首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermococcus onnurineus NA1 is a typical sulfur-reducing hyperthermophilic archaeon. Genome sequence analysis has shown that T. onnurineus NA1 retains the metabolic pathways necessary not only for organotrophic, but also for carboxydotrophic, growth. T. onnurineus NA1 carboxydotrophic growth may result in hydrogen production, as this archaeon produces hydrogen during oxidizing formate. In this study, we profiled the proteome of T. onnurineus NA1 cultured under carboxydotrophic conditions using CO as an electron donor by the SDS-PAGE/LC-MS/MS method. A total of 1395 proteins were identified by two independent proteomic analyses, which corresponds to ~71% of the total predicted open reading frames. To our knowledge, this level of identification coverage exceeds those of other global proteome profiling studies in Archaea. Furthermore, the biological functions of the identified proteins were predicted and cognate enzymes were mapped to the appropriate metabolic pathways. More than 90% of the genes belonging to hydrogenase gene clusters such as Mbx, Sulf-I, Mbh, Hyg4-I, Hyg4-II, and Hyf4-III were expressed during CO culture. This means that hydrogenases induced under carboxydotrophic conditions surpass those induced under an organotrophic condition (yeast extract-peptone-sulfur). Our data suggest that hydrogen production is caused by the expression and functional assembly of T. onnurineus NA1 hydrogenase genes during culture in the presence of CO.  相似文献   

2.
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, was isolated from a deep-sea hydrothermal vent area in Papua New Guinea. The strain requires elemental sulfur as a terminal electron acceptor for heterotrophic growth on peptides, amino acids and sugars. Recently, genome sequencing of Thermococcus onnurineus NA1 was completed. In this study, 2-DE/MS–MS analysis of the cytosolic proteome was performed to elucidate the metabolic characterization of Thermococcus onnurineus NA1 at the protein level. Among the 1,136 visualized protein spots, 110 proteins were identified. Enzymes related to metabolic pathways of amino acids utilization, glycolysis, pyruvate conversion, ATP synthesis, and protein synthesis were identified as abundant proteins, highlighting the fact that these are major metabolic pathways in Thermococcus onnurineus NA1. Interestingly, multiple spots of phosphoenolpyruvate synthetase and elongation factor Tu were found on 2D gels generated by truncation at the N-terminus, implicating the cellular regulatory mechanism of this key enzyme by protease degradation. In addition to the proteins involved in metabolic systems, we also identified various proteases and stress-related proteins. The proteomic characterization of abundantly induced proteins using 2-DE/MS–MS enables a better understanding of Thermococcus onnurineus NA1 metabolism.  相似文献   

3.
Free Flow Electrophoresis (FFE) is a liquid-based isoelectric focusing method. Unlike conventional in-gel fractionation of proteins, FFE can resolve proteins in their native forms and fractionation of subcellular compartments of the cell is also possible. To test the efficacy of the FFE method, the native cytosol proteome of a bacterium, Pseudomonas putida KT2440 was fractionated by FFE and the spectrum of protein elutes was characterized in association with 2-dimentional gel electrophoresis (2-DE). Major native proteins of P. putida KT2440 were eluted in the range of pH 4.8 approximately 6.0 in FFE, whereas the denatured proteome of P. putida KT2440 was widely distributed in the rage of pH 4 approximately 10 in the 2-DE analysis. In addition, one of the three FFE major fractions, which was eluted at pH 5.0, was further analyzed using 2-DE/MS-MS. Then, the pH range of identified proteins eluted in 2-DE/MS-MS was 4.72 approximately 5.89, indicating that observed pi values of native cytosolic proteomes in FFE were narrower than those of denatured cytosolic proteome. These results suggest that FFE fractionation and 2-DE/MS analysis may be useful tools for characterization of native proteomes of P. putida KT2440 and comparative analysis between denatured and native proteomes.  相似文献   

4.
Thermococcus onnurineus NA1, a sulfur-reducing hyperthermophilic archaeon, is capable of H(2)-producing growth, considered to be hydrogenogenic carboxydotrophy. Utilization of formate as a sole energy source has been well studied in T. onnurineus NA1. However, whether formate can be used as its carbon source remains unknown. To obtain a global view of the metabolic characteristics of H(2)-producing growth, a quantitative proteome analysis of T. onnurineus NA1 grown on formate, CO, and starch was performed by combining one-dimensional SDS-PAGE with nano UPLC-MS(E). A total of 587 proteins corresponding to 29.7% of the encoding genes were identified, and the major metabolic pathways (especially energy metabolism) were characterized at the protein level. Expression of glycolytic enzymes was common but more highly induced in starch-grown cells. In contrast, enzymes involved in key steps of the gluconeogenesis and pentose phosphate pathways were strongly up-regulated in formate-grown cells, suggesting that formate could be utilized as a carbon source by T. onnurineus NA1. In accordance with the genomic analysis, comprehensive proteomic analysis also revealed a number of hydrogenase clusters apparently associated with formate metabolism. On the other hand, CODH and CO-induced hydrogenases belonging to the Hyg4-II cluster, as well as sulfhydrogenase-I and Mbx, were prominently expressed during CO culture. Our data suggest that CO can be utilized as a sole energy source for H(2) production via an electron transport mechanism and that CO(2) produced from catabolism or CO oxidation by CODH and CO-induced hydrogenases may subsequently be assimilated into the organic carbon. Overall, proteomic comparison of formate- and CO-grown cells with starch-grown cells revealed that a single carbon compound, such as formate and CO, can be utilized as an efficient substrate to provide cellular carbon and/or energy by T. onnurineus NA1.  相似文献   

5.
Pseudomonas putida KT2440 is a metabolically versatile soil bacterium. To examine the effects of an aromatic compound on the proteome of this bacterium, cytosolic proteins induced by the presence of benzoate and succinate were analyzed using two liquid chromatography (LC)-based proteomic approaches: an isobaric tag for relative and absolute quantitation (iTRAQ) for quantitative analysis and one-dimensional gel electrophoresis/multidimensional protein identification technology (1-DE MudPIT) for protein identification. In total, 1286 proteins were identified by 1-DE MudPIT; this represents around 23.3% of the total proteome. In contrast, 570 proteins were identified and quantified by iTRAQ analysis. Of these, 55 and 52 proteins were up- and down-regulated, respectively, in the presence of benzoate. The proteins up-regulated included benzoate degradation enzymes, chemotaxis-related proteins, and ABC transporters. Enzymes related to nitrogen metabolism and pyruvate metabolism were down-regulated. These data suggest that a combination of 1-DE MudPIT and iTRAQ is an appropriate method for comprehensive proteomic analysis of biodegradative bacteria.  相似文献   

6.
Kennedy SA  Scaife C  Dunn MJ  Wood AE  Watson RW 《Proteomics》2011,11(12):2560-2564
Neutrophils, cells of the innate immune system, contain an array of proteases and reactive oxygen species-generating enzymes that assist in controlling the invasion of bacteria and pathogens. The high content of intracellular proteolytic enzymes makes them difficult cells to work with as they can degrade proteins of potential interest. Here, we describe the benefits of heat treatment of neutrophils in reducing protein degradation for subsequent proteome analysis. Neutrophils isolated from four healthy volunteers were each divided into three aliquots and subjected to different preparation methods for 2-DE: (i) Heat treatment, (ii) resuspension in NP40 lysis buffer and (iii) resuspension in standard 2-DE lysis buffer. Representative spots found to be statistically significant between groups (p<0.01) were excised and identified by LC-MS/MS, three of which were validated by immunoblotting. Heat-treated samples contained proteins in the high-molecular-weight range that were absent from NP40-treated samples. Moreover, NP40-treated samples showed an increase in spot number and volume at lower molecular weights suggestive of protein degradation. Incorporating heat treatment into sample preparation resulted in the identification of proteins that may not have previously been detected due to sample degradation, thus leading to a more comprehensive 2-DE map of the human neutrophil proteome.  相似文献   

7.
Lee HS  Bae SS  Kim MS  Kwon KK  Kang SG  Lee JH 《Journal of bacteriology》2011,193(14):3666-3667
Pyrococcus sp. strain NA2, isolated from a deep-sea hydrothermal vent sample, is a novel marine hyperthermophilic archaeon that grows optimally at 93 °C. The complete genome sequence of the strain contains all the genes for the tricarboxylic acid cycle except for succinate dehydrogenase/fumarate reductase, but the genome does not encode proteins involved in polysaccharide utilization.  相似文献   

8.
Lee HS  Cho Y  Lee JH  Kang SG 《Journal of bacteriology》2008,190(7):2629-2632
The TON_0887 gene was identified as the missing histidinol-phosphate phosphatase (HolPase) in the hyperthermophilic archaeon "Thermococcus onnurineus" NA1. The protein contained conserved motifs of the DDDD superfamily of phosphohydrolase, and the recombinantly expressed protein exhibited strong HolPase activity. In this study, we functionally assessed for the first time the monofunctional DDDD-type HolPase, which is organized in the gene cluster.  相似文献   

9.
10.
11.
To elucidate the molecular basis underlying their broad substrate specificity and reaction mechanism of the enzymes belonging to the haloacid dehalogenase (HAD) superfamily, TON_0559, a putative HAD subfamily protein from a hyperthermophilic archaeon Thermococcus onnurineus NA1, was expressed, purified and crystallized. X-ray diffraction data were collected to 2.0 A resolution. The space group is C2, with unit cell parameters a = 121.2 A, b = 62.9 A, c = 37.5 A and beta= 106.5 degrees .  相似文献   

12.
13.
Trypanosoma cruzi, the protozoan that causes Chagas disease, possesses a complex life cycle involving different developmental stages. Experimental conditions for two-dimensional electrophoresis (2-DE) analysis of T. cruzi trypomastigote, amastigote and epimastigote proteomes were optimized. Comparative proteome analysis of the cell-cycle stages were carried out, revealing that few proteins included in the 2-DE maps displayed significant differential expression among the three developmental forms of the parasite. In order to identify landmark proteins, spots from the trypomastigote 2-DE map were subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry peptide mass fingerprinting, resulting in 26 identifications that corresponded to 19 different proteins. Among the identified polypeptides, there were heat shock proteins (HSP; chaperones, HSP 60, HSP 70 and HSP 90), elongation factors, glycolytic pathway enzymes (enolase, pyruvate kinase and 2,3 bisphosphoglycerate mutase) and structural proteins (KMP 11, tubulin and paraflagellar rod components). The relative expression of the identified proteins in the 2-DE maps of the T. cruzi developmental stages is also presented.  相似文献   

14.
Proteolytic degradation is one of the critical problems in two-dimensional electrophoresis (2-DE). Here we report that small heat shock proteins (sHsps), including IbpA(Ec) and IbpB(Ec) from Escherichia coli and Hsp26(Sc) from Saccharomyces cerevisiae, are able to protect proteins in vitro from proteolytic degradation. Addition of sHsps during 2-DE of human serum or whole cell extracts of E. coli, Mannheimia succinciproducens, Arabidopsis thaliana, and human kidney cells allowed detection of up to 50% more protein spots than those obtainable with currently available protease inhibitors. Therefore, the use of sHsps during 2-DE significantly improves proteome profiling by generally enabling the detection of many more protein spots that could not be seen previously.  相似文献   

15.
A detailed understanding of the molecular basis of protein folding and stability determinants partly relies on the study of proteins with enhanced conformational stability properties, such as those from thermophilic organisms. In this study, we set up a methodology aiming at identifying the subset of cytosolic hyperstable proteins using Sulfurispharea sp., a hyperthermophilic archaeon, able to grow between 70 and 97 degrees C, as a model organism. We have thermally and chemically perturbed the cytosolic proteome as a function of time (up to 96 h incubation at 90 degrees C), and proceeded with analysis of the remaining proteins by combining one- and two-dimensional gel electrophoresis, liquid chromatography fractionation, and protein identification by N-terminal sequencing and mass spectrometry methods. In total, 14 proteins with enhanced stabilities which are involved in key cellular processes such as detoxification, nucleic acid processing, and energy metabolism were identified including a superoxide dismutase, a peroxiredoxin, and a ferredoxin. We demonstrate that these proteins are biologically active after extensive thermal treatment of the proteome. The relevance of these and other targets is discussed in terms of the organism's ecology. This work thus illustrates an experimental approach aimed at mining a proteome for hyperstable proteins, a valuable tool for target selection in protein stability and structural studies.  相似文献   

16.
In this study, we found that deoxyinosine triphosphate (dITP) could inhibit polymerase chain reaction (PCR) amplification of various family B-type DNA polymerases, and 0.93% dITP was spontaneously generated from deoxyadenosine triphosphate during PCR amplification. Thus, it was hypothesized that the generated dITP might have negative effect on PCR amplification of family B-type DNA polymerases. To overcome the inhibitory effect of dITP during PCR amplification, a dITP pyrophosphatase (dITPase) from Thermococcus onnurineus NA1 was applied to PCR amplification. Genomic analysis of the hyperthermophilic archaeon T. onnurineus NA1 revealed the presence of a 555-bp open reading frame with 48% similarity to HAM1-like dITPase from Methanocaldococcus jannaschii DSM2661 (NP_247195). The dITPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dITP, not deoxyuridine triphosphate. Addition of the purified protein to PCR reactions using DNA polymerases from T. onnurineus NA1 and Pyrococcus furiosus significantly increased product yield, overcoming the inhibitory effect of dITP. This study shows the first representation that removing dITP using a dITPase enhances the PCR amplification yield of family B-type DNA polymerase.  相似文献   

17.
Kim YH  Cho K  Yun SH  Kim JY  Kwon KH  Yoo JS  Kim SI 《Proteomics》2006,6(4):1301-1318
Proteomic analysis of Pseudomonas putida KT2440 cultured in monocyclic aromatic compounds was performed using 2-DE/MS and cleavable isotope-coded affinity tag (ICAT) to determine whether proteins involved in aromatic compound degradation pathways were altered as predicted by genomic analysis (Jiménez et al., Environ Microbiol. 2002, 4, 824-841). Eighty unique proteins were identified by 2-DE/MS or MS/MS analysis from P. putida KT2440 cultured in the presence of six different organic compounds. Benzoate dioxygenase (BenA, BenD) and catechol 1,2-dioxygenase (CatA) were induced by benzoate. Protocatechuate 3,4-dixoygenase (PcaGH) was induced by p-hydroxybenzoate and vanilline. beta-Ketoadipyl CoA thiolase (PcaF) and 3-oxoadipate enol-lactone hydrolase (PcaD) were induced by benzoate, p-hydroxybenzoate and vanilline, suggesting that benzoate, p-hydroxybenzoate and vanilline were degraded by different dioxygenases and then converged in the same beta-ketoadipate degradation pathway. An additional 110 proteins, including 19 proteins from 2-DE analysis, were identified by cleavable ICAT analysis for benzoate-induced proteomes, which complemented the 2-DE results. Phenylethylamine exposure induced beta-ketoacyl CoA thiolase (PhaD) and ring-opening enzyme (PhaL), both enzymes of the phenylacetate (pha) biodegradation pathway. Phenylalanine induced 4-hydroxyphenyl-pyruvate dioxygenase (Hpd) and homogentisate 1,2-dioxygenase (HmgA), key enzymes in the homogentisate degradation pathway. Alkyl hydroperoxide reductase (AphC) was induced under all aromatic compounds conditions. These results suggest that proteome analysis complements and supports predictive information obtained by genomic sequence analysis.  相似文献   

18.
猪卵母细胞蛋白质组双向电泳体系的建立及初步分析   总被引:1,自引:0,他引:1  
建立了猪(Sus scrofa)卵母细胞蛋白质双向电泳平台,并对裂解液的组成、样品处理、双向电泳程序等相关技术进行优化,得到清晰的微量卵母细胞蛋白质的电泳图谱.利用上述优化后的体系分别对未成熟和成熟的猪卵母细胞进行双向电泳分析,并用ImageMaser软件对图谱进行比对分析.结果表明,电泳图谱上大约有800个左右的蛋白点,其中差异蛋白35个,包括上调蛋白22个及下调蛋白13个.说明基于双向电泳的蛋白质组学可以用于卵母细胞成熟的蛋白表达差异的研究.  相似文献   

19.
The halophilic archaeon Halobacterium salinarum (strain R1, DSM 671) contains 2784 protein-coding genes as derived from the genome sequence. The cytosolic proteome containing 2042 proteins was separated by two-dimensional gel electrophoresis (2-DE) and systematically analyzed by a semi-automatic procedure. A reference map was established taking into account the narrow isoelectric point (pI) distribution of halophilic proteins between 3.5 and 5.5. Proteins were separated on overlapping gels covering the essential areas of pI and molecular weight. Every silver-stained spot was analyzed resulting in 661 identified proteins out of about 1800 different protein spots using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting (PMF). There were 94 proteins that were found in multiple spots, indicating post-translational modification. An additional 141 soluble proteins were identified on 2-D gels not corresponding to the reference map. Thus about 40% of the cytosolic proteome was identified. In addition to the 2784 protein-coding genes, the H. salinarum genome contains more than 6000 spurious open reading frames longer than 100 codons. Proteomic information permitted an improvement in genome annotation by validating and correcting gene assignments. The correlation between theoretical pI and gel position is exceedingly good and was used as a tool to improve start codon assignments. The fraction of identified chromosomal proteins was much higher than that of those encoded on the plasmids. In combination with analysis of the GC content this observation permitted an unambiguous identification of an episomal insert of 60 kbp ("AT-rich island") in the chromosome, as well as a 70 kbp region from the chromosome that has integrated into one of the megaplasmids and carries a series of essential genes. About 63% of the chromosomally encoded proteins larger than 25 kDa were identified, proving the efficacy of 2-DE MALDI-TOF MS PMF technology. The analysis of the integral membrane proteome by tandem mass spectrometric techniques added another 141 identified proteins not identified by the 2-DE approach (see following paper).  相似文献   

20.
To examine the activities and identity of enzymes associated with organelles such as microsomes and mitochondria, proteins from mouse liver were extracted using the non-ionic detergents Nonidet P-40 (NP-40), polyoxyethylene sorbitan monooleate (Tween 80), polyoxyethylene isooctylphenyl ester (Triton X), n-octyl beta-D-glucoside (octyl glycoside) or anionic detergent sodium dodecylsulfate (SDS) after the removal of cytosolic proteins. The proteins extracted by detergents were separated by non-denaturing two-dimensional electrophoresis (2-DE). The activities of esterase and aldehyde dehydrogenase were retained by non-denaturing 2-DE after treatment with each non-ionic detergent, but the activities were reduced or lost when the proteins were extracted with more than 0.5% SDS. For proteomic analysis of the organelle-associated proteins in mouse liver, proteins were separated by non-denaturing 2-DE and were identified using electrospray ionization tandem mass spectrometry (ESI-MS/MS) after the proteins were solubilized by octyl glycoside, NP-40 and 0.1% SDS. Several organelle-associated proteins such as carboxylesterase, aldehyde dehydrogenase, glucose regulated protein and HSP60 were identified. These results indicate that the activities and identity of detergent-soluble enzymes can be examined by this non-denaturing 2-DE and mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号