首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ecological forecasting on the likely impacts of climate warming is crucial at a time when several ecosystems seem to be responding to this environmental threat. Among the most important questions are: which are the most vulnerable organisms to climate warming and where are they? Recently, there has been debate on whether the tropics or temperate zones are more vulnerable to warming. Vulnerability toward higher temperatures will depend on the organisms’ thermal limits and also on their acclimation capacity, which remains largely unknown for most species. The aim of the present work was to estimate (1) the upper thermal limits (Critical Thermal Maximum (CTMax)), (2) the warming tolerance (CTMax – Maximum Habitat Temperature) and (3) the acclimation capacity of tropical and temperate rocky shore organisms. Differences in biological groups (decapod crustaceans vs fish) were investigated and the effect of region (tropical vs temperate) and habitat (intertidal vs subtidal) was tested. Overall, 35 species were tested. For the assessment of the acclimation capacity, tropical-temperate pairs of closely related species of shrimp, crab and fish were selected. Warming tolerance was higher for temperate species than for tropical species and higher for subtidal species than for intertidal species, confirming that species with the highest thermal limits have the lowest warming tolerance. All species tested presented some acclimation capacity (CTMaxTrial  CTMaxControl), with the exception of gobiid fish, which was not observed to acclimate. The tropical species tested showed a lower acclimation capacity than their temperate counterparts. Given that tropical rocky shore organisms are already living very close to their thermal limits and that their acclimation capacity is limited, it is likely that the impacts of global warming will be evident sooner in the tropics than in the temperate zone.  相似文献   

2.
Cave‐dwelling ectotherms, which have evolved for millions of years under stable thermal conditions, could be expected to have adjusted their physiological limits to the narrow range of temperatures they experience and to be highly vulnerable to global warming. However, most of the few existing studies on thermal tolerance in subterranean invertebrates highlight that despite the fact that they show lower heat tolerance than most surface‐dwelling species, their upper thermal limits are generally not adjusted to ambient temperature. The question remains to what extent this pattern is common across subterranean invertebrates. We studied basal heat tolerance and its plasticity in four species of distant arthropod groups (Coleoptera, Diplopoda, and Collembola) with different evolutionary histories but under similar selection pressures, as they have been exposed to the same constant environmental conditions for a long time. Adults were exposed at different temperatures for 1 week to determine upper lethal temperatures. Then, individuals from previous sublethal treatments were transferred to a higher temperature to determine acclimation capacity. Upper lethal temperatures of three of the studied species were similar to those reported for other subterranean species (between 20 and 25°C) and widely exceeded the cave temperature (13–14°C). The diplopod species showed the highest long‐term heat tolerance detected so far for a troglobiont (i.e., obligate subterranean) species (median lethal temperature after 7 days exposure: 28°C) and a positive acclimation response. Our results agree with previous studies showing that heat tolerance in subterranean species is not determined by environmental conditions. Thus, subterranean species, even those living under similar climatic conditions, might be differently affected by global warming.  相似文献   

3.
Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean‐warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small‐ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances.  相似文献   

4.
Impacts of climate warming depend on the degree to which plants are constrained by adaptation to their climate‐of‐origin or exhibit broad climatic suitability. We grew cool‐origin, central and warm‐origin provenances of Eucalyptus tereticornis in an array of common temperature environments from 18 to 35.5°C to determine if this widely distributed tree species consists of geographically contrasting provenances with differentiated and narrow thermal niches, or if provenances share a common thermal niche. The temperature responses of photosynthesis, respiration, and growth were equivalent across the three provenances, reflecting a common thermal niche despite a 2,200 km geographic distance and 13°C difference in mean annual temperature at seed origin. The temperature dependence of growth was primarily mediated by changes in leaf area per unit plant mass, photosynthesis, and whole‐plant respiration. Thermal acclimation of leaf, stem, and root respiration moderated the increase in respiration with temperature, but acclimation was constrained at high temperatures. We conclude that this species consists of provenances that are not differentiated in their thermal responses, thus rejecting our hypothesis of adaptation to climate‐of‐origin and suggesting a shared thermal niche. In addition, growth declines with warming above the temperature optima were driven by reductions in whole‐plant leaf area and increased respiratory carbon losses. The impacts of climate warming will nonetheless vary across the geographic range of this and other such species, depending primarily on each provenance's climate position on the temperature response curves for photosynthesis, respiration, and growth.  相似文献   

5.
Thermal acclimation capacity, the degree to which organisms can alter their optimal performance temperature and critical thermal limits with changing temperatures, reflects their ability to respond to temperature variability and thus might be important for coping with global climate change. Here, we combine simulation modelling with analysis of published data on thermal acclimation and breadth (range of temperatures over which organisms perform well) to develop a framework for predicting thermal plasticity across taxa, latitudes, body sizes, traits, habitats and methodological factors. Our synthesis includes > 2000 measures of acclimation capacities from > 500 species of ectotherms spanning fungi, invertebrates, and vertebrates from freshwater, marine and terrestrial habitats. We find that body size, latitude, and methodological factors often interact to shape acclimation responses and that acclimation rate scales negatively with body size, contributing to a general negative association between body size and thermal breadth across species. Additionally, we reveal that acclimation capacity increases with body size, increases with latitude (to mid‐latitudinal zones) and seasonality for smaller but not larger organisms, decreases with thermal safety margin (upper lethal temperature minus maximum environmental temperatures), and is regularly underestimated because of experimental artefacts. We then demonstrate that our framework can predict the contribution of acclimation plasticity to the IUCN threat status of amphibians globally, suggesting that phenotypic plasticity is already buffering some species from climate change.  相似文献   

6.
用泽陆蛙(Fejervarya limnocharis)蝌蚪和饰纹姬蛙(Microhyla ornata)蝌蚪做研究模型,检测热驯化(20 、25 和30 C)对选择体温(Tsel)、低温耐受性(CTMin)和高温耐受性(CTMax)的影响。结果显示,两种蝌蚪的Tsel既不受驯化温度的影响,也不存在种间差异;泽陆蛙蝌蚪的CTMin显著小于饰纹姬蛙蝌蚪,而CTMax和VTR则显著大于饰纹姬蛙蝌蚪;CTMin和CTMax随驯化温度的升高而升高,VTR则随驯化温度的升高而减小。研究结果表明,热驯化显著影响两种蝌蚪的CTMin、CTMax和VTR,而对两种蝌蚪的体温调定点无显著影响;这些热生物学特征对两种蝌蚪有效适应环境温度变化、利用资源、减少种间竞争具有重要的生态学意义。  相似文献   

7.
Patterns and mechanisms of short‐term temperature acclimation and long‐term climatic adaptation of respiration among intraspecific populations are poorly understood, but both are potentially important in constraining respiratory carbon flux to climate warming across large geographic scales, as well as influencing the metabolic fitness of populations. Herein we report on leaf dark respiration of 33‐year‐old trees of jack pine (Pinus banksiana Lamb.) grown in three contrasting North American common gardens (0.9, 4.6, and 7.9 °C, mean annual temperature) comprised of identical populations of wide‐ranging geographic origins. We tested whether respiration rates in this evergreen conifer acclimate to prevailing ambient air temperatures and differ among populations. At each of the common gardens, observed population differences in respiration rates measured at a standard temperature (20 °C) were comparatively small and largely unrelated to climate of seed‐source origin. In contrast, respiration in all populations exhibited seasonal acclimation at all sites. Specific respiration rates at 20 °C inversely tracked seasonal variation in ambient air temperature, increasing with cooler temperatures in fall and declining with warmer temperatures in spring and summer. Such responses were similar among populations and sites, thus providing a general predictive equation regarding temperature acclimation of respiration for the species. Temperature acclimation was associated with variation in nitrogen (N) and soluble carbohydrate concentrations, supporting a joint enzyme and substrate‐based model of respiratory acclimation. Regression analyses revealed convergent relationships between respiration and the combination of needle N and soluble carbohydrate concentrations and between N‐based respiration (RN, μmol mol N? 1 s? 1) and soluble carbohydrate concentrations, providing evidence for general predictive relationships across geographically diverse populations, seasons, and sites. Overall, these findings demonstrate that seasonal acclimation of respiration modulates rates of foliar respiratory carbon flux in a widely distributed evergreen species, and does so in a predictable way. Genetic differences in specific respiration rate appear less important than temperature acclimation in downregulating respiratory carbon fluxes with climate warming across wide‐ranging sites.  相似文献   

8.
Aim Within clades, most taxa are rare, whilst few are common, a general pattern for which the causes remain poorly understood. Here we investigate the relationship between thermal performance (tolerance and acclimation ability) and the size of a species’ geographical range for an assemblage of four ecologically similar European diving beetles (the Agabus brunneus group) to examine whether thermal physiology relates to latitudinal range extent, and whether Brown’s hypothesis and the environmental variability hypothesis apply to these taxa. Location Europe. Methods In order to determine the species tolerances to either low or high temperatures we measured the lethal thermal limits of adults, previously acclimated at one of two temperatures, by means of thermal ramping experiments (± 1°C min?1). These measures of upper and lower thermal tolerances (UTT and LTT respectively) were then used to estimate each species’ thermal tolerance range, as total thermal tolerance polygons and marginal UTT and LTT thermal polygons. Results Overall, widespread species have higher UTTs and lower LTTs than restricted ones. Mean upper lethal limits of the Agabus brunneus group (43 to 46°C), are similar to those of insects living at similar latitudes, whilst mean lower lethal limits (?6 to ?9°C) are relatively high, suggesting that this group is not particularly cold‐hardy compared with other mid‐temperate‐latitude insects. Widespread species possess the largest thermal tolerance ranges and have a relatively symmetrical tolerance to both high and low temperatures, when compared with range‐restricted relatives. Over the temperature range employed, adults did not acclimate to either high or low temperatures, contrasting with many insect groups, and suggesting that physiological plasticity has a limited role in shaping distribution. Main conclusions Absolute thermal niche appears to be a good predictor of latitudinal range, supporting both Brown’s hypothesis and the environmental variability hypothesis. Restricted‐range species may be more susceptible to the direct effect of climate change than widespread species, notwithstanding the possibility that even ‘thermally‐hardy’, widespread species may be influenced by the indirect effects of climate change such as reduction in habitat availability in Mediterranean areas.  相似文献   

9.
We acclimated adults of Takydromus septentrionalis (northern grass lizard) from four localities (populations) under identical thermal conditions to examine whether local thermal conditions have a fixed influence on thermal preference and thermal tolerance in the species. Selected body temperature (Tsel), critical thermal minimum (CTMin), and critical thermal maximum (CTMax) did not differ between sexes and among localities in lizards kept under identical laboratory conditions for ∼5 months, and the interaction effects between sex and locality on these measures were not significant. Lizards acclimated to the three constant temperatures (20, 25, and 35°C) differed in Tsel, CTMin, and CTMax. Tsel, CTMin, and CTMax all shifted upward as acclimation temperature increased, with Tsel shifting from 32.0 to 34.1°C, CTMin from 4.9 to 8.0°C, and CTMax from 42.0 to 44.5°C at the change-over of acclimation temperature from 20 to 35°C. Lizards acclimated to the three constant temperatures also differed in the range of viable body temperatures; the range was widest in the 25°C treatment (38.1°C) and narrowest in the 35°C treatment (36.5°C), with the 20°C treatment in between (37.2°C). The results of this study show that local thermal conditions do not have a fixed influence on thermal preference and thermal tolerance in T. septentrionalis.  相似文献   

10.
The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within‐population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures.  相似文献   

11.
Schizopygopsis younghusbandi is an endemic fish of Tibet characterized by slow growth. Artificial stock enhancement was applied to rebuild the natural population of S. younghusbandi in recent years. However, the optimal growth temperature and thermal tolerance of S. younghusbandi has not been studied, which restricts the production of S. younghusbandi fingerling for stock enhancement. The purpose of this paper is to determine the growth, critical thermal maximum (CTMax), lethal thermal maximum (LTMax) and acclimation response ratio (ARR) of S. younghusbandi juveniles (body weight 5.7 ± 1.2 g) at three acclimation temperature levels (10, 15, 20°C). The results showed that acclimation temperature significantly affected the growth, CTMax, LTMax and ARR of the experimental fish. Largest final weight (7.5 ± 2.3 g) was recorded in 15°C group. At a heating rate of 1°C/30 min, CTMax ranged from 30.98 to 32.01°C and LTMax ranged from 31.76 to 32.31°C in the three acclimation temperatures. Schizopygopsis younghusbandi had lower ARR value (0.097) than most other fish species. Low ARR value indicates that S. younghusbandi may have narrower thermal tolerance range and weaker acclimation ability to global warming. For successful aquaculture of S. younghusbandi juveniles, temperature should be maintained around 15°C.  相似文献   

12.
Predicting how species will respond to increased environmental temperatures is key to understanding the ecological consequences of global change. The physiological tolerances of a species define its thermal limits, while its thermal affinity is a summary of the environmental temperatures at the localities at which it actually occurs. Experimentally derived thermal limits are known to be related to observed latitudinal ranges in marine species, but accurate range maps from which to derive latitudinal ranges are lacking for many marine species. An alternative approach is to combine widely available data on global occurrences with gridded global temperature datasets to derive measures of species‐level “thermal affinity”—that is, measures of the central tendency, variation, and upper and lower bounds of the environmental temperatures at the locations at which a species has been recorded to occur. Here, we test the extent to which such occupancy‐derived measures of thermal affinity are related to the known thermal limits of marine species using data on 533 marine species from 24 taxonomic classes and with experimentally derived critical upper temperatures spanning 2–44.5°C. We show that thermal affinity estimates are consistently and positively related to the physiological tolerances of marine species, despite gaps and biases in the source data. Our method allows thermal affinity measures to be rapidly and repeatably estimated for many thousands more marine species, substantially expanding the potential to assess vulnerability of marine communities to warming seas.  相似文献   

13.
Many predictions of how climate change will impact biodiversity have focused on range shifts using species‐wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the contributions of life‐history plasticity vs. local adaptation to species‐wide climate tolerances. In particular, if local adaptation to climate is strong, populations across a species’ range—not only those at the trailing range edge—could decline sharply with global climate change. Indeed, faster rates of climate change in many high latitude regions could combine with local adaptation to generate sharper declines well away from trailing edges. Combining 15 years of demographic data from field populations across North America with growth chamber warming experiments, we show that growth and survival in a widespread tundra plant show compensatory responses to warming throughout the species’ latitudinal range, buffering overall performance across a range of temperatures. However, populations also differ in their temperature responses, consistent with adaptation to local climate, especially growing season temperature. In particular, warming begins to negatively impact plant growth at cooler temperatures for plants from colder, northern populations than for those from warmer, southern populations, both in the field and in growth chambers. Furthermore, the individuals and maternal families with the fastest growth also have the lowest water use efficiency at all temperatures, suggesting that a trade‐off between growth and water use efficiency could further constrain responses to forecasted warming and drying. Taken together, these results suggest that populations throughout species’ ranges could be at risk of decline with continued climate change, and that the focus on trailing edge populations risks overlooking the largest potential impacts of climate change on species’ abundance and distribution.  相似文献   

14.
1. Short-term measures of metabolic responses to warmer environments are expected to indicate the sensitivity of species to regional warming. However, given time, species may be able to acclimate to increasing temperature. Thus, it is useful to determine if short-term responses provide a good predictor for long-term acclimation ability. 2. The tropical reef fish Acanthochromis polyacanthus was used to test whether the ability for developmental thermal acclimation of two populations was indicated by their short-term metabolic response to temperature. 3. While both populations exhibited similar short-term responses of resting metabolic rate (RMR) to temperature, fish from the higher-latitude population were able to fully acclimate RMR, while the lower-latitude population could only partially compensate RMR at the warmest temperature. These differences in acclimation ability are most likely due to genetic differences between the populations rather than differences in thermal regimes. 4. This research indicates that acclimation ability may vary greatly between populations and that understanding such variation will be critical for predicting the impacts of warming environmental temperatures. Moreover, the thermal metabolic reaction norm does not appear to be a good predictor of long-term acclimation ability.  相似文献   

15.
Population changes and shifts in geographic range boundaries induced by climate change have been documented for many insect species. On the basis of such studies, ecological forecasting models predict that, in the absence of dispersal and resource barriers, many species will exhibit large shifts in abundance and geographic range in response to warming. However, species are composed of individual populations, which may be subject to different selection pressures and therefore may be differentially responsive to environmental change. Asystematic responses across populations and species to warming will alter ecological communities differently across space. Common garden experiments can provide a more mechanistic understanding of the causes of compositional and spatial variation in responses to warming. Such experiments are useful for determining if geographically separated populations and co‐occurring species respond differently to warming, and they provide the opportunity to compare effects of warming on fitness (survivorship and reproduction). We exposed colonies of two common ant species in the eastern United States, Aphaenogaster rudis and Temnothorax curvispinosus, collected along a latitudinal gradient from Massachusetts to North Carolina, to growth chamber treatments that simulated current and projected temperatures in central Massachusetts and central North Carolina within the next century. Regardless of source location, colonies of A. rudis, a keystone seed disperser, experienced high mortality and low brood production in the warmest temperature treatment. Colonies of T. curvispinosus from cooler locations experienced increased mortality in the warmest rearing temperatures, but colonies from the warmest locales did not. Our results suggest that populations of some common species may exhibit uniform declines in response to warming across their geographic ranges, whereas other species will respond differently to warming in different parts of their geographic ranges. Our results suggest that differential responses of populations and species must be incorporated into projections of range shifts in a changing climate.  相似文献   

16.
Climate change is causing widespread geographical range shifts, which likely reflects different processes at leading and trailing range margins. Progressive warming is thought to relax thermal barriers at poleward range margins, enabling colonization of novel areas, but imposes increasingly unsuitable thermal conditions at equatorward margins, leading to range losses from those areas. Few tests of this process during recent climate change have been possible, but understanding determinants of species’ range limits will improve predictions of their geographical responses to climate change and variation in extinction risk. Here, we examine the relationship between poleward and equatorward range margin dynamics with respect to temperature‐related geographical limits observed for 34 breeding passerine species in North America between 1984–1988 and 2002–2006. We find that species’ equatorward range margins were closer to their upper realized thermal niche limits and proximity to those limits predicts equatorward population extinction risk through time. Conversely, the difference between breeding bird species’ poleward range margin temperatures and the coolest temperatures they tolerate elsewhere in their ranges was substantial and remained consistent through time: range expansion at species’ poleward range margins is unlikely to directly reflect lowered thermal barriers to colonization. The process of range expansion may reflect more complex factors operating across broader areas of species’ ranges. The latitudinal extent of breeding bird ranges is decreasing through time. Disparate responses observed at poleward versus equatorward margins arise due to differences in range margin placement within the realized thermal niche and suggest that climate‐induced geographical shift at equatorward range limits more strongly reflect abiotic conditions than at their poleward range limits. This further suggests that observed geographic responses to date may fail to demonstrate the true cost of climate change on the poleward portion of species’ distributions. Poleward range margins for North American breeding passerines are not presently in equilibrium with realized thermal limits.  相似文献   

17.
Matthew J. Troia  Xingli Giam 《Ecography》2019,42(11):1913-1925
Identifying how close species live to their physiological thermal maxima is essential to understand historical warm‐edge elevational limits of montane faunas and forecast upslope shifts caused by future climate change. We used laboratory experiments to quantify the thermal tolerance and acclimation potential of four fishes (Notropis leuciodus, N. rubricroceus, Etheostoma rufilineatum, E. chlorobranchium) that are endemic to the southern Appalachian Mountains (USA), exhibit different historical elevational limits, and represent the two most species‐rich families in the region. All‐subsets selection of linear regression models using AICc indicated that species, acclimation temperature, collection location and month, and the interaction between species and acclimation temperature were important predictors of thermal maxima (Tmax), which ranged from 28.5 to 37.2°C. Next, we implemented water temperature models and stochastic weather generation to characterize the magnitude and frequency of extreme heat events (Textreme) under historical and future climate scenarios across 25 379 stream reaches in the upper Tennessee River system. Lastly, we used environmental niche models to compare warming tolerances (acclimation‐corrected Tmax minus Textreme) between historically occupied versus unoccupied reaches. Historical warming tolerances, ranging from +2.2 to +10.9°C, increased from low to high elevation and were positive for all species, suggesting that Tmax does not drive warm‐edge (low elevation) range limits. Future warming tolerances were lower (?1.2 to +9.3°C) but remained positive for all species under the direst warming scenario except for a small proportion of reaches historically occupied by E. rufilineatum, indicating that Tmax and acclimation potentials of southern Appalachian minnows and darters are adequate to survive future heat waves. We caution concluding that these species are invulnerable to 21st century warming because sublethal thermal physiology remains poorly understood. Integrating physiological sensitivity and warming exposure demonstrates a general and fine‐grained approach to assess climate change vulnerability for freshwater organisms across physiographically diverse riverscapes.  相似文献   

18.
为了研究不同驯化温度对尖头鰂(Rhynchocypris oxycephalus)热耐受特征的影响, 本研究设置4组水温(14℃、19℃、24℃和29℃), 对尖头鰂驯化两周, 采用临界温度法观察尖头鰂的耐受温度。结果显示: 尖头鰂的热耐受性受到温度驯化的影响, 表现为高温驯化可以升高最大临界温度(CTmax), 4个驯化组的平均CTmax分别为32.29℃、33.23℃、33.40℃和35.71℃; 低温驯化可以降低最小临界温度(CTmin), 平均CTmin分别为0.00、0.10℃、2.10℃和5.27℃; 在适中的温度(19℃)驯化条件下具有最高的温度耐受范围(33.13℃)。在高温条件下的温度驯化具有较高的驯化反应率, 最大值出现在24—29℃内(0.46); 低温驯化反应率最大值出现在29—24℃内, 为0.63。尖头鰂在本研究的驯化区间(14—29℃)内的热耐受区域面积为478.98℃2, 与温水性鱼类的温度耐受性相当, 说明尖头鰂具有较强的温度适应能力。  相似文献   

19.
Intraspecific variation in physiological traits and the standard metabolic rate (SMR) is common in widely distributed ectotherms since populations at contrasting latitudes experiences different thermal conditions. The climatic variability hypothesis (CVH) states that populations at higher latitudes presents higher acclimation capacity than those at lower latitudes, given the wider range of climatic variability they experience. The endemic four-eyed frog, Pleurodema thaul is widely distributed in Chile. We examined the variation in maximum and minimum critical temperatures (CTmax and CTmin), preferred temperature (TPref), SMR and their acclimatory capacity in two populations from the northern and center of its distribution. All the traits are higher in the warmer population. The capacity for acclimation varies between traits and, with the exception of CTmax and TPref, it is similar between populations. This pattern could be explained by the higher daily thermal variability in desert environments, that increases plasticity to the levels found in the high latitude population. However, we found low acclimatory capacity in all physiological traits, of only about 3% for CTmin, 10% for CTmax and TPref, and 1% for SMR. Thus, despite the fact that Pleurodema thaul possess some ability to adjust thermal tolerances in response to changing thermal conditions, this acclimatory capacity seems to be unable to prevent substantial buffering when body temperatures rise. The low acclimatory capacity found for P. thaul suggests that this species use behavioral rather than physiological adjustments to compensate for environmental variation, by exploiting available micro-environments with more stable thermal conditions.  相似文献   

20.
Populations at the warm range margins of the species distribution may be at the greatest risks of extinction from global warming unless they can tolerate extreme environmental conditions. Yet, some studies suggest that the thermal behavior of some lizard species is evolutionarily rigid. During two successive years, we compared the thermal biology of two populations of Liolaemus pictus living at the northern (warmer) and one population living at the southern (colder) range limits, thus spanning an 800 km latitudinal distance. Populations at the two range margins belong to two deeply divergent evolutionary clades. We quantified field body temperatures (Tb), laboratory preferred body temperatures (PBT), and used operative temperature data (Te) to calculate the effectiveness of thermoregulation (E). During one year in all populations, we further exposed half of the lizards to a cold or a hot acclimation treatment to test for plasticity in the thermal behavior. The environment at the southern range limit was characterized by cooler weather and lower Te. Despite that, females had higher Tb and both males and females had higher PBT in the southernmost population (or clade) than in the northernmost populations. Acclimation to cold conditions led to higher PBT in all populations suggesting that plastic responses to thermal conditions, instead of evolutionary history, may contribute to geographic variation. Lizards regulated moderately well their body temperature (E≈0.7): they avoided warm microhabitats in the northern range but capitalized on warm microhabitats in the southern range. We review literature data to show that Liolaemus species increase their thermoregulation efficiency in thermally challenging environments. Altogether, this indicates that habitats of low thermal quality generally select against thermoconformity in these lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号