-β) expression by inducing the degradation of IFN-regulatory factors (IRFs) (IRF3, IRF5, and IRF7) or a component of the E3 ubiquitin ligase complex responsible for activating NF-κB (β-transducin repeat-containing protein [β-TrCP]). To gain a broader perspective of NSP1 activities, we examined various RV strains for the ability to inhibit IFN-β expression in human cells. We found that all strains encoding wild-type NSP1 impeded IFN-β expression but not always through IRF3 degradation. To identify other degradation targets involved in suppressing IFN-β expression, we used transient expression vectors to test the abilities of a diverse collection of NSP1 proteins to target IRF3, IRF5, IRF7, and β-TrCP for degradation. The results indicated that human RVs rely predominantly on the NSP1-induced degradation of IRF5 and IRF7 to suppress IFN signaling, whereas NSP1 proteins of animal RVs tended to target IRF3, IRF5, and IRF7, allowing the animal viruses a broader attack on the IFN-β signaling pathway. The results also suggested that the NSP1-induced degradation of β-TrCP is an uncommon mechanism of subverting IFN-β signaling but is one that can be shared with NSP1 proteins that induce IRF degradation. Our analysis reveals that the activities of NSP1 proteins are diverse, with no obvious correlations between degradations of pairs of target proteins. Thus, RVs have evolved functionally distinct approaches for subverting the host antiviral response, a property consistent with the immense sequence variation noted for NSP1 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号