首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared sex chromosomal and autosomal regions of similar GC contents and found that the human Y chromosome contains nine times as many full-length (FL) ancestral LINE-1 (L1) elements per megabase as do autosomes and that the X chromosome contains three times as many. In addition, both sex chromosomes contain a ca. twofold excess of elements that are >500 bp but not long enough to be capable of autonomous replication. In contrast, the autosomes are not deficient in short (<500 bp) L1 elements or SINE elements relative to the sex chromosomes. Since neither the Y nor the X chromosome, when present in males, can be cleared of deleterious genetic loci by recombination, we conclude that most FL L1s were deleterious and thus subject to purifying selection. Comparison between nonrecombining and recombining regions of autosome 21 supported this conclusion. We were able to identify a subset of loci in the human DNA database that once contained active L1 elements, and we found by using the polymerase chain reaction that 72% of them no longer contain L1 elements in a representative of each of eight different ethnic groups. Genetic damage produced by both L1 retrotransposition and ectopic (nonallelic) recombination between L1 elements could provide the basis for their negative selection.  相似文献   

2.
APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G) is an innate intracellular antiretroviral factor that can inhibit viral retroelements such as retroviruses and hepadnaviruses. However, it is unknown whether it can act on non-viral substrates. Retrotransposons are transposable elements that cumulatively account for about one third of the human genome. They are commonly classified in long terminal repeat (LTR) retrotransposons, which are strongly homologous to retroviruses, and non-LTR retrotransposons also known as L1 elements or LINE-1 (long interspersed nucleotide element-1) elements. Most of the L1 elements are defective and only a small number are very active in vivo, but they are responsible for nearby all of the retrotransposition in the human population. The cloning of active human L1 elements has allowed the development of tissue culture-based assays for measuring their retrotransposition potential. We used such an assay to demonstrate that APOBEC3G, which impairs the replication of exogenous retroelements, does not affect the replication of endogenous L1 retrotransposons.  相似文献   

3.
Moran JV 《Genetica》1999,107(1-3):39-51
Long Interspersed Nuclear Elements (L1s or LINEs) are the most abundant retrotransposons in the human genome, and they comprise approximately 17% of DNA. L1 retrotransposition can be mutagenic, and deleterious insertions both in the germ-line and in somatic cells have resulted in disease. Recently, an assay was developed to monitor L1 retrotransposition in cultured human cells. This assay, for the first time, now allows for a systematic study of L1 retrotransposition at the molecular level. Here, I will review progress made in L1 biology during the past three years. In general, I will limit the discussion to studies conducted on human L1s. However, interesting parallels to rodent L1s and other non-LTR retrotransposons also will be discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
6.
Hulme AE  Bogerd HP  Cullen BR  Moran JV 《Gene》2007,390(1-2):199-205
The non-LTR retrotransposon LINE-1 (L1) comprises  17% of the human genome, and the L1-encoded proteins can function in trans to mediate the retrotransposition of non-autonomous retrotransposons (i.e., Alu and probably SVA elements) and cellular mRNAs to generate processed pseudogenes. Here, we have examined the effect of APOBEC3G and APOBEC3F, cytidine deaminases that inhibit Vif-deficient HIV-1 replication, on Alu retrotransposition and other L1-mediated retrotransposition processes. We demonstrate that APOBEC3G selectively inhibits Alu retrotransposition in an ORF1p-independent manner. An active cytidine deaminase site is not required for the inhibition of Alu retrotransposition and the resultant integration events lack G to A or C to T hypermutation. These data demonstrate a differential restriction of L1 and Alu retrotransposition by APOBEC3G, and suggest that the Alu ribonucleoprotein complex may be targeted by APOBEC3G.  相似文献   

7.
Determination of L1 retrotransposition kinetics in cultured cells   总被引:12,自引:3,他引:9       下载免费PDF全文
L1 retrotransposons are autonomous retroelements that are active in the human and mouse genomes. Previously, we developed a cultured cell assay that uses a neomycin phosphotransferase (neo) retrotransposition cassette to determine relative retrotransposition frequencies among various L1 elements. Here, we describe a new retrotransposition assay that uses an enhanced green fluorescent protein (EGFP) retrotransposition cassette to determine retrotransposition kinetics in cultured cells. We show that retrotransposition is not detected in cultured cells during the first 48 h post-transfection, but then proceeds at a continuous high rate for at least 16 days. We also determine the relative retrotransposition rates of two similar human L1 retrotransposons, L1RP and L1.3. L1RP retrotransposed in the EGFP assay at a rate of ~0.5% of transfected cells/day, ~3-fold higher than the rate measured for L1.3. We conclude that the new assay detects near real time retrotransposition in a single cell and is sufficiently sensitive to differentiate retrotransposition rates among similar L1 elements. The EGFP assay exhibits improved speed and accuracy compared to the previous assay when used to determine relative retrotransposition frequencies. Furthermore, the EGFP cassette has an expanded range of experimental applications.  相似文献   

8.
To understand long terminal repeat (LTR)-retrotransposon copy number dynamics, Ty1 elements were reintroduced into a "Ty-less" Saccharomyces strain where elements had been lost by LTR-LTR recombination. Repopulated strains exhibited alterations in chromosome size that were associated with Ty1 insertions, but did not become genetically isolated. The rates of element gain and loss under genetic and environmental conditions known to affect Ty1 retrotransposition were determined using genetically tagged reference elements. The results show that Ty1 retrotransposition varies with copy number, temperature, and cell type. In contrast to retrotransposition, Ty1 loss by LTR-LTR recombination was more constant and not markedly influenced by copy number. Endogenous Ty1 cDNA was poorly utilized for recombination when compared with LTR-LTR recombination or ectopic gene conversion. Ty1 elements also appear to be more susceptible to copy number fluctuation in haploid cells. Ty1 gain/loss ratios obtained under different conditions suggest that copy number oscillates over time by altering the rate of retrotransposition, resulting in the diverse copy numbers observed in Saccharomyces.  相似文献   

9.
10.
R1 and R2 elements are non-LTR retrotransposons that insert specifically into the 28S rRNA genes of arthropods. The process of concerted evolution of the rDNA locus should give rise to rapid turnover of these mobile elements compared to elements that insert at sites throughout a genome. To estimate the rate of R1 and R2 turnover we have examined the insertion of new elements and elimination of old elements in the Harwich mutation accumulation lines of Drosophila melanogaster, a set of inbred lines maintained for >350 generations. Nearly 300 new insertion and elimination events were observed in the 19 Harwich lines. The retrotransposition rate for R1 was 18 times higher than the retrotransposition rate for R2. Both rates were within the range previously found for retrotransposons that insert outside the rDNA loci in D. melanogaster. The elimination rates of R1 and R2 from the rDNA locus were similar to each other but over two orders of magnitude higher than that found for other retrotransposons. The high rates of R1 and R2 elimination from the rDNA locus confirm that these elements must maintain relatively high rates of retrotransposition to ensure their continued presence in this locus.  相似文献   

11.
Diverse long interspersed element-1 (LINE-1 or L1)-dependent mutational mechanisms have been extensively studied with respect to L1 and Alu elements engineered for retrotransposition in cultured cells and/or in genome-wide analyses. To what extent the in vitro studies can be held to accurately reflect in vivo events in the human genome, however, remains to be clarified. We have attempted to address this question by means of a systematic analysis of recent L1-mediated retrotranspositional events that have caused human genetic disease, with a view to providing a more complete picture of how L1-mediated retrotransposition impacts upon the architecture of the human genome. A total of 48 such mutations were identified, including those described as L1-mediated retrotransposons, as well as insertions reported to contain a poly(A) tail: 26 were L1 trans-driven Alu insertions, 15 were direct L1 insertions, four were L1 trans-driven SVA insertions, and three were associated with simple poly(A) insertions. The systematic study of these lesions, when combined with previous in vitro and genome-wide analyses, has strengthened several important conclusions regarding L1-mediated retrotransposition in humans: (a) approximately 25% of L1 insertions are associated with the 3' transduction of adjacent genomic sequences, (b) approximately 25% of the new L1 inserts are full-length, (c) poly(A) tail length correlates inversely with the age of the element, and (d) the length of target site duplication in vivo is rarely longer than 20 bp. Our analysis also suggests that some 10% of L1-mediated retrotranspositional events are associated with significant genomic deletions in humans. Finally, the identification of independent retrotranspositional events that have integrated at the same genomic locations provides new insight into the L1-mediated insertional process in humans.  相似文献   

12.
SINE-VNTR-Alu (SVA) elements are non-autonomous, hominid-specific non-LTR retrotransposons and distinguished by their organization as composite mobile elements. They represent the evolutionarily youngest, currently active family of human non-LTR retrotransposons, and sporadically generate disease-causing insertions. Since preexisting, genomic SVA sequences are characterized by structural hallmarks of Long Interspersed Elements 1 (LINE-1, L1)-mediated retrotransposition, it has been hypothesized for several years that SVA elements are mobilized by the L1 protein machinery in trans. To test this hypothesis, we developed an SVA retrotransposition reporter assay in cell culture using three different human-specific SVA reporter elements. We demonstrate that SVA elements are mobilized in HeLa cells only in the presence of both L1-encoded proteins, ORF1p and ORF2p. SVA trans-mobilization rates exceeded pseudogene formation frequencies by 12- to 300-fold in HeLa-HA cells, indicating that SVA elements represent a preferred substrate for L1 proteins. Acquisition of an AluSp element increased the trans-mobilization frequency of the SVA reporter element by ~25-fold. Deletion of (CCCTCT)(n) repeats and Alu-like region of a canonical SVA reporter element caused significant attenuation of the SVA trans-mobilization rate. SVA de novo insertions were predominantly full-length, occurred preferentially in G+C-rich regions, and displayed all features of L1-mediated retrotransposition which are also observed in preexisting genomic SVA insertions.  相似文献   

13.
LINE-1 (L1) retrotransposon accounts for approximately 17 % of the human genome. Because of the great number of identical copies, L1 can be implicated in genomic rearrangements associated with events of homologous recombination between heterologous sites. Moreover, even if the vast majority of the L1 elements are inactive, some are still able to mobilize themselves by retrotransposition. Thus, L1 is regarded as an insertional mutagenic agent. Moreover, recent works have shown that active retrotransposons were able to mobilize other sequences to generate retro-pseudogenes or to amplify other repeated sequences. Finally, L1 has been associated recently with new genomic rearrangements generated upon insertions such as large genomic deletions. L1 then can be considered as a major factor that has affected and shaped the human genome through several mechanisms.  相似文献   

14.
The distribution of Alu and L1 retroelements in the human genome changes with their age. Active retroelements target AT-rich regions, but their frequency increases in GC- and gene-rich regions of the genome with increasing age of the insertions. Currently there is no consensus on the mechanism generating this pattern. In this paper we test the hypothesis that selection against deleterious deletions caused by ectopic recombination between repeats is the main cause of the inhomogeneous distribution of L1s and Alus, by means of a detailed analysis of the GC distribution of the repeats on the sex chromosomes. We show that (1) unlike on the autosomes and X chromosome, L1s do not accumulate on the Y chromosome in GC-rich regions, whereas Alus accumulate there to a minor extent; (2) on the Y chromosome Alu and L1 densities are positively correlated, unlike the negative correlation on other chromosomes; and (3) in gene-poor regions of chromosome 4 and X, the distribution of Alus and L1s does not shift toward GC-rich regions. In addition, we show that although local GC content of long L1 insertions is lower than average, their selective loss from recombining chromosomes is not the main cause of the enrichment of ancient L1s in GC-rich regions. The results support the hypothesis that ectopic recombination causes the shift of Alu and L1 distributions toward the gene-rich regions of the genome. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. Reviewing Editor: Dr. Deborah Charlesworth  相似文献   

15.
Dolgin ES  Charlesworth B 《Genetics》2008,178(4):2169-2177
Transposable elements (TEs) often accumulate in regions of the genome with suppressed recombination. But it is unclear whether this pattern reflects a reduction in the efficacy of selection against deleterious insertions or a relaxation of ectopic recombination. Discriminating between these two hypotheses has been difficult, because no formal model has investigated the effects of recombination under the deleterious insertion model. Here we take a simulation-based approach to analyze this scenario and determine the conditions under which element accumulation is expected in low recombination regions. We show that TEs become fixed as a result of Hill-Robertson effects in the form of Muller's ratchet, but only in regions of extremely low recombination when excision is effectively absent and synergism between elements is weak. These results have important implications for differentiating between the leading models of how selection acts on TEs and should help to interpret emerging population genetic and genomic data.  相似文献   

16.
Approximately 17% of the human genome is comprised of long interspersed nuclear element 1 (LINE-1, L1) non-LTR retrotransposons. L1 retrotransposition is known to be the cause of several genetic diseases, such as hemophilia A, Duchene muscular dystrophy, and so on. The L1 retroelements are also able to cause colon cancer, suggesting that L1 transposition could occur not only in germ cells, but also in somatic cells if innate immunity would not function appropriately. The mechanisms of L1 transposition restriction in the normal cells, however, are not fully defined. We here show that antiretroviral innate proteins, human APOBEC3 (hA3) family members, from hA3A to hA3H, differentially reduce the level of L1 retrotransposition that does not correlate either with antiviral activity against Vif-deficient HIV-1 and murine leukemia virus, or with patterns of subcellular localization. Importantly, hA3G protein inhibits L1 retrotransposition, in striking contrast to the recent reports. Inhibitory effect of hA3 family members on L1 transposition might not be due to deaminase activity, but due to novel mechanism(s). Thus, we conclude that all hA3 proteins act to differentially suppress uncontrolled transposition of L1 elements.  相似文献   

17.
Transposable elements (TEs) play a fundamental role in the evolution of genomes. In Drosophila they are disproportionately represented in regions of low recombination, such as in heterochromatin. This pattern has been attributed to selection against repeated elements in regions of normal recombination, owing to either (1) the slightly deleterious position effects of TE insertions near or into genes, or (2) strong selection against chromosomal abnormalities arising from ectopic exchange between TE repeats. We have used defective non-long-terminal repeat (LTR) TEs that are "dead-on-arrival" (DOA) and unable to transpose in order to estimate spontaneous deletion rates in different constituents of chromatin. These elements have previously provided evidence for an extremely high rate of spontaneous deletion in Drosophila as compared with mammals, potentially explaining at least part of the differences in the genome sizes in these organisms. However, rates of deletion could be overestimated due to positive selection for a smaller likelihood of ectopic exchange. In this article, we show that rates of spontaneous deletion in DOA repeats are as high in heterochromatin and regions of euchromatin with low recombination as they are in regions of euchromatin with normal recombination. We have also examined the age distribution of five non-LTR families throughout the genome. We show that there is substantial variation in the historical pattern of transposition of these TEs. The overrepresentation of TEs in the heterochromatin is primarily due to their longer retention time in heterochromatin, as evidenced by the average time since insertion. Fragments inserted recently are much more evenly distributed in the genome. This contrast demonstrates that the accumulation of TEs in heterochromatin and in euchromatic regions of low recombination is not due to biased transposition but by greater probabilities of fixation in these regions relative to regions of normal recombination.  相似文献   

18.
Long INterspersed Elements (LINE-1s or L1s) are abundant non-LTR retrotransposons in mammalian genomes that are capable of insertional mutagenesis. They have been associated with target site deletions upon insertion in cell culture studies of retrotransposition. Here, we report 50 deletion events in the human and chimpanzee genomes directly linked to the insertion of L1 elements, resulting in the loss of ~18 kb of sequence from the human genome and ~15 kb from the chimpanzee genome. Our data suggest that during the primate radiation, L1 insertions may have deleted up to 7.5 Mb of target genomic sequences. While the results of our in vivo analysis differ from those of previous cell culture assays of L1 insertion-mediated deletions in terms of the size and rate of sequence deletion, evolutionary factors can reconcile the differences. We report a pattern of genomic deletion sizes similar to those created during the retrotransposition of Alu elements. Our study provides support for the existence of different mechanisms for small and large L1-mediated deletions, and we present a model for the correlation of L1 element size and the corresponding deletion size. In addition, we show that internal rearrangements can modify L1 structure during retrotransposition events associated with large deletions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号