首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
RNA interference (RNAi) is an important tool for studying gene function and genetic networks. Double-stranded RNA (dsRNA) triggers RNAi that selectively silences gene expression mainly by degrading target mRNA sequences. Short interfering RNA, short hairpin RNA (shRNA), long dsRNA, and microRNA-based shRNA (shRNAmir) are four different types of dsRNA that have been widely used to silence gene expression in cultured cells, tissues, organs, and organisms. Long dsRNAs are usually 200–500 nucleotides in length and can selectively suppress expression of target genes in Caenorhabditis elegans and Drosophila but not in mammals due to unwanted non-specific knockdown. Thus, multiple attempts have been made to synthesize, express, and deliver short dsRNAs that specifically silence target genes in mammals. We describe a method for constructing an RNAi library by converting cDNAs into shRNAmir30 sequences by sequential treatment with different enzymes and affinity purification of biotin- or digoxygenin-labeled DNA fragments. We also developed a system to generate stable cell lines that uniformly express shRNAmir30s and fluorescence reporters by Cre recombinase-dependent site-specific recombination. Thus, combined with the RNAi library, this system facilitates screening for potent RNAi sequences that strongly suppress expression of target genes.  相似文献   

2.
3.
A bstract The tawny crazy ant(Nylanderia fulva)is a new invasive pest in the United States.At present,its management mainly relies on the use of synthetic insecticides,which are generally ineffective at producing lasting control of the pest,necessitating alternative environmentally friendly measures.In this study,we evaluated the feasibility of gene silencing to control this ant species.Six housekeeping genes encoding actin(NfActin),coatomer subunit β (NfCOPP),arginine kinase(NfArgK),and V-type proton ATPase subunits A(NfvATPaseA),B(NfvATPaseB)and E(NfvATPaseE)were cloned.Phylogenetic analysis revealed high sequence similarity to homologs from other ant species,particularly the Florida carpenter ant(Camponotus floridanus).To silence these genes,vector L4440 was used to generate six specific RNAi constructs for bacterial expression.Heat-inactivated,dsRNA-expressing Escherichia coli were incorporated into artificial diet.Worker ants exhibited reduced endogenous gene expression after feeding on such diet for 9 d.However,only ingestion of dsRNAs of NfCOPfi(a gene involved in protein trafficking)and NfArgK(a cellular energy reserve regulatory gene in invertebrates)caused modest but significantly higher ant mortality than the control.These results suggest that bacterially expressed dsRNA can be orally delivered to ant cells as a mean to target its vulnerabilities.Improved efficacy is necessary for the RNAi-based approach to be useful in tawny crazy ant management.  相似文献   

4.
RNA interference (RNAi) technology enables to study specific gene functions also in social insects, which are otherwise difficult to access for genetic manipulations. The recent sequencing of the genomes from seven ant species made these members of the Formicidae available for knockdown studies. However, for this purpose the RNAi technology first needs to be adapted for application in ants. Studies on other insects show that the effectiveness of RNAi is quite species-specific and can depend on several experimental parameters such as the investigated stage of the insect, the target gene and/or the dsRNA delivery method. RNAi in ants through feeding of dsRNA is a preferable approach, since knockdown can be achieved in individuals without interfering with the animal’s physiology in contrast to injection of dsRNA. Here, we present a protocol for gene knockdown in Formicidae by feeding of dsRNA to worker animals. The expression of a peptidoglycan recognition protein gene, PGRP-LB, was efficiently knocked down in the body of Camponotus floridanus worker ants. Moreover, we describe a relatively cheap method to extract dsRNA from bacteria in order to obtain large quantities needed for feeding experiments.  相似文献   

5.
6.
7.
Juvenile hormone is responsible for regulating metamorphosis and reproduction in insects. Analysis of key elements of juvenile hormone regulation would enhance the understanding of this complex mechanism. Juvenile hormone esterase plays an important role in maintaining juvenile hormone titres in insects. In this study, effects of knockdown of juvenile hormone esterase gene (jhe) in Bemisia tabaci were studied using RNA interference (RNAi) technique. dsRNA corresponding to two conserved regions of jhe gene, substrate binding pocket site (jhe1), catalytic triad site (jhe2), green fluorescent protein gene (gfp) as control were synthesized. dsRNAs incorporated in artificial diet (20% sucrose solution) @ 2.5, 1.0, 0.5 and 0.1 μg/μl were fed to adult whiteflies for 48 h, followed by shifting whiteflies to live plants for next generation biology study. Based on qRT-PCR analyses, reduced jhe gene expression was observed in adult whiteflies after dsRNA feeding @ 2.5 and 1.0 μg/μl. jhe gene knockdown affects the survival and reproduction of whiteflies adversely in a dose-dependent manner. Moreover, oral feeding of dsRNA to adult whiteflies @ 2.5 and 1.0 μg/μl showed adverse effects on next generation of whitefly viz., lower egg hatchability and shortened egg incubation period. Minimum number of viable eggs (1.04 and 1.80 eggs/female) were observed when whiteflies were fed with highest concentration of dsjhe1 and dsjhe2 as compared to control (16.58 eggs/female). These data suggest that jhe gene acts as a major biological player in whitefly and its progeny and further indicate to be potential target for managing whitefly population.  相似文献   

8.
The RNA interference (RNAi) phenomenon is a recently observed process in which the introduction of a double-stranded RNA (dsRNA) into a cell causes the specific degradation of a mRNA containing the same sequence. The 21–23 nt guide RNAs, generated by RNase III cleavage from longer dsRNAs, are associated with sequence-specific mRNA degradation. Here, we show that dsRNA specifically suppresses the expression of HIV-1 genes. To study dsRNA-mediated gene interference in HIV-1-infected cells, we have designed six long dsRNAs containing the HIV-1 gag and env genes. HIV-1 replication was totally suppressed in a sequence-specific manner by the dsRNAs in HIV-1-infected cells. Especially, E2 dsRNA containing the major CD4-binding domain sequence of gp120, as the target of the HIV-1 env gene, dramatically inhibited the expression of the HIV-1 p24 antigen in PBMCs for a relatively long time. The dsRNA interference method seems to be a promising new strategy for anti-HIV-1 gene therapeutics.  相似文献   

9.
The phenomenon of RNAi, in which the introduction of dsRNA into a cell triggers the destruction of the corresponding mRNA resulting in a gene silencing effect, is conserved across a wide array of plant and animal phyla. However, the mechanism by which the dsRNA enters a cell, allowing the RNAi effect to occur throughout a multicellular organism (systemic RNAi), has only been studied extensively in certain plants and the nematode Caenorhabditis elegans. In recent years, RNAi has become a popular reverse genetic technique for gene silencing in many organisms. Although many RNAi techniques in non-traditional model organisms rely on the systemic nature of RNAi, little has been done to analyze the parameters required to obtain a robust systemic RNAi response. The data provided here show that the concentration and length of dsRNA have profound effects on the efficacy of the RNAi response both in regard to initial efficiency and duration of the effect in Tribolium castaneum. In addition, our analyses using a series of short dsRNAs and chimeric dsRNA provide evidence that dsRNA cellular uptake (and not the RNAi response itself) is the major step affected by dsRNA size in Tribolium. We also demonstrate that competitive inhibition of dsRNA can occur when multiple dsRNAs are injected together, influencing the effectiveness of RNAi. These data provide specific information essential to the design and implementation of RNAi based studies, and may provide insight into the molecular basis of the systemic RNAi response in insects.  相似文献   

10.
RNA interference (RNAi) has become an integral part of mainstream research due to its versatility and ease of use. However, the potential nontarget effects associated with double-stranded RNAs (dsRNA) are poorly understood. To explore this, we used dsRNAs targeting the inhibitor of apoptosis (iap) gene from nine insect species and assayed their possible nontarget effects. For each assay, we used a control (dsRNA targeting the gene coding for green fluorescent protein, GFP) and a species-specific dsRNA targeting nine iap genes in insect species to evaluate target gene knockdown efficiency, apoptosis phenotype in cells and mortality in insects. Our results revealed that dsIAP efficiently knocks down iap gene expression and induces apoptosis phenotype and mortality in target insect species. In contrast, no significant knockdown of the iap gene expression, apoptosis phenotypes, or mortality were detected in cell lines developed from nontarget insects or nontarget insects treated with dsIAPs. Interestingly, even among closely related insects such as stink bugs, Nezara viridula, Halyomorpha halys, and Murgantia histrionica, with substantial sequence similarity among iap genes from these insects, no significant nontarget effects of dsIAP were observed under the conditions tested. These data demonstrate no significant nontarget effects for dsIAPs and suggest that the threat of nontarget effects of RNAi technology may not be substantial.  相似文献   

11.
Western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is highly sensitive to orally delivered double‐stranded RNA (dsRNA). RNAi in WCR is systemic and spreads throughout the insect body. This raises the question whether transitive RNAi is a mechanism that functions in WCR to amplify the RNAi response via production of secondary siRNA. Secondary siRNA production is achieved through RNA‐dependent RNA polymerase (RdRP) activity in other eukaryotic organisms, but RdRP has not been identified in WCR and any other insects. This study visualized the spread of the RNAi‐mediated knockdown of Dv v‐ATPase C mRNA throughout the WCR gut and other tissues using high‐sensitivity branched DNA in situ hybridization. Furthermore, we did not detect either secondary siRNA production or transitive RNAi in WCR through siRNA sequence profile analysis. Nucleotide mismatched sequences introduced into either the sense or antisense strand of v‐ATPase C dsRNAs were maintained in siRNAs derived from WCR fed with the mismatched dsRNAs in a strand specific manner. The distribution of all siRNAs was restricted to within the original target sequence regions, which may indicate the lack of new dsRNA synthesis leading to production of secondary siRNA. Thus, the systemic spread of RNAi in WCR may be derived from the original dsRNA molecules taken up from the gut lumen. These results indicate that the initial dsRNA dose is important for a lethal systemic RNAi response in WCR and have implications in developing effective dsRNA traits to control WCR and in resistance management to prolong the durability of RNAi trait technology.  相似文献   

12.
Yang D  Lu H  Erickson JW 《Current biology : CB》2000,10(19):1191-1200
BACKGROUND: RNA interference (RNAi) is a phenomenon in which introduced double-stranded RNAs (dsRNAs) silence gene expression through specific degradation of their cognate mRNAs. Recent analyses in vitro suggest that dsRNAs may be copied, or converted, into 21-23 nucleotide (nt) guide RNAs that direct the nucleases responsible for RNAi to their homologous mRNA targets. Such small RNAs are also associated with gene silencing in plants. RESULTS: We developed a quantitative single-embryo assay to examine the mechanism of RNAi in vivo. We found that dsRNA rapidly induced mRNA degradation. A fraction of dsRNAs were converted into 21-23 nt RNAs, and their time of appearance and persistence correlated precisely with inhibition of expression. The strength of RNAi increased disproportionately with increasing dsRNA length, but an 80bp dsRNA was capable of effective gene silencing. RNAi was saturated at low dsRNA concentration and inhibited by excess unrelated dsRNA. The antisense strand of the dsRNA determined target specificity, and excess complementary sense or antisense single-stranded RNAs (ssRNAs) competed with the RNAi reaction. CONCLUSIONS: Processed dsRNAs can act directly to mediate RNAi, with the antisense strand determining mRNA target specificity. The involvement of 21-23 nt RNAs is supported by the kinetics of the processing reaction and the observed size dependence. RNAi depends on a limiting factor, possibly the nuclease that generates the 21-23 mer species. The active moiety appears to contain both sense and antisense RNA strands.  相似文献   

13.
14.
Clathrin heavy chain has been shown to be important for viability, embryogenesis, and RNA interference (RNAi) in arthropods such as Drosophila melanogaster. However, the functional roles of clathrin heavy chain in chelicerate arthropods, such as the predatory mite Metaseiulus occidentalis, remain unknown. We previously showed that dsRNA ingestion, followed by feeding on spider mites, induced systemic and robust RNAi in M. occidentalis females. In the current study, we performed a loss-of-function analysis of the clathrin heavy chain gene in M. occidentalis using RNAi. We showed that ingestion of clathrin heavy chain dsRNA by M. occidentalis females resulted in gene knockdown and reduced longevity. In addition, clathrin heavy chain dsRNA treatment almost completely abolished oviposition by M. occidentalis females and the few eggs produced did not hatch. Finally, we demonstrated that clathrin heavy chain gene knockdown in M. occidentalis females significantly reduced a subsequent RNAi response induced by ingestion of cathepsin L dsRNA. The last finding suggests that clathrin heavy chain may be involved in systemic RNAi responses mediated by orally delivered dsRNAs in M. occidentalis.  相似文献   

15.
Ectopically expressed double-stranded RNAs (dsRNAs) have recently been shown to suppress parasitic success of Meloidogyne spp. in plants. We have targeted two genes from the root-knot nematode Meloidogyne incognita; a dual oxidase gene implicated in the tyrosine cross-linking of the developing cuticle and a subunit of signal peptidase, a protein complex required for the processing of secreted proteins. While these genes are involved in different aspects of nematode development, the phenotypic consequences of RNA interference (RNAi) were similar with ?50% reduction in nematode numbers in the roots and retardation of development to the egg-producing saccate females. Expression of processed dsRNA was observed, but no evidence of detectable levels of small interfering RNAs (siRNAs) was found in the transgenic plants. We show, to our knowledge for the first time, that combining expression of these dsRNAs by crossing appropriate Arabidopsis thaliana lines resulted in an additive effect that further reduced nematode numbers and developmental capacity. Combining RNAi target genes has the potential to enhance the efficacy of RNAi and may allow control of different nematode species or genera in the crop of interest.  相似文献   

16.
RNA interference (RNAi) has previously been shown to be effective in western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) larvae via oral delivery of synthetic double-stranded RNA (dsRNA) in an artificial diet bioassay, as well as by ingestion of transgenic corn plant tissues engineered to express dsRNA. Although the RNAi machinery components appear to be conserved in Coleopteran insects, the key steps in this process have not been reported for WCR. Here we characterized the sequence of events that result in mortality after ingestion of a dsRNA designed against WCR larvae. We selected the Snf7 ortholog (DvSnf7) as the target mRNA, which encodes an essential protein involved in intracellular trafficking. Our results showed that dsRNAs greater than or equal to approximately 60 base-pairs (bp) are required for biological activity in artificial diet bioassays. Additionally, 240 bp dsRNAs containing a single 21 bp match to the target sequence were also efficacious, whereas 21 bp short interfering (si) RNAs matching the target sequence were not. This result was further investigated in WCR midgut tissues: uptake of 240 bp dsRNA was evident in WCR midgut cells while a 21 bp siRNA was not, supporting the size-activity relationship established in diet bioassays. DvSnf7 suppression was observed in a time-dependent manner with suppression at the mRNA level preceding suppression at the protein level when a 240 bp dsRNA was fed to WCR larvae. DvSnf7 suppression was shown to spread to tissues beyond the midgut within 24 h after dsRNA ingestion. These events (dsRNA uptake, target mRNA and protein suppression, systemic spreading, growth inhibition and eventual mortality) comprise the overall mechanism of action by which DvSnf7 dsRNA affects WCR via oral delivery and provides insights as to how targeted dsRNAs in general are active against insects.  相似文献   

17.
The Asian long-horned beetle (ALB) Anoplophora glabripennis is a serious invasive forest pest in several countries, including the United States. Methods available to manage or eradicate this pest are extremely limited, but RNA interference (RNAi) technology is a potentially effective method to control ALB. In this study, we used sucrose feeding bioassay for oral delivery of double-strand RNA (dsRNA) to ALB larvae. 32P-labeled dsRNA orally delivered to ALB larvae using the sucrose droplet feeding method was processed to small interfering RNA. Feeding neonate larvae with dsRNA targeting genes coding for the inhibitor of apoptosis (IAP), vacuolar sorting protein SNF7 (SNF7), and snakeskin (SSK) induced knockdown of target genes and mortality. Feeding 2 µg of dsRNA per day for 3 days did not induce a significant decrease in the expression of target genes or mortality. However, feeding 5 or 10 µg of dsRNA per day for 3 days induced a significant decrease in the expression of target genes and 50–90% mortality. Interestingly, feeding 2.5 µg each of dsIAP plus dsSNF7, dsIAP plus dsSSK, or dsSNF7 plus dsSSK per day for 3 days induced a significant decrease in the expression of both target genes and approximately 80% mortality. Our findings demonstrate that orally delivered dsRNA induces target gene knockdown and mortality in ALB neonate larvae and RNAi technology may have the potential for effective ALB control.  相似文献   

18.
19.
RNA interference (RNAi) has become an essential technique in entomology research. However, RNAi efficiency appears to vary significantly among insect species. Here, the sensitivity of four insect species from different orders to RNAi was compared to understand the reason for this variation. A previously reported method was modified to monitor trace amounts of double-stranded RNA (dsRNA). After the administration of dsRNA, the dynamics of its content was determined in the hemolymph, in addition to the capability of its degradation in both the hemolymph and the midgut juice. The results showed that injection of dsRNA targeting the homologous chitinase gene in Periplaneta americana, Zophobas atratus, Locusta migratoria, and Spodoptera litura, with doses (1.0, 2.3, 11.5, and 33.0 μg, respectively) resulting in the same initial hemolymph concentration, caused 82%, 78%, 76%, and 20% depletion, respectively, whereas feeding doses based on body weight (24, 24, 36, and 30 μg) accounted for 47%, 28%, 5%, and 1% depletion. The sensitivity of insects to RNAi was observed to be as follows: P. americana > Z. atratus >> L. migratoria >> S. litura. In vivo monitoring revealed that RNAi effects among these insect species were highly correlated with the hemolymph dsRNA contents. Furthermore, in vitro experiments demonstrated that the hemolymph contents after dsRNA injection were dependent on hemolymph degradation capacities, and on the degradation capabilities in the midgut juice, when dsRNA was fed. In conclusion, the RNAi efficacy in different insect species was observed to depend on the enzymatic degradation of dsRNA, which functions as the key factor determining the inner target exposure dosages. Thus, enzymatic degradation in vivo should be taken into consideration for efficient use of RNAi in insects.  相似文献   

20.
This study examined the control of nosemosis caused by Nosema ceranae, one of the hard-to-control diseases of honey bees, using RNA interference (RNAi) technology. Double-stranded RNA (dsRNA) for RNAi application targeted the mitosome-related genes of N. ceranae. Among the various mitosome-related genes, NCER_100882, NCER_101456, NCER_100157, and NCER_100686 exhibited relatively low homologies with the orthologs of Apis mellifera. Four gene-specific dsRNAs were prepared against the target genes and applied to the infected A. mellifera to analyze Nosema proliferation and honey bee survival. Two dsRNAs specifics to NCER_101456 and NCER_100157 showed high inhibitory effects on spore production by exhibiting only 62% and 67%, respectively, compared with the control. In addition, these dsRNA treatments significantly rescued the honey bees from the fatal nosemosis. It was confirmed that the inhibition of Nosema spore proliferation and the increase in the survival rate of honey bees were resulted from a decrease in the expression level of each target gene by dsRNA treatment. However, dsRNA mixture treatment was no more effective than single treatments in the rescue from the nosemosis. It is expected that the four newly identified mitosome-related target genes in this study can be effectively used for nosemosis control using RNAi technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号