首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The circadian clock serves to coordinate physiology and behavior with the diurnal cycles derived from the daily rotation of the earth. In plants, circadian rhythms contribute to growth and yield and, hence, to both agricultural productivity and evolutionary fitness. Arabidopsis thaliana has served as a tractable model species in which to dissect clock mechanism and function, but it now becomes important to define the extent to which the Arabidopsis model can be extrapolated to other species, including crops. Accordingly, we have extended our studies to the close Arabidopsis relative and crop species, Brassica rapa. We have investigated natural variation in circadian function and flowering time among multiple B. rapa collections. There is wide variation in clock function, based on a robust rhythm in cotyledon movement, within a collection of B. rapa accessions, wild populations and recombinant inbred lines (RILs) derived from a cross between parents from two distinct subspecies, a rapid cycling Chinese cabbage (ssp. pekinensis) and a Yellow Sarson oilseed (ssp. trilocularis). We further analyzed the RILs to identify the quantitative trait loci (QTL) responsible for this natural variation in clock period and temperature compensation, as well as for flowering time under different temperature and day length settings. Most clock and flowering-time QTL mapped to overlapping chromosomal loci. We have exploited micro-synteny between the Arabidopsis and B. rapa genomes to identify candidate genes for these QTL.  相似文献   

2.
Water limitation is one of the most important factors limiting crop productivity world-wide and has likely been an important selective regime influencing the evolution of plant physiology. Understanding the genetic and physiological basis of drought adaptation is therefore important for improving crops as well as for understanding the evolution of wild species. Here, results are presented from quantitative trait loci (QTL) mapping of flowering time (a drought escape mechanism) and carbon stable isotope ratio (δ13C) (a drought-avoidance mechanism) in Arabidopsis thaliana. Whole-genome scans were performed using multiple-QTL models for both additive and epistatic QTL effects. We mapped five QTL affecting flowering time and five QTL affecting δ13C, but two genomic regions contained QTL with effects on both traits, suggesting a potential pleiotropic relationship. In addition, we observed QTL–QTL interaction for both traits. Two δ13C QTL were captured in near-isogenic lines to further characterize their physiological basis. These experiments revealed allelic effects on δ13C through the upstream trait of stomatal conductance with subsequent consequences for whole plant transpiration efficiency and water loss. Our findings document considerable natural genetic variation in whole-plant, drought resistance physiology of Arabidopsis and highlight the value of quantitative genetic approaches for exploring functional relationships regulating physiology.  相似文献   

3.
Approximately 170 BC2 plants from a cross between an elite processing inbred (recurrent parent) and the wild species Lycopersicon pimpinellifolium LA1589 (donor parent) were analyzed with segregating molecular markers covering the entire tomato genome. Marker data were used to identify QTLs controlling a battery of horticultural traits measured on BC2F1 and BC3 families derived from the BC2 individuals. Despite its overall inferior appearance, L. pimpinellifolium was shown to possess QTL alleles capable of enhancing most traits important in processing tomato production. QTL-NIL lines, containing specific QTLs modifying fruit size and shape, were subsequently constructed and shown to display the transgressive phenotypes predicted from the original BC2 QTL analysis. The potential of exploiting unadapted and wild germplasm via advanced backcross QTL analysis for the enhancement of elite crop varieties is discussed.  相似文献   

4.
Successful plant establishment is critical to the development of high-yielding crops. Short coleoptiles can reduce seedling emergence particularly when seed is sown deep as occurs when moisture necessary for germination is deep in the subsoil. Detailed molecular maps for a range of wheat doubled-haploid populations (Cranbrook/Halberd, Sunco/Tasman, CD87/Katepwa and Kukri/Janz) were used to identify genomic regions affecting coleoptile characteristics length, cross-sectional area and degree of spiralling across contrasting soil temperatures. Genotypic variation was large and distributions of genotype means were approximately normal with evidence for transgressive segregation. Narrow-sense heritabilities were high for coleoptile length and cross-sectional area indicating a strong genetic basis for differences among progeny. In contrast, heritabilities for coleoptile spiralling were small. Molecular marker analyses identified a number of significant quantitative trait loci (QTL) for coleoptile growth. Many of the coleoptile growth QTL mapped directly to the Rht-B1 or Rht-D1 dwarfing gene loci conferring reduced cell size through insensitivity to endogenous gibberellins. Other QTL for coleoptile growth were identified throughout the genome. Epistatic interactions were small or non-existent, and there was little evidence for any QTL × temperature interaction. Gene effects at significant QTL were approximately one-half to one-quarter the size of effects at the Rht-B1 and Rht-D1 regions. However, selection at these QTL could together alter coleoptile length by up to 50 mm. In addition to Rht-B1b and Rht-D1b, genomic regions on chromosomes 2B, 2D, 4A, 5D and 6B were repeatable across two or more populations suggesting their potential value for use in breeding and marker-aided selection for greater coleoptile length and improved establishment.  相似文献   

5.

Key message

Allohexaploid Brassica populations reveal ongoing segregation for fertility, while genotype influences fertility and meiotic stability.

Abstract

Creation of a new Brassica allohexaploid species is of interest for the development of a crop type with increased heterosis and adaptability. At present, no naturally occurring, meiotically stable Brassica allohexaploid exists, with little data available on chromosome behaviour and meiotic control in allohexaploid germplasm. In this study, 100 plants from the cross B. carinata?×?B. rapa (A2 allohexaploid population) and 69 plants from the cross (B. napus?×?B. carinata)?×?B. juncea (H2 allohexaploid population) were assessed for fertility and meiotic behaviour. Estimated pollen viability, self-pollinated seed set, number of seeds on the main shoot, number of pods on the main shoot, seeds per ten pods and plant height were measured for both the A2 and H2 populations and for a set of reference control cultivars. The H2 population had high segregation for pollen viability and meiotic stability, while the A2 population was characterised by low pollen fertility and a high level of chromosome loss. Both populations were taller, but had lower average fertility trait values than the control cultivar samples. The study also characterises fertility and meiotic chromosome behaviour in genotypes and progeny sets in heterozygous allotetraploid Brassica derived lines, and indicates that genotypes of the parents and H1 hybrids are affecting chromosome pairing and fertility phenotypes in the H2 population. The identification and characterisation of factors influencing stability in novel allohexaploid Brassica populations will assist in the development of this as a new crop species for food and agricultural benefit.
  相似文献   

6.
Host plant resistance is an important strategy for managing root-knot nematode (Meloidogyne incognita) in cotton (Gossypium L.). Here we report evidence for enhanced resistance in interspecific crosses resulting from transgressive segregation of clustered gene loci. Recently, a major gene, rkn1, on chromosome 11 for resistance to M. incognita in cv. Acala NemX was identified using an intraspecific G. hirsutum cross with susceptible cv. Acala SJ-2. Using interspecific crosses of Acala NemX × susceptible G. barbadense cv. Pima S-7, F1, F2, F2:3, backcross, and testcross Acala NemX × F1 (Pima S-7 × SJ-2), parental entries and populations were inoculated in greenhouse tests with M. incognita. Genetic analyses based on nematode-induced root galling and nematode egg production on roots, and molecular marker analysis of the segregating interspecific populations revealed that gene rkn1 interacted with a gene (designated as RKN2) in susceptible Pima S-7 to produce a highly resistant phenotype. RKN2 did not confer resistance in Pima S-7, but when combined with rkn1 (genotype Aa or aa), high levels of resistance were produced in the F1 and segregating F2, F3, and BC1F1 populations. One SSR marker MUCS088 was identified tightly linked to RKN2 within 4.4 cM in a NemX × F1 (Pima S-7 × SJ-2) testcross population. Using mapped SSR markers and interspecific segregating populations, MUCS088 linked to the transgressive gene from the susceptible parent and was located in the vicinity of rkn1 on chromosome 11. Diverse genome analyses among A and D genome diploid and tetraploid cottons revealed that marker MUCS088 (165 and 167 bp) is derived from G. arboreum, A2 diploid genome. These results demonstrated that a highly susceptible parent contributed to nematode resistance via transgressive segregation. Derived highly resistant lines can be used as improved resistance sources in cotton breeding, and MUCS088 can be used to monitor RKN2 introgression in diverse populations. The close genomic location of the transgressive resistance determinants provides an important model system for studying transgressive segregation and epistasis in plants.  相似文献   

7.
Quantitative trait loci (QTL) analysis of aluminium (Al) tolerance was performed using Ler/Cvi recombinant inbred (RI) lines of Arabidopsis thaliana. Relative root length (RRL) (root length with 4 µm Al/root length with no Al at pH 5.0) on day 5 was used as the Al tolerance index for QTL analysis. Al tolerance judged by RRL was well correlated to tolerance judged by other indexes, including accumulation of callose, reactive oxygen species in the root apex and growth performance on acid soil containing a large amount of exchangeable Al. Using data sets with an hb2 of 0.91, two QTLs were detected at the top of chromosome 1 and bottom of chromosome 3. These QTLs explained 40 and 16% of the phenotypic variation of Al tolerance, respectively, and the positive effect of the Cvi allele. The QTL on chromosome 1 overlapped with a major QTL in another recombinant inbred population, and is possibly related to malate excretion. A complete pair-wise search revealed 11 sets of epistatic interacting loci pairs, which accounted for the transgressive segregation among the RI population. Several epistatic interactions shared the same chromosomal region, indicating the possible involvement of regulatory proteins in Al tolerance in Arabidopsis.  相似文献   

8.
Circadian clocks regulate plant growth and development in response to environmental factors. In this function, clocks influence the adaptation of species to changes in location or climate. Circadian-clock genes have been subject of intense study in models such as Arabidopsis thaliana but the results may not necessarily reflect clock functions in species with polyploid genomes, such as Brassica species, that include multiple copies of clock-related genes. The triplicate genome of Brassica rapa retains high sequence-level co-linearity with Arabidopsis genomes. In B. rapa we had previously identified five orthologs of the five known Arabidopsis pseudo-response regulator (PRR) genes that are key regulators of the circadian clock in this species. Three of these B. rapa genes, BrPRR1, BrPPR5, and BrPPR7, are present in two copies each in the B. rapa genome, for a total of eight B. rapa PRR (BrPRR) orthologs. We have now determined sequences and expression characteristics of the eight BrPRR genes and mapped their positions in the B. rapa genome. Although both members of each paralogous pair exhibited the same expression pattern, some variation in their gene structures was apparent. The BrPRR genes are tightly linked to several flowering genes. The knowledge about genome location, copy number variation and structural diversity of these B. rapa clock genes will improve our understanding of clock-related functions in this important crop. This will facilitate the development of Brassica crops for optimal growth in new environments and under changing conditions.  相似文献   

9.
Yang G  Xing Y  Li S  Ding J  Yue B  Deng K  Li Y  Zhu Y 《Hereditas》2006,143(2006):236-245
Plant height and tiller number are two important characters related to yield in rice (Oriza sativa L.). Zhenshan97 x Minghui63 recombinant inbred lines were employed to dissect the genetic basis of development of plant height and tiller number using conditional and unconditional composite interval mapping approaches. The traits were normally distributed with transgressive segregation in both directions. Increasingly negative correlations were observed between tiller number and plant height at five consecutive growth stages. A total of 23 and 24 QTL were identified for tiller number and plant height, respectively. More QTL were detected by conditional mapping than by conventional mapping. Different QTL/genes apparently controlled the traits at different developmental stages. Three genomic regions were identified as putative co-located QTL, which showed opposite additive effects on tiller number and plant height. Furthermore, in the period reaching maximum tiller number, the expression of QTL for tiller number was active, whereas that of QTL for plant height was inactive. These facts provided a possible genetic explanation for the negative correlations between the traits. The research demonstrates conditional mapping to be superior to conventional mapping for this type of research. Implications of the results for hybrid rice improvement are discussed.  相似文献   

10.
Glycine soja, the wild progenitor of soybean, is a potential source of useful genetic variation in soybean improvement. The objective of our study was to map quantitative trait loci (QTL) from G. soja that could improve the crop. Five populations of BC2F4-derived lines were developed using the Glycine max cultivar IA2008 as a recurrent parent and the G. soja plant introduction (PI) 468916 as a donor parent. There were between 57 and 112 BC2F4-derived lines in each population and a total of 468 lines for the five populations. The lines were evaluated with simple sequence repeat markers and in field tests for yield, maturity, plant height, and lodging. The field testing was done over 2 years and at two locations each year. Marker data were analyzed for linkage and combined with field data to identify QTL. Using an experimentwise significance threshold of P=0.05, four yield QTL were identified across environments on linkage groups C2, E, K, and M. For these yield QTL, the IA2008 marker allele was associated with significantly greater yield than the marker allele from G. soja. In addition, one lodging QTL, four maturity QTL, and five QTL for plant height were identified across environments. Of the 14 QTL identified, eight mapped to regions where QTL with similar effects were previously mapped. Many regions carrying the yield QTL were also significant for other traits, such as plant height and lodging. When the significance threshold was reduced and the data were analyzed with simple linear regression, four QTL with a positive allele for yield from G. soja were mapped. One epistatic interaction between two genetic regions was identified for yield using an experimentwise significance threshold of P=0.05. Additional research is needed to establish whether multiple trait associations are the result of pleiotropy or genetic linkage and to retest QTL with a positive effect from G. soja.Communicated by H.C. Becker  相似文献   

11.
The genetic mechanism underlying six palatability properties of cooked rice and three physico-chemical traits was dissected in 66 BC3F2 chromosome segment substitution lines (CSSLs), using a complete linkage map in three successive years. The CSSLs showed transgressive segregation for all traits studied. Significant correlation was detected among most palatability traits. A total of 25 QTLs for the nine traits were identified on nine chromosomes, and many QTLs affecting different quality traits were mapped in the same regions. Six QTLs—qLT-8 for luster, qTD-6 and qTD-8 for tenderness, qIVOE-6 and qIVOE-8 for integrated value of organoleptic evaluation, and qAC-8 for amylose content—were repeatedly detected across the 3 years. Phenotypic values were significantly different between the recurrent parent, cultivar Asominori, and the CSSLs harboring any of the six QTL alleles across the three environments, indicating that these six QTLs were non-environment-specific and could be used for marker-assisted selection in rice quality improvement.  相似文献   

12.

Background  

Pairing and synapsis of homologous chromosomes is required for normal chromosome segregation and the exchange of genetic material via recombination during meiosis. Synapsis is complete at pachytene following the formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC). In yeast, HOP1 is essential for formation of the SC, and localises along chromosome axes during prophase I. Homologues in Arabidopsis (AtASY1), Brassica (BoASY1) and rice (OsPAIR2) have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC.  相似文献   

13.
Pod dehiscence (shattering) is a major cause of yield loss in mechanical harvesting of soybeans. To develop useful selection markers, we conducted a high-resolution mapping of a major quantitative trait locus (QTL) controlling pod dehiscence, designated as qPDH1. The progeny of a residual heterozygous line, which was a recombinant inbred line segregating only for the genomic region around qPDH1, was screened for flanking markers to obtain various recombinants in the vicinity of the QTL. Analysis of the relationship between degree of pod dehiscence and graphical genotype of these lines confined the location of qPDH1 to a 134-kb region on chromosome 16 (formerly linkage group J), where ten putative genes were predicted to be present. None of these genes showed significant sequence homology with the Arabidopsis genes that have previously been reported to be associated with pod dehiscence, suggesting the presence of a novel gene and mechanism underlying pod dehiscence in soybean. Sequencing analysis of the parental shattering-resistant and -susceptible cultivars for the candidate genes revealed a high-frequency nucleotide polymorphism in this genomic region between the cultivars. Three markers were developed using insertion/deletion variations in the region. Polymorphism at these marker loci was basically conserved between diverse shattering-resistant and -susceptible cultivars/lines, suggesting the versatility and usefulness of these markers for marker-assisted selection.  相似文献   

14.
Two accessions, representing the species Lycopersicon esculentum (cultivated tomato) and Lycopersicon pennellii (a wild relative), were evaluated for 11 quantitative traits and found to be significantly different for 10 of the traits. Transgressive segregation was observed for eight of the traits in a large interspecific F(2) population. When restriction fragment length polymorphism markers were used as probes for the quantitative trait loci (QTL) underlying the traits, 74 significant QTL (LOD > 2) were detected. Thirty-six percent of those QTL had alleles with effects opposite to those predicted by the parental phenotypes. These QTL were directly related to the appearance of transgressive individuals in the F(2) for those traits which showed transgressive segregration. However, the same types of QTL (with allelic effects opposite to those predicted by the parents) were also observed for traits that did not display transgressive segregation in the F(2). One such trait was dry weight accumulation. When two overdominant QTL (detected in the F(2)) for this trait were backcrossed into the L. esculentum genetic background, transgressive individuals were recovered and their occurrence was associated with the two QTL demonstrating the potential for transgressive segregation for all characters and implicating overdominance as a second cause of transgressive segregation. Epistasis was not implicated in transgressive segregation in either the F(2) or backcross generations. Results from this research not only reveal the basis of wide-cross transgressive segregation, but demonstrate that molecular markers can be used to identify QTL (from wild species) responsible for transgressive phenotypes and to selectively transfer them into crop species. This strategy might be used to improve many traits of economic importance including those for which wild species appear phenotypically inferior to their cultivated counterparts.  相似文献   

15.

Key message

Restoration of fertility in the cytoplasmic male sterility-inducing Triticum timopheevii cytoplasm can be achieved with the major restorer locus Rf3 located on chromosome 1B, but is also dependent on modifier loci.

Abstract

Hybrid breeding relies on a hybrid mechanism enabling a cost-efficient hybrid seed production. In wheat and triticale, cytoplasmic male sterility based on the T. timopheevii cytoplasm is commonly used, and the aim of this study was to dissect the genetic architecture underlying fertility restoration. Our study was based on two segregating F2 triticale populations with 313 and 188 individuals that share a common female parent and have two different lines with high fertility restoration ability as male parents. The plants were cloned to enable replicated assessments of their phenotype and fertility restoration was evaluated based on seed set or staining for pollen fertility. The traits showed high heritabilities but their distributions differed between the two populations. In one population, a quarter of the lines were sterile, conforming to a 3:1 segregation ratio. QTL mapping identified two and three QTL in these populations, with the major QTL being detected on chromosome 1B. This QTL was collinear in both populations and likely corresponds to Rf3. We found that Rf3 explained approximately 30 and 50% of the genotypic variance, has a dominant mode of inheritance, and that the female parent lacks this locus, probably due to a 1B.1R translocation. Taken together, Rf3 is a major restorer locus that enables fertility restoration of the T. timopheevii cytoplasm, but additional modifier loci are needed for full restoration of male fertility. Consequently, Rf3 holds great potential for hybrid wheat and triticale breeding, but other loci must also be considered, either through marker-assisted or phenotypic selection.
  相似文献   

16.
Mapping loci controlling vernalization requirement in Brassica rapa   总被引:1,自引:0,他引:1  
Brassica cultivars are classified as biennial or annual based on their requirement for a period of cold treatment (vernalization) to induce flowering. Genes controlling the vernalization requirement were identified in a Brassica rapa F2 population derived from a cross between an annual and a biennial oilseed cultivar by using an RFLP linkage map and quantitative trait locus (QTL) analysis of flowering time in F3 lines. Two genomic regions were strongly associated with variation for flowering time of unvernalized plants and alleles from the biennial parent in these regions delayed flowering. These QTLs had no significant effect on flowering time after plants were vernalized for 6 weeks, suggesting that they control flowering time through the requirement for vernalization. The two B. rapa linkage groups containing these QTLs had RFLP loci in common with two B. napus linkage groups that were shown previously to contain QTLs for flowering time. An RFLP locus detected by the cold-induced gene COR6.6 cloned from Arabidopsis thaliana mapped very near to one of the B. rapa QTLs for flowering time.  相似文献   

17.
In crop species, most QTL (quantitative trait loci) mapping strategies use segregating populations derived from an initial cross between two lines. However, schemes including more than two parents could also be used. We propose an approach using a high-density restriction fragment length polymorphism (RFLP) map established on six F 2 populations derived from diallel crosses among four inbred lines and the phenotypic performances of two types of replicated progenies (F 3 and topcross). The QTL is supposed to be on the marker locus considered. Three linear model tests for the detection of QTL effects (T 1, T 2 and T 3) are described and their power studied for the two types of progeny. T 1 tests the global genetic effects of the QTL (additivity and dominance) and T 2 tests only additive effects assuming dominance is absent when it could exist. The models of these two tests assume that the main effects of QTL alleles are constant in different genetic backgrounds. The additive model of test T 3 considers the six F 2 populations independently, and T 3 is the equivalent of the classical mean comparison test if we neglect dominance; it uses only contrasts between the homozygote marker classes. The results show that T 2 is much more powerful than T 3. The power of T 1 and T 2 depends on the relative sizes of the additive and dominance effects, and their comparison is not easy to establish. Nevertheless, T 2 seems to be the more powerful in most situations, indicating that it is often more interesting to ignore dominance when testing for a QTL effect. For a given size of genetic effects, the power is affected by the total number of individuals genotyped in F 2 and the recombination rate between the marker locus and the putative QTL. The approach presented in this paper has some drawbacks but could be easily generalized to other sizes of diallels and different progeny types.  相似文献   

18.

Key message

A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis.

Abstract

Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC1P1, BC1P2, F2, and F2:3 populations derived from a cross between two inbred lines “195” (late-flowering) and “93219” (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F2 and F2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.
  相似文献   

19.
Drosophila melanogaster is a cosmopolitan species that colonizes a great variety of environments. One trait that shows abundant evidence for naturally segregating genetic variance in different populations of D. melanogaster is cold tolerance. Previous work has found quantitative trait loci (QTL) exclusively on the second and the third chromosomes. To gain insight into the genetic architecture of cold tolerance on the X chromosome and to compare the results with our analyses of selective sweeps, a mapping population was derived from a cross between substitution lines that solely differed in the origin of their X chromosome: one originates from a European inbred line and the other one from an African inbred line. We found a total of six QTL for cold tolerance factors on the X chromosome of D. melanogaster. Although the composite interval mapping revealed slightly different QTL profiles between sexes, a coherent model suggests that most QTL overlapped between sexes, and each explained around 5–14% of the genetic variance (which may be slightly overestimated). The allelic effects were largely additive, but we also detected two significant interactions. Taken together, this provides evidence for multiple QTL that are spread along the entire X chromosome and whose effects range from low to intermediate. One detected transgressive QTL influences cold tolerance in different ways for the two sexes. While females benefit from the European allele increasing their cold tolerance, males tend to do better with the African allele. Finally, using selective sweep mapping, the candidate gene CG16700 for cold tolerance colocalizing with a QTL was identified.  相似文献   

20.
Quantitative trait loci (QTL) analyses based on restriction fragment length polymorphism maps have been used to resolve the genetic control of flowering time in a cross between twoArabidopsis thaliana ecotypes H51 and Landsbergerecta, differing widely in flowering time. Five quantitative trait loci affecting flowering time were identified in this cross (RLN1-5), four of which are located in regions containing mutations or loci previously identified as conferring a late-flowering phenotype. One of these loci is coincident with theFRI locus identified as the major determinant for late flowering and vernalization responsiveness in theArabidopsis ecotype Stockholm.RLN5, which maps to the lower half of chromosome five (between markers mi69 and m233), only affected flowering time significantly under short day conditions following a vernalization period. The late-flowering phenotype of H51 compared to Landsbergerecta was due to alleles conferring late flowering at only two of the five loci. At the three other loci, H51 possessed alleles conferring early flowering in comparison to those of Landsbergerecta. Combinations of alleles conferring early and late flowering from both parents accounted for the transgressive segregation of flowering time observed within the F2 population. Three QTL,RLN1,RLN2 andRLN3 displayed significant genotype-by-environment interactions for flowering time. A significant interaction between alleles atRLN3 andRLN4 was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号