首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 577 毫秒
1.
周旋  吴良欢  董春华  贾磊 《生态学报》2019,39(5):1804-1814
揭示尿素类肥料添加生化抑制剂组合后,在黄泥田土壤中硝态氮(NO~-_3-N)和铵态氮(NH~+_4-N)的淋溶损失规律。采用室内土柱淋溶培养试验,研究脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)和硝化抑制剂2-氯-6-(三氯甲基)吡啶(CP)单独添加及配合施用对尿素和尿素硝铵(300 kg N/hm~2)中氮(N)素在土体中淋溶损失的影响。结果表明:尿素和尿素硝铵处理淋溶液中NH~+_4-N和NO~-_3-N浓度均呈先升后降的变化趋势,而出峰时间不一。NH~+_4-N和NO~-_3-N淋失量随着时间的延长,处理间差异逐渐变大。NBPT处理可以减缓尿素水解,有效抑制NH~+_4-N生成,延缓其出峰时间,减少NH~+_4-N流失;CP处理可以有效抑制NH~+_4-N向NO~-_3-N转化,减少NO~-_3-N流失。与单独添加NBPT和CP处理相比,两者配施对N素淋溶损失有明显的协同抑制效果在黄泥田土壤中,既能减缓尿素水解,保持土壤中较高NH~+_4-N含量,又能降低淋溶液中NO~-_3-N浓度。培养结束时(第72天),UAN处理中NO~-_3-N、NH~+_4-N、矿质态N淋失总量及硝化率较U处理高34.39%、5.32%、31.72%和15.71%。U+NBPT、U+CP和U+NBPT+CP处理较U处理分别显著降低NO~-_3-N淋失总量达15.58%、114.77%和73.45%;UAN+NBPT、UAN+CP和UAN+NBPT+CP处理较UAN处理分别显著降低达15.88%、54.87%和37.46%。不同处理NO~-_3-N淋失总量大小表现为:UAN UAN+NBPT U UAN+NBPT+CP U+NBPT UAN+CP U+NBPT+CP U+CP CK。在一定施肥量条件下,NBPT和CP单独施用或配施均可降低黄泥田土壤中NO~-_3-N累积淋失量。对各处理淋溶液中NO~-_3-N淋失量(y)随时间(x)的变化进行拟合,其中以线性方程(y=ax+b)的拟合度较高,且各抑制剂处理a、b值均存在明显差异。总体认为,在黄泥田土壤中施用CP及其与NBPT配施可以显著降低土壤NO~-_3-N淋溶损失,减少N素淋失风险,提高肥料利用率。  相似文献   

2.
The role of same amendment on phytoremediating different level contaminated soils is seldom known. Soil pot culture experiment was used to compare the strengthening roles of cysteine (CY), EDTA, salicylic acid (Sa), and Tween 80 (TW) on hyperaccumulator Solanum nigrum L. phytoremediating higher level of single cadmium (Cd) or Benzo(a)pyrene (BAP) and their co-contaminated soils. Results showed that the Cd capacities (ug pot?1) in shoots of S. nigrum in the combined treatment T0.1EDTA+0.9CY were the highest for the 5 and 15 mg kg?1 Cd contaminated soils. When S. nigrum remediating co-contaminated soils with higher levels of Cd and BAP, that is, 5 mg kg?1 Cd + 1 mg kg?1 BAP and 15 mg kg?1 Cd + 2 mg kg?1 BAP, the treatment T0.9CY+0.9Sa+0.3TW showed the best enhancing remediation role. This results were different with co-contaminated soil with 0.771 mg kg?1 Cd + 0.024 mg kg?1 BAP. These results may tell us that the combine used of CY, SA, and TW were more useful for the contaminated soils with higher level of Cd and/or BAP. In the combined treatments of Sa+TW, CY was better than EDTA.  相似文献   

3.
The objective of this research was to use a counter-current leaching process (CCLP) with leachate treatment to develop a remediation process for contaminated soils at a small-arms shooting range (SASR). The soil contaminant concentrations were 245 mg Cu kg?1, 3,368 mg Pb kg?1, 73 mg Sb kg?1, and 177 mg Zn kg?1. The CCLP includes three acid leaching steps (1M H2SO4 + 4M NaCl, t = 1 h, T = 20°C, soil suspension = 100 g L?1), followed by one water rinsing step (1 h). Seven counter-current remediation cycles were completed, and the average resulting metal removals were 93.2 ± 3.5% of Cu, 91.5 ± 5.7% of Pb, 82.2 ± 10.9% of Sb, and 30.0 ± 11.4% of Zn. The metal leaching performances decreased with the number of completed cycles. Soil treated with the CCLP with leachate treatment process met the USEPA threshold criteria of 5 mg Pb L?1 in the TCLP leachate. The CCLP allows a decrease of the water use by 32.9 m3 t?1 and the chemicals’ consumption by approximately 2,650 kg H2SO4, 6,014 kg NaCl, and 1,150 kg NaOH per ton of treated soil, in comparison to standard leaching processes. This corresponds to 78%, 69%, 83%, and 67% of reduction, respectively.  相似文献   

4.
Seed of flax (Linum usitatissimum L.) grown on calcareous and neutral soils sometimes accumulates relatively high concentrations of Cd. The influence of a post-flowering application of NH4NO3 (115 mg N kg-1), CdSO4 (1 mg Cd kg-1), FeEDDHA (2 mg Fe kg-1), NaH2PO4 (120 mg P kg-1) and ZnSO4 (8 mg Zn kg-1) on seed accumulation of Cd, Fe, N, Mn, P and Zn by flax grown on a Calciaquoll was studied in two experiments under greenhouse conditions. Seed yields were increased by the N and Zn treatments, and the N×Zn interaction was positive. Zinc deficiency delayed flowering and boll formation by up to 20 days and reduced seed size. In the absence of added Cd, seed accumulated up to 0.33 mg Cd kg-1. This Cd accumulation was reduced by approximately 50 and 17% by added Zn and Fe, respectively, but was little affected by P fertilizer and post-flowering N stress. In the presence of added Cd, seed Cd exceeded 3.3 mg Cd kg-1, and the antagonistic effects of Fe and Zn on seed Cd were absent. Seed N, P, Fe and Zn concentrations were increased on average by 10, 45, 31 and 97% by the N, P, Fe and Zn fertilizer treatments, respectively. FeEDDHA reduced seed Mn concentration by approximately 58%. However, seed Mn concentration was much less than that found in vegetative tissue at flowering. Soil-applied Zn may reduce seed Cd concentration in flax under field conditions, and may increase marketability of flax for food use.  相似文献   

5.
Abstract

Despite the fact that cadmium (Cd) is a non-essential element for plants, it can influence nutrients and affect human health. Potassium (K) can influence the transportation of heavy metals (HMs) in soil-plant systems. Here, a greenhouse experiment was conducted to evaluate the effect of Cd and K fertilizers on the different partitioning forms of HMs, their concentrations, uptake in the shoots and roots of Ocimum basilicum. Treatments comprised 2 levels of Cd (0 and 40?mg kg?1) and three levels of K (0, 100, and 200?mg kg?1) from three sources, i.e. KCl, K2SO4, and K-nano-chelate. 40?mg Cd kg?1 increased the shoot (above ground parts) Cd concentration. Addition of K as KCl, K2SO4, and K-nano-chelate increased the presence of Cd in shoots by 86, 82 and 76%, respectively, compared to the control. Using the nano-chelate of K can increase the accumulation of Cd in plants grown on contaminated soils to lesser content than that of the other forms of K. Application of 40?mg Cd kg?1 reduced the concentration of Zn, Cu, and Mn in the shoot, but increased shoot Fe concentration. Transfer factor (TF), which is the ratio of metal concentration in shoot to its concentration in root, of the studied HMs, was significantly affected by Cd and K treatments. Therefore, the proper form and dose of chemical fertilizers should be applied in Cd-contaminated soils.  相似文献   

6.
Phytoextraction of Risk Elements by Willow and Poplar Trees   总被引:1,自引:0,他引:1  
To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4–2.0 mg Cd.kg?1, 78–313 mg Zn.kg?1, 21.3–118 mg Cu.kg?1). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg?1, 909 mg Zn.kg?1, and 17.7 mg Cu.kg?1) compared to Populus clones (maximum 2.06 mg Cd.kg?1, 463 mg Zn.kg?1, and 11.8 mg Cu.kg?1). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.  相似文献   

7.
Concentrations of four metals (Cu, Zn, Pb, and Cd) in the sediments of the Anzali Lagoon in the northern part of Iran were determined to evaluate the level of contamination and spatial distribution. The sediments were collected from 21 locations in the lagoon. At each lagoon site a core, 60 cm long, was taken. The ranges of the measured concentrations in the sediments are as follows: 17–140 mg kg?1 for Cu, 20–113 mg kg?1 for Zn, 1–37 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in surficial (0-20 cm) and 16–87 mg kg?1 for Cu, 28.5–118 mg kg?1 for Zn, 3–20 mg kg?1 for Pb and 0.1–3.5 mg kg?1 for Cd in deep (40–60 cm) sediments. The results of the geoaccumulation index (Igeo) show that Cd causes moderate to heavy pollution in most of the study area. Environmental risk evaluation showed that the pollution in the Anzali Lagoon is moderate to considerable and the ranking of the contaminants followed the order: Cd > Cu > Pb > Zn. Some locations present severe pollution by metals depending on the sources, of which sewage outlets and phosphate fertilizers are the main sources of contaminants to the area.  相似文献   

8.
Willows (Salix spp.) can be used to phytoremediate soils contaminated by Zn and Cd under certain conditions. In this study, the ability of 14 Salix cultivars to concentrate Cd, Zn and S in leaves was measured in hydroponic culture with 10 and 200 µM Cd and Zn, respectively, in the nutrient medium. The cultivars showed a wide range of biomass yields, tolerance to metals, and foliar concentrations of Zn and Cd, with some cultivars accumulating up to 1000 mg kg?1 Zn, 70 mg kg?1 Cd and 10,000 mg kg?1 S with only mild phytotoxicity symptoms attributable to excess Zn. Cultivars with higher foliar Zn concentrations tended to have higher foliar Cd concentrations as well, and competition between Zn and Cd for uptake was observed. Exposure of Salix cultivars to Cd and Zn did not affect foliar concentrations of secondary metabolites such as polyphenols, but trace metal concentrations in leaves were significantly reduced (Fe and Cu) or increased (Mn) by exposure to excess Zn and Cd. Sulfur-XANES spectroscopy showed foliar S to be predominantly in highly oxidized (sulfate plus sulfonate) and reduced (thiol) forms, with oxidized S more prevalent in willows with the highest total S content.  相似文献   

9.
High salinity wastewaters have limited treatment options due to the occurrence of salt inhibition in conventional biological treatments. Using recirculating marine aquaculture effluents as a case study, this work explored the use of Constructed Wetlands as a treatment option for nutrient and salt loads reduction. Three different substrates were tested for nutrient adsorption, of which expanded clay performed better. This substrate adsorbed 0.31 mg kg?1 of NH4 +?N and 5.60 mg kg?1 of PO4 3??P and 6.9 mg kg?1 dissolved salts after 7 days of contact. Microcosms with Typha latifolia planted in expanded clay and irrigated with aquaculture wastewater (salinity 2.4%, 7 days hydraulic retention time, for 4 weeks), were able to remove 94% NH4 +?N (inlet 0.25 ± 0.13 mg L?1), 78% NO2 ??N (inlet 0.78 ± 0.62 mg L?1), 46% NO3 ??N (inlet 18.83 ± 8.93 mg L?1) whereas PO4 3??P was not detected (inlet 1.41 ± 0.21 mg L?1). Maximum salinity reductions of 52% were observed. Despite some growth inhibition, plants remained viable, with 94% survival rate. Daily treatment dynamics studies revealed rapid PO4 3??P adsorption, unbalancing the N:P ratio and possibly affecting plant development. An integrated treatment approach, coupled with biomass valorization, is suggested to provide optimal resource management possibilities.  相似文献   

10.
A pot study was conducted to compare the effects of amendments (CaHPO4 and cow manure) on growth and uptake of Cd and Zn from contaminated sediments by two wetland plant species, Typha angustifolia and Colocasia esculenta. Contaminated sediments (Cd 33.2 mg kg–1 and Zn 363 mg kg–1) were collected from Mae Tao basin, Mae Sot district, Tak province, Thailand. The experiment consisted of 4 treatments: control (uncontaminated sediment), Cd/Zn, Cd/Zn + 5% CaHPO4, and Cd/Zn + 10% cow manure. Plants were grown for 3 months in the greenhouse. The addition of CaHPO4 resulted in the highest relative growth rate (RGR) and highest Cd accumulation in both T. angustifolia and C. esculenta while the lowest RGR was found in C. esculenta grown in the cow manure treatment. Both plant species had higher concentrations of metals (Cd, Zn) in their belowground parts. None of the amendments affected Zn accumulation. C. esculenta exhibited the highest uptake of both Cd and Zn. The results clearly demonstrated the phytoremediation potential of C. esculenta and the enhancement of this potential by CaHPO4 amendment.  相似文献   

11.
Ground rubber contains 15?C20 g Zn kg?1 but very low levels of Cd and could serve as an inexpensive byproduct Zn fertilizer. The aim of this investigation was to test Zn release in a soil treated with ground tire rubber and rubber ash compared with commercial Zn fertilizer and a laboratory grade zinc sulfate. A Zn-deficient soil was chosen from wheat fields in Isfahan province, central Iran, and the ground rubber, rubber ash and fertilizer-Zn and laboratory ZnSO4 were added at 0.5 and 2 mg Zn kg?1; 0.5 kg ha?1 would usually correct Zn deficiency in such pot tests. The soil DTPA-extractable Zn was then measured with time and the results were described examining first order, Elovich, power function and parabolic diffusion kinetics models. In the pot experiment, corn (Zea mays L.) plants were exposed to three rates of Zn (0, 20, 40 mg Zn kg?1) from two different sources (ZnSO4 and ground rubber). Ground rubber was applied as 2?C3 mm and <1 mm diameter particles. Zinc treatments were mixed with the soils before planting. At harvest, concentrations of Zn, Pb, and Cd in roots and shoots of corn were measured. Results showed that ground rubber and rubber ash significantly increased the concentration of DTPA-Zn in the soil and this increase was higher than achieved with the commercial Zn fertilizer. At the lower Zn application rate, Zn release followed parabolic diffusion, while at the higher rate the kinetics of release followed power function and Elovich models. There was an increase in Zn concentration of corn shoot and roots by adding of Zn regardless the source of applied Zn. With increase in the rate of rubber used, the shoot Zn uptake increased. The Pb concentration of shoot and Cd concentrations of shoot and roots were low (less than 0.02 mg kg?1) in all treatments. The results showed that the soil DTPA Zn decreases over time if the soil is amended with a soluble form of Zn whereas the reverse was observed if the Zn is added as ground rubber which only gradually transforms. Thus ground rubber and rubber ash offer strong value as Zn fertilizer for Zn deficient soils.  相似文献   

12.
Phytostabilization aims to reduce environmental and health risks arising from contaminated soil. To be economically attractive, plants used for phytostabilization should produce valuable biomass. This study investigated the biomass production and metal allocation to foliage and wood of willow (Salix viminalis L.), poplar (Populus monviso), birch (Betula pendula), and oak (Quercus robur) on five different soils contaminated with trace elements (TE), with varying high concentrations of Cu, Zn, Cd, and Pb as well as an uncontaminated control soil. In the treatment soils, the biomass was reduced in all species except oak. There was a significant negative correlation between biomass and foliar Cd and Zn concentrations, reaching up to 15 mg Cd kg?1 and 2000 mg Zn kg ?1 in willow leaves. Lead was the only TE with higher wood than foliage concentrations. The highest Pb accumulation occurred in birch with up to 135 mg kg ?1 in wood and 78 mg kg ?1 in foliage. Birch could be suitable for phytostabilization of soils with high Cd and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cd concentrations.  相似文献   

13.
In this pot experiment, cucumbers (Cucumis sativus L.) were grown in a model soil contaminated by three different concentrations of cadmium (40, 160, and 320 mg.kg?1) with different accompanied anions (Cl?, SO4 2?). In all variants, the most Cd (90 %) was accumulated in the roots, but higher content in the case of Cl?. The distribution of Cd in various cucumber organs was as follows: root > stem > leaf > fruits. However, in variants with higher doses of Cd with SO4 2?, the ratio was changed as follows: root > leaf > stem > fruits. In all variants, least of Cd (max. 1 %) was found in fruits. Variants with the highest Cd doses were significantly different by comparison with all other variants, but higher content was in the case of Cl? anion. Stimulation effect on the biomass production and growth of aerial parts and roots of plants in all variants with Cd was observed. Toxicity symptoms, mainly in the presence of leaf chlorosis and yellowing, were more visible in the variants with Cl?, in comparison with SO4 2?. The amounts of phenol compounds in leaves rose almost in all variants. Only the variants with higher Cd content with SO4 2? showed slight reduction. One possible explanation of reduced content may be their bounding on Cd. The content of salicylic acid was reduced in all variants with Cd treatment. However, it is difficult to conclude their role in plant defence responses to heavy metal, because their actual defence mechanism is still unclear. However, from these results, we can suggest that the accompanying anion and the form in which Cd exists may have an impact on the involvement of various antioxidant systems.  相似文献   

14.
The concentrations of Pb and Cd, and trace elements (Cu and Zn) in the urban topsoil, rook (Corvus frugilegus) feces and feathers and human scalp hair were analyzed to examine the potential ecological risk posed by Pb and Cd on local residents of Qiqihar City, northeastern China. Results revealed that the Cd concentrations in the topsoil were ranged from 0.14 to 3.55 mg kg?1 dry weight (dw). The maximal geoaccumulation indices [a value from logarithmic (a measured metal content/1.5 × background content of the metal in this region), introduced by Muller] of Cd exceeded 3.5, which suggested that this region was seriously contaminated by Cd. The corresponding average detectable concentrations in C. frugilegus feathers and feces were 1.38 and 3.97 mg kg?1 dw for Pb and 1.04 and 0.69 mg kg?1 dw for Cd. High Pb and Cd concentrations, respectively, ranging from 7.46 to 24.9 mg kg?1 dw and from 0.35 to 0.92 mg kg?1 dw were also detected in the human scalp hair samples. These high Pb and Cd concentrations in C. frugilegus and local people were possibly associated with local industrial wastes and vehicle exhausts. The external tissues (feces and feather) of the rook species can be considered as an indicator of potential Cd toxic risk in this species; however, the human scalp hair is not a reliable biomarker for risk of Pb and Cd in the human being. Effective measures should be established to reduce the inputs of Pb and Cd into the urban environment and to protect the health of local people.  相似文献   

15.
Microbe-enhanced phytoremediation has been considered as a promising measure for the remediation of metal-contaminated soils. In this study, two bacterial strains JYX7 and JYX10 were isolated from rhizosphere soils of Polygonum pubescens grown in metal-polluted soil and identified as of Enterobacter sp. and Klebsiella sp. based on 16S rDNA sequences, respectively. JYX7 and JYX10 showed high Cd, Pb and Zn tolerance and increased water-soluble Cd, Pb and Zn concentrations in culture solution and metal-added soils. Two isolates produced plant growth-promoting substances such as indole acetic acid, siderophore, 1-aminocyclopropane-1-carboxylic deaminase, and solubilized inorganic phosphate. Based upon their ability in metal tolerance and solubilization, two isolates were further studied for their effects on growth and accumulation of Cd, Pb, and Zn in Brassica napus (rape) by pot experiments. Rapes inoculated with JYX7 and JYX10 had significantly higher dry weights, concentrations and uptakes of Cd, Pb, Zn in both above-ground and root tissues than those without inoculation grown in soils amended with Cd (25 mg kg?1), Pb (200 mg kg?1) or Zn (200 mg kg?1). The present results demonstrated that JYX7 and JYX10 are valuable microorganism, which can improve the efficiency of phytoremediation in soils polluted by Cd, Pb, and Zn.  相似文献   

16.
We investigated the effect of mineral nitrogen forms on transfer of nitrogen (N) and zinc (Zn) from attached compartments to rhodes grass (Chloris gayana) colonised with arbuscular mycorrhizal fungi (AMF). After being pre-cultivated in substrates with adequate nutrient supply and either AMF inoculated (+AM) or left non-inoculated (?AM), rhodes grass was positioned adjacent to an outer compartment holding a similar substrate but applied with labelled nitrogen (15N) either as ammonium (NH4 +) or nitrate (NO3 ?), and a high supply of Zn (150 mg kg?1 DS). Plant roots together with fungal mycelium were either allowed to explore the outer compartment (with root access) or only mycorrhizal hyphae were allowed (without root access). Within each access treatment, biomasses of rhodes grass were not significantly affected by AMF inoculation or N form. AMF contribution to plant 15N uptake was about double in NH4 + compared with NO3 ?-supplied treatments while the mycorrhizal influence on plant Zn uptake was insignificant. Without root access, the shoot 15N/Zn concentration ratio was up to ten-fold higher in +AM than –AM treatments and this ratio increase was clearly more pronounced in NH4 + than NO3 ?-supplied treatments. In conclusion, rhodes grass in symbiosis with the tested AMF acquired more N when supplied with ammonium. Moreover, there is clear indication that although the AMF have transported both nutrients (N and Zn), N was preferentially transferred as compared to Zn. We confirmed that, while rhodes grass is not able to prevent excessive Zn uptake via roots under conditions of high Zn, mycorrhiza is able to avoid excessive Zn supply to the host plant when the fungus alone has access to contaminated patches.  相似文献   

17.
A study quantifying the interactive effects of cadmium (Cd) and carbon nanotubes (CNTs) on plant growth and Cd accumulation of pot-cultured Spartina alterniflora was conducted. The experiment consisted of two Cd levels (50, 200 mg kg?1) as well as two CNTs levels (800, 2,400 mg kg?1). As expected, CNTs alleviated higher Cd stress (200 mg kg?1) due to restored shoot growth reduction, retrieved water content and resumed plant height. Furthermore, CNTs mitigated the deleterious effects of Cd stress through improving K+ and Ca2+ contents, while reducing Na+/K+ and Na+/Ca2+ ratios, regardless of the level of Cd stress. The proline contents in combined Cd and CNTs treatments were lower than Cd alone, suggesting that CNTs could reduce production of organic solutes under Cd stress. The results also showed higher Cd accumulation in roots than shoots, and both were improved by CNTs, except inhibition in roots under higher Cd stress (200 mg kg?1). It appears that CNTs may not significantly affect negative Cd effects on growth of S. alterniflora, but improve total Cd accumulation under lower Cd stress (50 mg kg?1). However, under higher Cd stress (200 mg kg?1), CNTs restored the reduced plant growth, improved and reduced Cd accumulation in shoots and roots, respectively. Therefore, the effects of CNTs on plant growth and Cd accumulation are different, and levels of Cd stress should be considered when evaluating the combined application of CNTs and S. alterniflora on phytoremediation of Cd pollution.  相似文献   

18.
Plant growth in saline soils may be increased by fertilisation, but little is known about the effect of different forms of N on wheat growth in soils with different salinity levels. The aim of this study was to investigate the response of wheat (Triticum aestivum L., cv Krichauff) to (NH4)2SO4 or KNO3 or NH4NO3 at 0 (N0), 50 (N50), 100 (N100) and 200 (N200) mg N?kg?1 soil in a saline sandy loam. Salinity was induced using Na+ and Ca2+ salts to achieve three ECe levels, 2.8, 6.6 and 11.8 dS m?1 denoted S1, S2 and S3, respectively, while maintaining a low SAR (>1). Dry weights of shoot and root were reduced by salinity in all N treatments. Addition of N significantly increased shoot and root dry weights with significant differences between N forms. Under non-saline conditions (S1), addition of NO3???N at rates higher than N50 had a negative effect, while N100 as NH4???N or NH4NO3???N increased shoot and root dry weights. At N100, shoot concentrations of N and K were higher and P, Ca, Fe, Mn, Cu and Zn were lower with NO3???N than with NH4???N nutrition. The concentration of all nutrients however fell in ranges did not appear to be directly associated with poor plant growth with NO3???N. At all N additions, calculations indicated that soil salinity was highest with N addition as NO3???N and decreased in the following order: NO3?N > NH4?N > NH4NO3?N. Addition of greater than N50 as NO3???N, compared to NH4???N or NH4???NO3, increased soil salinity and reduced micronutrient uptake both of which likely limited plant growth. It can be concluded that in saline soils addition of 100 mg N?kg?1 as NH4???N or NH4NO3???N is beneficial for wheat growth, whereas NO3???N can cause growth depression.  相似文献   

19.
Seasonal dynamics of S, Ca and N were examined at the Huntington Forest, a northern hardwood ecosystem in the central Adirondacks of New York for a period of 34 months (1985–1988). Solute concentrations and fluxes in bulk precipitation, throughfall (TF) and leachates from the forest floor, E horizon and B horizon were quantified. Both above and below-ground elemental fluxes mediated by vegetation (e.g. uptake, litter inputs, and fine roots production) were also determined. The roles of abiotic and biotic processes were ascertained based on both changes in solute concentrations through the strata of the ecosystem as well as differences between dormant and growing seasons. Concentrations of SO4 2−, NO3 , NH4 + and Ca2+ were greater in TF than precipitation. Forest floor leachates had greater concentrations of SO4 2−, NO3 + NH4 + and Ca2+ (9, 6 and 77 μeq L−1, respectively) than TF. There were differences in concentrations of ions in leachates from the forest floor between the dormant and growing seasons presumably due to vegetation uptake and microbial immobilization. Concentrations and fluxes of NO3 and NH; were greatest in early spring followed by a rapid decline which coincided with a demand for N by vegetation in late spring. Vegetation uptake (44.7 kg N ha−1 yr−1 ) could account for the low leaching rates of N03 . Within the mineral soil, changes with soil depth and the absence of seasonal patterns suggest that cation exchange (Ca+) or anion sorption (SO4 2−) are primarily responsible for regulating solute concentrations. The increase in SO4 2− concentration after leachates passed through the mineral soil may be attributed to desorption of sulfate that was adsorbed during an earlier period when SO4 2− concentrations would have been greater due to elevated S inputs.  相似文献   

20.
A laboratory-scale study was conducted in a 20.0-L sequencing batch reactor (SBR) to explore the feasibility of simultaneous removal of organic carbon and nitrogen from abattoir wastewater. The reactor was operated under three different combinations of aerobic-anoxic sequence, viz., (4+4), (5+3), and (5+4) h of total react period, with influent soluble chemical oxygen demand (SCOD) and ammonia nitrogen (NH4+-N) level of 2200 ± 50 and 125 ± 5 mg L?1, respectively. In (5+4) h cycle, a maximum 90.27% of ammonia reduction corresponding to initial NH4+-N value of 122.25 mg L?1 and 91.36% of organic carbon removal corresponding to initial SCOD value of 2215.25 mg L?1 have been achieved, respectively. The biokinetic parameters such as yield coefficient (Y), endogenous decay constant (kd), and half-velocity constant (Ks) were also determined to improve the design and operation of package effluent treatment plants comprising SBR units. The specific denitrification rate (qDN) during anoxic condition was estimated as 6.135 mg N/g mixed liquor volatile suspended solid (MLVSS)·h on 4-h average contact period. The value of Y, kd and Ks for carbon oxidation and nitrification were found to be in the range of 0.6225–0.6952 mg VSS/mg SCOD, 0.0481–0.0588 day?1, and 306.56–320.51 mg L?1, and 0.2461–0.2541 mg VSS/mg NH4+-N, 0.0324–0.0565 day?1, and 38.28–50.08 mg L?1, respectively, for different combinations of react periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号