首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Immunological Studies of Betaine Aldehyde Dehydrogenase in Barley   总被引:2,自引:0,他引:2  
The changes in the level of the protein for betaine aldehydedehydrogenase, which catalyzes the last step in the synthesisof glycinebetaine, were analyzed with antiserum raised againstSDS-denatured betaine aldehyde dehydrogenase from spinach. Inbarley leaves, the levels of betaine aldehyde dehydrogenaseprotein were found to be enhanced by the addition of 200 mMNaCl to the growth medium. These changes in the level of theenzyme protein corresponded to those in the activity of theenzyme, as described in our previous study (Arakawa et al. 1990).The extent of this enhancement was reduced when barley plantswere relieved from salt stress. An increase in the level ofthe protein was also induced by water stress, such as the withholdingof water or the addition of polyethylene glycol 6000. Betainealdehyde dehydrogenase protein was detected in etiolated leavesand roots, as well as in green leaves. In etiolated leaves,the level of betaine aldehyde dehydrogenase protein was notaffected by salt stress. 1 This work was supported by a grant from the Bio-Media Projectof the Japanese Ministry of Agriculture, Forestry and Fisheries(BMP92-III-l-1).  相似文献   

2.
Betaine content in leaves of fifteen plant species was determined. The results showed higher betaine levels in those salt-, drought-, and chilling-resistant species. Betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8 ) was isolated and partially purified from spinach leaves. Some properties of this enzyme were studied. BADH was precipitated by 60% saturation of (NH4)2SO4. Its activity was not detected in 70% saturation of (NH4)2SO4. BADH has two isoenzymes. The activity of BADH was quite stable below –80℃. It was inhibited by 0.125–1.0 mol/L NaG1 or KC1 but not by Mn2+ and Mo6+, and slightly increased by Mg2+.  相似文献   

3.
4.
The accumulation of betaine and the distribution of betainealdehyde dehydrogenase, which catalyzes the last step in thesynthesis of betaine, were analyzed in leaves of control andsalt-stressed cereal plants of the Gramineae. BADH protein waspresent in both betaine-accumulating and nonaccumulating leaves. 1This research was supported by a Grant-in-Aid for ScientificResearch on Priority Area from the Ministry of Education, Scienceand Culture, Japan.  相似文献   

5.
Spinach (Spinacia oleracea L.) leaves contain a nuclear-encoded chloroplastic betaine aldehyde dehydrogenase (EC 1.2.1.8) which is induced several-fold by salinization. Betaine aldehyde dehydrogenase was purified 2400-fold to homogeneity with an overall yield of 14%. The procedure included fractional precipitation with ammonium sulfate, followed by ion-exchange, hydrophobic interaction, and hydroxyapatite chromatography in open columns, and ion-exchange and hydrophobic interaction chromatography in a fast-protein liquid chromatography system. The betaine aldehyde dehydrogenase had a pI of 5.65, and a broad pH optimum between 7.5 and 9.5. The Km values for NAD+ and NADP+ were 20 and 320 microM, respectively; the Vmax of the reaction with NADP+ was 75% of that with NAD+. The native enzyme is a dimer with subunits of Mr 63,000. Highly specific antiserum was raised against the native enzyme, and was used in conjunction with cell-free translation of leaf poly(A)+ RNA to show (a) that betaine aldehyde dehydrogenase is synthesized as a precursor of Mr 1200 higher than the mature polypeptide, and (b) that both chronic salt stress and salt shock provoke a several-fold increase in the level of translatable message for the enzyme.  相似文献   

6.
In wilted barley leaves, betaine accumulates at about 200 nanomoles per 10 centimeters leaf per day. Results with 14C-labeled precursors were qualitatively and quantitatively consistent with de novo synthesis of this betaine from serine via ethanolamine, choline, and betaine aldehyde and indicated that water stress may increase the activities of all steps in this pathway except the last.  相似文献   

7.
Betaine aldehyde dehydrogenase has been purified to homogeneity from rat liver mitochondria. The properties of betaine aldehyde dehydrogenase were similar to those of human cytoplasmic E3 isozyme in substrate specificity and kinetic constants for substrates. The primary structure of four tryptic peptides was also similar; only two substitutions, at most, per peptide were observed. Thus, betaine aldehyde dehydrogenase is not a specific enzyme, as formerly believed; activity with betaine aldehyde is a property of aldehyde dehydrogenase (EC 1.2.1.3), which has broad substrate specificity. Up to the present time the enzyme was thought to be cytoplasmic in mammals. This report establishes, for the first time, mitochondrial subcellular localization for aldehyde dehydrogenase, which dehydrogenates betaine aldehyde, and its colocalization with choline dehydrogenase. Betaine aldehyde dehydrogenation is an important function in the metabolism of choline to betaine, a major osmolyte. Betaine is also important in mammalian organisms as a major methyl group donor and nitrogen source. This is the first purification and characterization of mitochondrial betaine aldehyde dehydrogenase from any mammalian species.  相似文献   

8.
甜菜碱是一种非毒性的渗透调节剂。多种高等植物在盐碱或缺水的环境下在细胞中积累甜菜碱 ,以维持细胞的正常膨压。甜菜碱的积累使得许多代谢中的重要酶类在渗透胁迫下能保持活性。在植物中甜菜碱由胆碱经两步氧化得到 ,催化第一步反应的酶是胆碱单加氧酶 (CMO) ,催化第二步反应的酶是甜菜碱醛脱氢酶 (BADH)。本文综述了这两种酶的分子生物学及基因工程研究的最新进展 ,讨论了其基因工程研究的意义。  相似文献   

9.
Betaine aldehyde dehydrogenase in sorghum.   总被引:25,自引:0,他引:25       下载免费PDF全文
The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum (Sorghum bicolor) cDNA clones, BADH1 and BADH15, putatively encoding betaine aldehyde dehydrogenase were isolated and characterized. BADH1 is a truncated cDNA of 1391 bp. BADH15 is a full-length cDNA clone, 1812 bp in length, predicted to encode a protein of 53.6 kD. The predicted amino acid sequences of BADH1 and BADH15 share significant homology with other plant BADHs. The effects of water deficit on BADH mRNA expression, leaf water relations, and glycine betaine accumulation were investigated in leaves of preflowering sorghum plants. BADH1 and BADH15 mRNA were both induced by water deficit and their expression coincided with the observed glycine betaine accumulation. During the course of 17 d, the leaf water potential in stressed sorghum plants reached -2.3 MPa. In response to water deficit, glycine betaine levels increased 26-fold and proline levels increased 108-fold. In severely stressed plants, proline accounted for > 60% of the total free amino acid pool. Accumulation of these compatible solutes significantly contributed to osmotic potential and allowed a maximal osmotic adjustment of 0.405 MPa.  相似文献   

10.
Betaine aldehyde oxidation by spinach chloroplasts   总被引:30,自引:7,他引:23       下载免费PDF全文
Chenopods synthesize betaine by a two-step oxidation of choline: choline → betaine aldehyde → betaine. Both oxidation reactions are carried out by isolated spinach (Spinacia oleracea L.) chloroplasts in darkness and are promoted by light. The mechanism of betaine aldehyde oxidation was investigated with subcellular fractions from spinach leaf protoplasts. The chloroplast stromal fraction contained a specific pyridine nucleotide-dependent betaine aldehyde dehydrogenase (about 150 to 250 nanomoles per milligram chlorophyll per hour) which migrated as one isozyme on native polyacrylamide gels stained for enzyme activity. The cytosol fraction contained a minor isozyme of betaine aldehyde dehydrogenase. Leaves of pea (Pisum sativum L.), a species that lacks betaine, had no betaine aldehyde dehydrogenase isozymes. The specific activity of betaine aldehyde dehydrogenase rose three-fold in spinach plants grown at 300 millimolar NaCl; both isozymes contributed to the increase. Stimulation of betaine aldehyde oxidation in illuminated spinach chloroplasts was due to a thylakoid activity which was sensitive to catalase; this activity occurred in pea as well as spinach, and so appears to be artifactual. We conclude that in vivo, betaine aldehyde is oxidized in both darkness and light by the dehydrogenase isozymes, although some flux via a light-dependent, H2O2-mediated reaction cannot be ruled out.  相似文献   

11.
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is an important enzyme that catalyzes the last step in the synthesis of glycine betaine, a compatible solute accumulated by many plants under various abiotic stresses. In barley ( Hordeum vulgare L.), we reported previously the existence of two BADH genes ( BBD1 and BBD2 ) and their corresponding proteins, peroxisomal BADH (BBD1) and cytosolic BADH (BBD2). To investigate their enzymatic properties, we expressed them in Escherichia coli and purified both proteins. Enzymatic analysis indicated that the affinity of BBD2 for betaine aldehyde was reasonable as other plant BADHs, but BBD1 showed extremely low affinity for betaine aldehyde with apparent Km of 18.9 μ M and 19.9 m M , respectively. In addition, Vmax/Km with betaine aldehyde of BBD2 was about 2000-fold higher than that of BBD1, suggesting that BBD2 plays a main role in glycine betaine synthesis in barley plants. However, BBD1 catalyzed the oxidation of ω-aminoaldehydes such as 4-aminobutyraldehyde and 3-aminopropionaldehyde as efficiently as BBD2. We also found that both BBDs oxidized 4- N -trimethylaminobutyraldehyde and 3- N -trimethylaminopropionaldehyde.  相似文献   

12.
Certain higher plants synthesize and accumulate glycine betaine, a compound with osmoprotectant properties. Biosynthesis of glycine betaine proceeds via the pathway choline betaine aldehyde glycine betaine. Plants such as tobacco (Nicotiana tabacum L.) which do not accumulate glycine betaine lack the enzymes catalyzing both reactions. As a step towards engineering glycine betaine accumulation into a non-accumulator, spinach and sugar beet complementary-DNA sequences encoding the second enzyme of glycine-betaine synthesis (betaine aldehyde dehydrogenase, BADH, EC 1.2.1.8) were expressed in tobacco. Despite the absence of a typical transit peptide, BADH was targeted to the chloroplast in leaves of transgenic plants. Levels of extractable BADH were comparable to those in spinach and sugar beet, and the molecular weight, isoenzyme profile and K m for betaine aldehyde of the BADH enzymes from transgenic plants were the same as for native spinach or sugar beet BADH. Transgenic plants converted supplied betaine aldehyde to glycine betaine at high rates, demonstrating that they were able to transport betaine aldehyde across both the plasma membrane and the chloroplast envelope. The glycine betaine produced in this way was not further metabolized and reached concentrations similar to those in plants which accumulate glycine betaine naturally. Betaine aldehyde was toxic to non-transformed tobacco tissues whereas transgenic tissues were resistant due to detoxification of betaine aldehyde to glycine betaine. Betaine aldehyded ehydrogenase is therefore of interest as a potential selectable marker, as well as in the metabolic engineering of osmoprotectant biosynthesis.Abbreviations BADH betaine aldehyde dehydrogenase - bp base pairs - FAB-MS fast atom bombardment-mass spectrometry - GAPDH NADP-linked glyceraldehyde-3-phosphate dehydrogenase We thank Dr. G. An for the gift of the vector pGA643 and Mr. Sylvain Lebeurier for help in maintaining plants. This work was supported, in part, by grants from the Natural Sciences and Engineering Research Council of Canada, the Rockefeller Foundation, and the U.S. Department of Agriculture, and by gifts from CIBAGEIGY Biotechnology.  相似文献   

13.
Suaeda japonica Makino belonging to the family Chenopodiaceae, is a halophyte and grows at the shore of Ariake sea in Japan. This plant presumably possesses high salt resistant nature, thus, we examined the mechanisms of seed germination under salt stress. The seeds maintained 80% germination rates on the medium containing 0.7 M NaCl. Germination rates varied depending on salt type; the germination rates under NaCl or KCI exhibited relatively lower values than ones under sodium gluconate or potassium gluconate. This different responses for salts seemed to be as a result of the presence of Cl ions. Although very high levels of betaine (compatible solute), were kept in the seedlings grown under no salt stress, the contents gradually increased as concentration of NaCl increased. Betaine is a factor present in plants that works to alleviate the effects of excessive soil salts. It is synthesized in leaves from betaine aldehyde, and this process is catabolized by betaine aldehyde dehydrogenase (BADH). When the seedlings were cultivated on the medium without NaCl, relatively high level of BADH activity was found. The activity increased 5-fold in the seedlings grown under 0.5 M NaCl stress. Increases in betaine content and BADH activity were found during seed germination. InS. japonica, the salt stress promoted BADH activity, subsequently endogenous betaine contents were increased, and increased betaine seemed to secure seed germination under salt stress.  相似文献   

14.
An isozyme of betaine aldehyde dehydrogenase in barley.   总被引:18,自引:0,他引:18  
  相似文献   

15.
Betaine aldehyde dehydrogenase (BADH), the terminal enzyme of the glycine betaine synthetic pathway was purified 245-fold from the mitochondria of Atlantic and Chesapeake Bay oyster populations acclimated to 350 mosm, using ammonium sulfate precipitation, anion exchange, and affinity chromatography. BADH from both populations functions at its maximum rate at 50-55 degrees C over a broad pH range (7.5-9). BADH activity is also modulated by increased [Na(+)] and [K(+)]. Although BADH from both populations has a similar V(max), BADH from Bay oysters has a substantially lower affinity for its substrate, betaine aldehyde, (K(m) = 0.36 mM), than BADH from Atlantic oysters (K(m) = 0.1 mM). Despite kinetic differences, BADH from both Atlantic and Chesapeake Bay oysters have the same molecular weight based on electrophoretic analysis. These differences in BADH enzyme kinetics between the two oyster populations probably partially explain the lower glycine betaine synthesis rates and concentrations in Chesapeake Bay oysters. J. Exp. Zool. 286:238-249, 2000.  相似文献   

16.
Members of the Chenopodiaceae can accumulate high levels (>100 mol·(g DW)-1) of glycine betaine (betaine) in leaves when salinized. Chenopodiaceae synthesize betaine by a two-step oxidation of choline (cholinebetaine aldehyde betaine), with the second step catalyzed by betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8). High betaine levels have also been reported in leaves of species from several distantly-related families of dicotyledons, raising the question of whether the same betaine-synthesis pathway is used in all cases.Fast atom bombardment mass spectrometry showed that betaine levels of >100 mol·(g DW)-1 are present in Lycium ferocissimum Miers (Solanaceae), Helianthus annuus L. (Asteraceae), Convolvulus arvensis L. (Convolvulaceae), and Amaranthus caudatus L. (Amaranthaceae), that salinization promotes betaine accumulation in these plants, and that they can convert supplied choline to betaine aldehyde and betaine. Nicotiana tabacum L. and Lycopersicon lycopersicum (L.) Karst. ex Farw. (Solanaceae), Lactuca sativa L. (Asteraceae) and Ipomoea purpurea L. (Convolvulaceae) also contained betaine, but at a low level (0.1–0.5 mol·(g DW)-1. Betaine aldehyde dehydrogenase activity assays, immunotitration and immunoblotting demonstrated that the betaine-accumulating species have a BADH enzyme recognized by antibodies raised against BADH from Spinacia oleracea L. (Chenopodiaceae), and that the Mr of the BADH monomer is in all cases close to 63 000. These data indicate that the cholinebetaine aldehydebetaine pathway may have evolved by vertical descent from an early angiosperm ancestor, and might be widespread (albeit not always strongly expressed) among flowering plants. Consistent with these suggestions, Magnolia x soulangiana was found to have a low level of betaine, and to express a protein of Mr 63 000 which cross-reacted with antibodies to BADH from Spinacia oleracea.Abbreviations BADH Betaine aldehyde dehydrogenase - DCIMS desorption chemical ionization mass spectrometry - FABMS fast atom bombardment mass spectrometry - Mr relative molecular mass - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate - TLC thin-layer chromatography  相似文献   

17.
Hanson AD  Wyse R 《Plant physiology》1982,70(4):1191-1198
Like other halophytic chenopods, sugar beet (Beta vulgaris L.) can accumulate high betaine levels in shoots and roots. N,N,N-trimethylglycine impedes sucrose crystallization and so lowers beet quality. The objective of this research was to examine the genetic variability and physiological significance of betaine accumulation in sugar beet and its relatives. Three cultivated genotypes of B. vulgaris and two genotypes of the wild progenitor B. maritima L. were grown with and without gradual salinization (final NaCl concentration = 150 millimolar). At 6 weeks old, all five genotypes had moderately high betaine levels in shoots and roots when unsalinized (averages for all genotypes: shoots = 108 micromoles per gram dry weight; roots = 99 micromoles per gram dry weight). Salinization raised betaine levels of shoots and roots 2- to 3-fold, but did not greatly depress shoot or root growth. The genotype WB-167—an annual B. maritima type—always had approximately 40% lower betaine levels in roots than the other four genotypes, although the betaine levels in the shoots were not atypically low.

The site and pathway of betaine synthesis were investigated in young, salinized sugar beet plants by: (a) supplying 1 micromole [14C]ethanolamine to young leaf blades or to the taproot sink of intact plants; (b) supplying tracer [14C]formate to discs of leaf, hypocotyl, and taproot tissues in darkness. Conversion of both 14C precursors to betaine was active only in leaf tissue. Very little 14C appeared in the phospholipid phosphatidylcholine before betaine was heavily labeled; this was in marked contrast to the labeling patterns in salinized barley. Phosphorylcholine was a prominent early 14C metabolite of both [14C]ethanolamine and [14C]formate in all tissues of sugar beet. Betaine translocation was examined in young plants of sugar beet and WB-167 by applying tracer [methyl-14C]betaine to a young expanded leaf and determining the distribution of 14C after 3 days. In all cases, extensive 14C translocation to young leaves and taproot sink occurred; neither in the fed leaf nor in sink organs were any 14C metabolites of betaine detected.

  相似文献   

18.
Chronic alcoholism leads to infertility in male and female rats, and antioxidant enzymes form the first line against oxidative stress in organisms. In recent years, betaine has shown beneficial effects on various tissues, and this study has attempted to clarify antioxidant and methyl donor properties of betaine in the rat ovary. For this purpose, the sexually matured Sprague-Dawley female rats were divided into Control, Ethanol (EtOH), Betaine, and Betaine?+?EtOH groups. Administration of betaine in Betaine?+?EtOH group significantly increased CAT activity when compared to the other groups (P?<?0.05). GPx activity increased significantly in Betaine and Betaine?+?EtOH groups as compared to controls (P?<?0.05). Interestingly, GPx and CAT activities insignificantly increased (in order compensatory) in EtOH group to suppress oxidative stress. In contrast, SOD activity decreased insignificantly in EtOH group compared to Betaine?+?EtOH and control groups (P?>?0.05). TBARS concentration (as a lipid peroxidation marker) significantly increased in ethanol-treated rats as compared to controls, while total homocysteine concentration significantly decreased in betaine-treated rats in comparison with EtOH group. Regarding to oestrous cycles, ethanol-treated animals had irregular estral cycle and persistent oestrous phase compared to controls and betaine-treated rats. In conclusion, these results demonstrate for the first time the antioxidant and methyl donor properties of betaine in the rat ovary. Thus, betaine might be used as a potential therapy in hyperhomocysteinemia and partial infertility mediated by oxidative stress in females.  相似文献   

19.
Glycinebetaine is synthesized in plants by the two‐step oxidation of choline, with betaine aldehyde as the intermediate. The reactions are catalyzed by choline mono‐oxygenase and betaine aldehyde dehydrogenase. Rice plants, which do not accumulate glycinebetaine, possess a gene encoding betaine aldehyde dehydrogenase, whose activity is detectable at low levels. To evaluate the compatibility in rice of glycinebetaine on growth and tolerance to salt, cold and heat, we produced transgenic rice plants by introduction of a cDNA for betaine aldehyde dehydrogenase of barley, which is localized in peroxisomes unlike the chloroplast‐specific localization of betaine aldehyde dehydrogenase in spinach and sugar beet. The transgenic rice plants converted high levels of exogenously applied betaine aldehyde (up to 10 mol m–3) to glycinebetaine more efficiently than did wild‐type plants. The elevated level of glycinebetaine in transgenic plants conferred significant tolerance to salt, cold and heat stress. However, very high levels of glycinebetaine, resulting from conversion of applied betaine aldehyde to glycinebetaine or from exogenous application, inhibited increases in length of rice plants but not increases in dry weight. Our results suggested that the benefits of accumulation of glycinebetaine by rice plants might be considerable under high light conditions.  相似文献   

20.
Effects of betaine and NaC1 in various concentrations on the activities of enzymes in tricarboxylic acid cycle (isocitric dehydrogenase, malic dehydrogenase, succinic dehydrogenase and fumarase), terminal oxidation (cytochrome oxidase) and photorespiratory pathway (glycolate oxidase and hydroxypyruvate reductase) have been studied. Betaine, in contrast to electolyte NaC1 was non-inhibitory to these enzymes up to 500 mmol/L. Partial protection against NaC1 inhibition to the activities of these enzymes were afforded by betaine. These results were consistent with the postulated role of betaine in cytoplasmic osmoregulation. These results showed that betaine was a superior compatible solute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号