首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cyclooxygenases (COXs) catalyze the rate-limiting step in the production of prostaglandins, bioactive compounds involved in processes such as fever and sensitivity to pain, and are the target of aspirin-like drugs. COX genes have been cloned from coral, tunicates and vertebrates, and in all the phyla where they are found, there are two genes encoding two COX isoenzymes; it is unclear whether these genes arose from an early single duplication event or from multiple independent duplications in evolution. The intron-exon arrangement of COX genes is completely conserved in vertebrates and mostly conserved in all species. Exon boundaries largely define the four functional domains of the encoded protein: the amino-terminal hydrophobic signal peptide, the dimerization domain, the membrane-binding domain, and the catalytic domain. The catalytic domain of each enzyme contains distinct peroxidase and cyclooxygenase active sites; COXs are classified as members of the myeloperoxidase family. All COXs are homodimers and monotopic membrane proteins (inserted into only one leaflet of the membrane), and they appear to be targeted to the lumenal membrane of the endoplasmic reticulum, where they are N-glycosylated. In mammals, the two COX genes encode a constitutive isoenzyme (COX-1) and an inducible isoenzyme (COX-2); both are of significant pharmacological importance.  相似文献   

2.
In vertebrates, the synthesis of prostaglandin hormones is catalyzed by cyclooxygenase (COX)-1, a constitutively expressed enzyme with physiological functions, and COX-2, induced in inflammation and cancer. Prostaglandins have been detected in high concentrations in certain corals, and previous evidence suggested their biosynthesis through a lipoxygenase-allene oxide pathway. Here we describe the discovery of an ancestor of cyclooxygenases that is responsible for prostaglandin biosynthesis in coral. Using a homology-based polymerase chain reaction cloning strategy, the cDNA encoding a polypeptide with approximately 50% amino acid identity to both mammalian COX-1 and COX-2 was cloned and sequenced from the Arctic soft coral Gersemia fruticosa. Nearly all the amino acids essential for substrate binding and catalysis as determined in the mammalian enzymes are represented in coral COX: the arachidonate-binding Arg(120) and Tyr(355) are present, as are the heme-coordinating His(207) and His(388); the catalytic Tyr(385); and the target of aspirin attack, Ser(530). A key amino acid that determines the sensitivity to selective COX-2 inhibitors (Ile(523) in COX-1 and Val(523) in COX-2) is present in coral COX as isoleucine. The conserved Glu(524), implicated in the binding of certain COX inhibitors, is represented as alanine. Expression of the G. fruticosa cDNA afforded a functional cyclooxygenase that converted exogenous arachidonic acid to prostaglandins. The biosynthesis was inhibited by indomethacin, whereas the selective COX-2 inhibitor nimesulide was ineffective. We conclude that the cyclooxygenase occurs widely in the animal kingdom and that vertebrate COX-1 and COX-2 are evolutionary derivatives of the invertebrate precursor.  相似文献   

3.
4.
Identification of prostaglandin F-producing cells in the liver   总被引:1,自引:1,他引:0  
Prostaglandin (PG) F synthase forms PGF and 9α, 11β-PGF2 from PGH2 and PGD2, respectively. PGH2 is synthesized from arachidonic acid by cyclooxygenase (COX) and then metabolized to various PGs and thromboxane by specific enzymes. PGD2 is synthesized from PGH2 by PGD synthase. To identify PGF2-producing cells in the rat liver, the occurrence and localization of PGF synthase and COX were studied with immunochemical and immunohistochemical techniques using anti-liver-type PGF synthase and anti-COX antibodies. In Western blot analyses, positive bands of liver-type PGF synthase and constitutive COX-1 were observed at positions approximately 37 kDa and 70–72 kDa, respectively. However, inducible COX-2 was not detected. In the immunohistochemical study, PGF synthase was present in the cytoplasm of the sinusoidal endothelial cells. COX-1 was present on the membranes of the nucleus and endoplasmic reticulum of the endothelial cells and Kupffer cells. Double immunostaining for PGF synthase and COX-1 showed that both enzymes were present in the same endothelial cells. These results suggest that the main site of PGF2 synthesis in the liver is the sinusoidal endothelial cell. Accepted: 12 October 1999  相似文献   

5.
Prostaglandins (PGs) are known to play a variety of roles in adipocytes and precursor cells, which have the arachidonate cyclooxygenase (COX) pathway to generate several series of PGs at different stages of life cycle of adipocytes. To gain a unique insight into the specific roles of the COX isoforms during the life cycle of adipocytes, 3T3-L1 preadipocytes were stably transfected with a mammalian expression vector harboring either cDNA coding for murine COX-1 or COX-2. The cloned stable transfectants with COX-1 or COX-2 exhibited higher expression levels of their corresponding mRNA and proteins, and greater production of PGE2 upon stimulation with free arachidonic acid or A23187 than the parent cells and the transfectants with vector only. However, either type of transfectants brought about the marked reduction in the accumulation of triacylglycerols after the standard adipogenesis program. Unexpectedly, aspirin or other COX inhibitors at different phases of life cycle of adipocytes failed to reverse the reduced storage of fats. The transfectants with COX-2 were sensitive to exogenous 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) and troglitazone as peroxisome proliferator-activated receptor γ (PPARγ) agonists during the maturation phase for restoring the adipogenesis. By contrast, the transfectants with COX-1 were much less sensitive, which was reflected by much lower gene expression levels of PPARγ and the related adipocyte-specific markers. Taken together, the results suggest that the sustained overexpression of either COX-1 or COX-2 resulted in the interference of adipogenesis program through a PG-independent mechanism with a different mode of action of COX isoforms.  相似文献   

6.
Both cyclooxygenase (COX)-1 and COX-2, encoded by Ptgs1 and Ptgs2, function coordinately during inflammation. But the relative contributions and compensations of COX-1 and COX-2 to inflammatory responses remain unanswered. We used three engineered mouse lines where the Ptgs1 and Ptgs2 genes substitute for one another to discriminate the distinct roles and interchangeability of COX isoforms during systemic inflammation. In macrophages, kidneys, and lungs, “flipped” Ptgs genes generate a “reversed” COX expression pattern, where the knock-in COX-2 is expressed constitutively and the knock-in COX-1 is lipopolysaccharide inducible. A panel of eicosanoids detected in serum and kidney demonstrates that prostaglandin (PG) biosynthesis requires native COX-1 and cannot be rescued by the knock-in COX-2. Our data further reveal preferential compensation of COX isoforms for prostanoid production in macrophages and throughout the body, as reflected by urinary PG metabolites. NanoString analysis indicates that inflammatory networks can be maintained by isoform substitution in inflamed macrophages. However, COX-1>COX-2 macrophages show reduced activation of inflammatory signaling pathways, indicating that COX-1 may be replaced by COX-2 within this complex milieu, but not vice versa. Collectively, each COX isoform plays a distinct role subject to subcellular environment and tissue/cell-specific conditions, leading to subtle compensatory differences during systemic inflammation.  相似文献   

7.
A major pharmaceutical problem is designing diverse and selective lead compounds. The human genome sequence provides opportunities to discover compounds that are protein selective if we can develop methods to identify specificity determinants from sequence alone. We have analyzed sequence and structural diversity of sheep COX-1 and mouse COX-2 proteins by Active Site Profiling (ASP). Eleven residues that should serve as specificity determinants between COX-1 and COX-2 were identified; however, the literature suggests that only one has been utilized in structure-based discovery. ASP was used to create a position-specific scoring matrix, which was used to identify possible cross-reacting proteins from the human sequences. This method proved selective for cyclooxygenases, comparing well with results using BLAST. The methods identify a probable misannotation of a cyclooxygenase in which there is high sequence similarity scores using BLAST, but ASP shows it does not contain the residues necessary for cyclooxygenase function. ASP Analysis of human COX proteins suggests that some specificity determinants that distinguish COX-1 and COX-2 proteins are similar between sheep COX-1/mouse COX-2 and human COX-1/COX2; however, residue identities at those positions are not necessarily conserved. Our results lay groundwork for development of family-specific pattern recognition methods to selectively match compounds with proteins.  相似文献   

8.
9.
There are two cyclooxygenase (COX) genes encoding characterized enzymes, COX-1 and COX-2. Nonsteroidal anti-inflammatory drugs are commonly used as analgesics in inflammatory arthritis, and these often inhibit both cyclooxygenases. Recently, inhibitors of COX-2 have been used in the treatment of inflammatory arthritis, as this isoform is thought to be critical in inflammation and pain. The objective of this study was to determine the effect of COX-1 or COX-2 gene disruption on the development of chronic Freund's adjuvant-induced arthritis and inflammatory pain in male and female mice. The effect of COX-1 or COX-2 gene disruption on inflammatory hyperalgesia, allodynia, inflammatory edema, and arthritic joint destruction was studied. COX-2 knockout mice (COX-2-/-) showed reduced edema and joint destruction in female, but not male, animals. In addition, neither male nor female COX-2-/- mice developed thermal hyperalgesia or mechanical allodynia, either ipsilateral or contralateral to the inflammation. COX-1 gene disruption also reduced inflammatory edema and joint destruction in female, but not male mice, although females of both COX-/- lines did show some bony destruction. There was no difference in ipsilateral allodynia between COX-1 knockout and wild-type animals, but female COX-1-/- mice showed reduced contralateral allodynia compared with male COX-1-/- or wild-type mice. These data show that the gene products of both COX genes contribute to pain and local inflammation in inflammatory arthritis. There are sex differences in some of these effects, and this suggests that the effects of COX inhibitors may be sex dependent.  相似文献   

10.
Endothelium-derived cyclooxygenase (COX) products regulatecerebral vascular tone in newborn pigs. Both COX-1 and COX-2 are constitutively expressed in endothelial cells from newborn pig cerebralmicrovessels. We investigated the role of protein phosphorylation inthe regulation of COX activity. The protein tyrosine phosphatase (PTP)inhibitors phenylarsine oxide, vanadate, and benzylphosphonic acidrapidly stimulated COX activity, whereas the protein tyrosine kinaseinhibitors, genistein and tyrphostins, inhibited it. Protein synthesisinhibitors did not reverse the stimulation of COX activity evoked byPTP inhibitors. Similar changes were observed in other vascular cellsfrom newborn pigs that also express COX-1 and COX-2 (cerebralmicrovascular smooth muscle cells and aortic endothelial cells) but notin human umbilical vein endothelial cells or Swiss 3T3 fibroblasts thatexpress COX-1 only. Tyrosine-phosphorylated proteins wereimmunodetected in endothelial cell lysates. COX-2 immunoprecipitatedfrom 32P-loaded endothelial cellsincorporated 32P that wasincreased by PTP inhibitors. COX-2, but not COX-1, was detected inendothelial fractions immunoprecipitated with anti-phosphotyrosine.These data indicate that tyrosine phosphorylation posttranslationallyregulates COX activity in newborn pig vascular cells and that COX-2 isa substrate for phosphorylation.

  相似文献   

11.
12.
Caveolin-1 (Cav-1) interacts with and mediates protein trafficking and various cellular functions. Derlin-1 is a candidate for the retrotranslocation channel of endoplasmic reticulum proteins. However, little is known about how Derlin-1 mediates glycosylated protein degradation. Here, we identified Cav-1 as a key player in Derlin-1- and p97-mediated cyclooxygenase 2 (COX-2) ubiquitination and degradation. Derlin-1 augmented the interaction of Cav-1 and COX-2 and mediated the degradation of COX-2 in a COX-2 C terminus-dependent manner. Suppression of Cav-1 decreased the ubiquitination of COX-2, and mutation of Asn-594 to Ala to disrupt N-glycosylation at the C terminus of COX-2 reduced the interaction of COX-2 with Cav-1 but not Derlin-1. Moreover, suppression of p97 increased the ubiquitination of COX-2 and up-regulated COX-2 but not COX-1. Cav-1 enhanced the interaction of p97 with Ufd1 and Derlin-1 and collaborated with p97 to interact with COX-2. Cav-1 may be a cofactor in the interaction of Derlin-1 and N-glycosylated COX-2 and may facilitate Derlin-1- and p97 complex-mediated COX-2 ubiquitination, retrotranslocation, and degradation.  相似文献   

13.
Two prostaglandin (PG) H synthases encoded by Ptgs genes, colloquially known as cyclooxygenase (COX)-1 and COX-2, catalyze the formation of PG endoperoxide H2, the precursor of the major prostanoids. To address the functional interchangeability of these two isoforms and their distinct roles, we have generated COX-2>COX-1 mice whereby Ptgs2 is knocked in to the Ptgs1 locus. We then “flipped” Ptgs genes to successfully create the Reversa mouse strain, where knock-in COX-2 is expressed constitutively and knock-in COX-1 is lipopolysaccharide (LPS) inducible. In macrophages, flipping the two Ptgs genes has no obvious impact on COX protein subcellular localization. COX-1 was shown to compensate for PG synthesis at high concentrations of substrate, whereas elevated LPS-induced PG production was only observed for cells expressing endogenous COX-2. Differential tissue-specific patterns of expression of the knock-in proteins were evident. Thus, platelets from COX-2>COX-1 and Reversa mice failed to express knock-in COX-2 and, therefore, thromboxane (Tx) production in vitro and urinary Tx metabolite formation in COX-2>COX-1 and Reversa mice in vivo were substantially decreased relative to WT and COX-1>COX-2 mice. Manipulation of COXs revealed isoform-specific compensatory functions and variable degrees of interchangeability for PG biosynthesis in cells/tissues.  相似文献   

14.
The cyclooxygenase (COX) superfamily of prostaglandin synthase genes encode a constitutively expressed COX-1, an inducible, highly regulated COX-2, and a COX-3 isoform whose RNA is derived through the retention of a highly structured, G + C-rich intron 1 of the COX-1 gene. As generators of oxygen radicals, lipid mediators, and the pharmacological targets of nonsteroidal anti-inflammatory drugs (NSAIDs), COX enzymes potentiate inflammatory neuropathology in Alzheimer's disease (AD) brain. Because COX-2 is elevated in AD and COX-3 is enriched in the mammalian CNS, these studies were undertaken to examine the expression of COX-3 in AD and in [IL-1beta + Abeta42]-triggered human neural (HN) cells in primary culture. The results indicate that while COX-2 remains a major player in propagating inflammmation in AD and in stressed HN cells, COX-3 may play ancillary roles in membrane-based COX signaling or when basal levels of COX-1 or COX-2 expression persist.  相似文献   

15.
There are two schools of thought regarding the cyclooxygenase (COX) isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.  相似文献   

16.
The PIGA gene from Toxoplasma gondii has been cloned and characterized. Like mammalian PIGA, the transmembrane and C-terminal domains are sufficient to direct localization to the parasite endoplasmic reticulum. A functional copy of PIGA is required for tachyzoite viability, demonstrating that glycosylphosphatidylinositol biosynthesis is an essential process in T. gondii.  相似文献   

17.
18.
19.
ObjectivesNSAIDs are used to relieve pain and decrease inflammation by inhibition of cyclooxygenase (COX)-catalyzed prostaglandin (PG) synthesis. PGs are fatty acid mediators involved in cartilage homeostasis, however the action of their synthesizing COX-enzymes in cartilage differentiation is not well understood. In this study we hypothesized that COX-1 and COX-2 have differential roles in chondrogenic differentiation.MethodsATDC5 cells were differentiated in the presence of COX-1 (SC-560, Mofezolac) or COX-2 (NS398, Celecoxib) specific inhibitors. Specificity of the NSAIDs and inhibition of specific prostaglandin levels were determined by EIA. Prostaglandins were added during the differentiation process. Chondrogenic outcome was determined by gene- and protein expression analyses.ResultsInhibition of COX-1 prevented Col2a1 and Col10a1 expression. Inhibition of COX-2 resulted in decreased Col10a1 expression, while Col2a1 remained unaffected. To explain this difference expression patterns of both COX-enzymes as well as specific prostaglandin concentrations were determined. Both COX-enzymes are upregulated during late chondrogenic differentiation, whereas only COX-2 is briefly expressed also early in differentiation. PGD2 and PGE2 followed the COX-2 expression pattern, whereas PGF and TXA2 levels remained low. Furthermore, COX inhibition resulted in decreased levels of all tested PGs, except for PGD2 and PGF in the COX-1 inhibited condition. Addition of PGE2 and PGF resulted in increased expression of chondrogenic markers, whereas TXA2 increased expression of hypertrophic markers.ConclusionsOur findings point towards a differential role for COX-enzymes and PG-production in chondrogenic differentiation of ATDC5 cells. Ongoing research is focusing on further elucidating the functional partition of cyclooxygenases and specific prostaglandin production.  相似文献   

20.
Unlike most other mammalian cells, beta-cells of Langerhans constitutively express cyclooxygenase (COX)-2 rather than COX-1. COX-2 is also constitutively expressed in type 1 diabetes (T1D) patients' periphery blood monocytes and macrophage. To understand the role of COX-2 in the beta-cell, we investigated COX-2 expression in beta-cells and islet infiltrates of NOD and BALB/c mice using fluorescence immunohistochemistry and cytochemical confocal microscopy and Western blotting. Immunostaining showed that COX-2 is expressed in islet-infiltrating macrophages, and that the expression of insulin and COX-2 disappeared concomitantly from the beta-cells when NOD mice progressed toward overt diabetes. Also cultured INS-1E cells coexpressed insulin and COX-2 but clearly in different subcellular compartments. Treatment with celecoxib increased insulin release from these cells in a dose-dependent manner in glucose concentrations ranging from 5 to 17 mM. Excessive COX-2 expression by the islet-infiltrating macrophages may contribute to the beta-cell death during insulitis. The effects of celecoxib on INS-1E cells suggest that PGE(2) and other downstream products of COX-2 may contribute to the regulation of insulin release from the beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号